JPS60262928A - Manufacture of heat resistant alloy containing dispersed oxide - Google Patents

Manufacture of heat resistant alloy containing dispersed oxide

Info

Publication number
JPS60262928A
JPS60262928A JP59116426A JP11642684A JPS60262928A JP S60262928 A JPS60262928 A JP S60262928A JP 59116426 A JP59116426 A JP 59116426A JP 11642684 A JP11642684 A JP 11642684A JP S60262928 A JPS60262928 A JP S60262928A
Authority
JP
Japan
Prior art keywords
alloy
oxide
powder
dispersed
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59116426A
Other languages
Japanese (ja)
Inventor
Kenichi Kizawa
賢一 鬼沢
Tetsuo Kuroda
哲郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59116426A priority Critical patent/JPS60262928A/en
Publication of JPS60262928A publication Critical patent/JPS60262928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve the strength of a heat resistant alloy contg. dispersed oxide at very high temp. by evaporating an alloy contg. an element having a specified oxide forming capacity in an inert gas to produce hyperfine powder of the alloy, forming stable oxide on the surface of the powder, compression-molding the powder, and hot extruding it. CONSTITUTION:An Ni, Co or Fe alloy contg. one or more kinds of elements each having >=100kcal/mol oxide forming free energy at room temp. such as Al and Be are evaporated with plasma arc in an inert gaseous atmosphere to produce hyperfine powder of the alloy. Oxygen is then introduced to form an oxide film on the surface of the hyperfine powder, and the oxidized hyperfine powder is compression-molded and hot extruded. The heat resistant alloy contg. dispersed oxide is obtd. The alloy has satisfactory strength even at such a very high temp. as about 1,000 deg.C.

Description

【発明の詳細な説明】 (発明の利用分野〕 本発明は、ガスタービン、ジェットエンジン等の動翼あ
るいは静翼等の材料として使用され、特に1000℃前
後の超高温でも十分な強度を有する酸化物分散耐熱合金
の製造方法に関する。
Detailed Description of the Invention (Field of Application of the Invention) The present invention is an oxidized material that is used as a material for moving blades or stationary blades of gas turbines, jet engines, etc., and has sufficient strength even at extremely high temperatures of around 1000°C. The present invention relates to a method for manufacturing a material-dispersed heat-resistant alloy.

〔発明の背景〕[Background of the invention]

酸化物分散合金とは、金属(又は合金)マトリックス中
に安定酸化物微粒子を微細均一に分布させた構造の合金
で、析出強化型合金と比べて特に高温(融点の70%以
上と考えれば良い)において強度が極めて優れている特
徴がある。このため耐熱合金としての応用が主で、ガス
タービン等の動翼、静翼、燃焼器等への適用が渇望され
ている。
Oxide-dispersed alloys are alloys with a structure in which stable oxide fine particles are finely and uniformly distributed in a metal (or alloy) matrix, and compared to precipitation-strengthened alloys, they can be used at particularly high temperatures (more than 70% of the melting point). ) is characterized by extremely high strength. For this reason, it is mainly used as a heat-resistant alloy, and its application to moving blades, stationary blades, combustors, etc. of gas turbines is desired.

なぜなら、これまで実用化されているNi基、Co基超
超合金は、γ′相(Ni、(An、Ti)規則格子組)
、炭化物相等の析出によって強化されているが、900
℃程度以上ではそれらが凝集粗大化、再固溶を起し5強
度が極端に低下してしまうからである。
This is because the Ni-based and Co-based superalloys that have been put into practical use so far have a γ′ phase (Ni, (An, Ti) ordered lattice set).
, is strengthened by precipitation of carbide phases, etc., but 900
This is because if the temperature exceeds about 0.degree.

酸化物分散合金(以下ODS合金と略記)の歴史は比較
的古い、今世紀初頭に、微細T h Oz粒子が分散し
たWが高温で非常に安定であることが発見されたことが
ODSの歴史の幕明けと考えられる。ODSが世界的に
注目されるようになったのは、1950年スイスのIr
+5annによって偶然発見されたS A P (Si
ntared Aluminum Product)か
らであろう。その後、1962年米国0DnPont社
で開発されたTD−Niは、初めて商用になったODS
合金で、これと前後してODS研究が盛んになっていっ
た。ただしTD−Niおよび改良型のTD−NiCrも
高温での強度は良好であるけれども、中低温での低強度
のため、実際の構造部材への適用は満足されなかった。
Oxide dispersed alloys (hereinafter abbreviated as ODS alloys) have a relatively long history.At the beginning of this century, it was discovered that W in which fine T h Oz particles were dispersed was extremely stable at high temperatures. It is considered to be the dawn of the dawn. ODS began to attract worldwide attention in 1950 when Switzerland's Ir.
S A P (Si
It is probably from Ntared Aluminum Product). Later, in 1962, TD-Ni, developed by 0DnPont in the United States, became the first commercially available ODS.
Around this time, ODS research became active in alloys. However, although TD-Ni and improved TD-NiCr also have good strength at high temperatures, their low strength at medium and low temperatures makes them unsatisfactory for application to actual structural members.

 1971年にInco社から発表された機械的合金化
(Mechanical Alloying)法は、非
常に斬新なODS合金製造法で、この方法によッテ::
 h * ’T! N i M OD S合金MA75
4、MA6000等が工業化され今日に至っている。理
論的研究も盛んで、将来のタービン用高温材料としては
ODS合金が極めて大きな役割を示すことが予測されて
いるが、依然最強を誇るM A 6000がタービン部
分として商用化しないのは、工程の複雑さ、多大な時間
と労力等のため、品質の良い材料が見合うコストで供給
されないからである。以下に、これまで提案されたOD
S合金製造法の中から、実用性の高い2,3の方法につ
いて内容と欠点について述べる。
The mechanical alloying method announced by Inco in 1971 is a very innovative ODS alloy manufacturing method.
h*'T! N i M OD S alloy MA75
4. MA6000 etc. have been industrialized to this day. Theoretical research is active, and it is predicted that ODS alloy will play an extremely important role as a high-temperature material for turbines in the future. However, the reason why M A 6000, which is still the most powerful, has not been commercialized as a turbine component is due to the process. This is because high-quality materials cannot be supplied at a commensurate cost due to the complexity, large amount of time and effort, etc. Below are the ODs proposed so far.
Among the S alloy manufacturing methods, we will discuss the contents and shortcomings of a few highly practical methods.

AΩマトリックス中にAQ20.を分散させたSAP合
金の製造法は表面酸化法と呼ばれ、その内容は次のとお
りである。すなわちAQ合金粉制御された酸化性雰囲気
中で粉砕しながら、粉末表面にAQ、O,の膜を形成さ
せてゆく。これをプレスにより固めて焼結し、押出加工
によって成型すると、粉末表面のAQ、O,膜が粒子と
して分散するというものである。高温では超々ジュラル
ミンより高強度であるが、分散粒子径は0.数μmオー
ダであり、機械的性質に悪影響を与える片状粒子が多く
、また強度を決定する粒子間隔も理想から遠い。他の合
金系での例も見られない。
AQ20. in the AΩ matrix. The method for manufacturing SAP alloy in which . That is, the AQ alloy powder is pulverized in a controlled oxidizing atmosphere to form a film of AQ, O, on the powder surface. When this is solidified by pressing, sintered, and molded by extrusion, the AQ, O, and films on the powder surface are dispersed as particles. It has higher strength than ultra-super duralumin at high temperatures, but the dispersed particle size is 0. The size is on the order of several μm, and there are many flaky particles that adversely affect mechanical properties, and the particle spacing, which determines strength, is far from ideal. No examples have been found for other alloy systems.

TD−Niの製法は共沈法と呼ばれる。The method for producing TD-Ni is called a coprecipitation method.

N i (N O,)、・6H,O溶液と希釈した酸化
トリウムとのコロイド状水性ゾルを、炭酸アンモニウム
−水酸化アンモニウム溶液と撹拌混合し、pHを7.5
 に保つ。そうすると水酸化ニッケルー炭酸ニッケルの
沈殿物が酸化トリウム粒子の周囲に均一に堆積する。こ
れを濾過、洗浄した後300℃で乾燥する。得られた生
成物を粉砕し、水素還元する。その後、プレス、焼結、
押出加工を施すとThe、微粒子がNi中に分散したよ
うな構造の製品となる。極めて複雑な方法であり、また
制約も厳しい。たとえば、水素還元においては、温度、
水素の流速1時間、温度制御等厳密にする必要がある。
A colloidal aqueous sol of N i (N O,), 6H, O solution and diluted thorium oxide was stirred and mixed with ammonium carbonate-ammonium hydroxide solution, and the pH was adjusted to 7.5.
Keep it. Then, a nickel hydroxide-nickel carbonate precipitate is deposited uniformly around the thorium oxide particles. This is filtered, washed, and then dried at 300°C. The resulting product is ground and reduced with hydrogen. Then press, sinter,
When extruded, the product becomes a product with a structure in which fine particles are dispersed in Ni. This is an extremely complicated method and has severe restrictions. For example, in hydrogen reduction, temperature,
It is necessary to strictly control the hydrogen flow rate for 1 hour and the temperature.

化学処理も十分な注意が必要とされている。Chemical treatment also requires careful attention.

さらに前述したように、高温強度は大きいものの中低温
では強度が不十分であるため、使用が限定される。耐酸
化性も良くない。Crを添加して耐酸化性を向上させた
TD NiC:rも世に出されたが、一般のNi基超超
合金対抗できる程の中低温強度を達成することは原理的
に困難な方法である。
Furthermore, as mentioned above, although it has high high temperature strength, it is insufficient in strength at medium and low temperatures, so its use is limited. Oxidation resistance is also not good. TD NiC:r, which has improved oxidation resistance by adding Cr, has also been released, but it is fundamentally difficult to achieve medium- and low-temperature strength that can compete with general Ni-based superalloys. .

マトリクス中にマトリクスよりも酸化物生成傾向の大き
な元素を固溶させた合金粉末をつくり、この合金粉末を
酸化性雰囲気の中に保ち、溶質元素を選択的に酸化させ
て、粉末中に酸化物粒子を分散させる方法がある。この
後はこれを圧縮成形し、押出加工等によって最終形状と
する。内部酸化法と呼ばれるこの方法は、Cu基、Ni
基等で基礎的検討がなされたが、複雑組成の実用合金に
には適用できない。
An alloy powder is created in which an element with a greater tendency to form oxides than the matrix is dissolved in the matrix, and this alloy powder is kept in an oxidizing atmosphere to selectively oxidize the solute elements to form oxides in the powder. There are ways to disperse particles. Thereafter, this is compression molded and given the final shape by extrusion processing or the like. This method, called the internal oxidation method, uses Cu groups, Ni
Fundamental studies have been carried out on this method, but it cannot be applied to practical alloys with complex compositions.

合金粉末と酸化物微粒子を単純に混合する方法も試みら
れたが、分散する粒子間隔を狭くして強度を上げるため
には、出発合金粉末の粒径が微細でなければならない。
A method of simply mixing alloy powder and oxide fine particles has been attempted, but in order to narrow the distance between dispersed particles and increase strength, the particle size of the starting alloy powder must be fine.

これまでこれに値する程微細な粒子は容易に得られてい
ないことから、この方法でうまくいった例はない。
Until now, it has not been possible to easily obtain particles as fine as this, so there has been no successful example of this method.

現在量も有望とされているODS合金製造法はInco
社の機械的合金化法である。マトリクスの合金組成を構
成する各元素粉末(または合金粉末)と酸化物超微粉を
、高エネルギボールミル(アトライタ)中で強烈に混合
する。この際、粉末は衝突するボールの間隙で、圧縮、
破壊、冷間接合を繰り返し、マトリクス合金中に酸化物
粒子が分散したような粉末が生成する。得られた粉末は
缶詰にされ、真空脱ガスの後熱間押出加工されて、製品
となる。この方法で製造されている合金の中で、最強の
ものがM A 6000と呼ばれる。Ni基超超合金中
Y20□微粒子が2voQ%程度分散した合金である。
Inco is the ODS alloy manufacturing method that is currently promising.
This is the company's mechanical alloying method. Each elemental powder (or alloy powder) constituting the alloy composition of the matrix and the ultrafine oxide powder are intensively mixed in a high-energy ball mill (attritor). At this time, the powder is compressed and compressed in the gap between the colliding balls.
After repeated fracture and cold joining, a powder with oxide particles dispersed in the matrix alloy is produced. The resulting powder is canned, vacuum degassed and then hot extruded to produce the product. The strongest alloy produced using this method is called MA 6000. This is an alloy in which approximately 2voQ% of Y20□ fine particles are dispersed in the Ni-based superalloy.

マトリクスには通常の鋳造型Ni基超超合金同様、γ′
相(Ni、(AQ、Ti)規格格子組)を析出させ、中
低温での強度を出している。ただし、前述したように欠
点も多い、十分に均一に合金化するためには、かなり長
時間を要すること、さらに致命的なことはどうしても合
金化が不十分なところが残ってしまいここが最終製品で
弱点となってしまうことである。
The matrix contains γ′ as well as ordinary cast Ni-based superalloys
The phase (Ni, (AQ, Ti) standard lattice set) is precipitated to provide strength at medium and low temperatures. However, as mentioned above, there are many drawbacks: it takes a considerable amount of time to achieve sufficiently uniform alloying, and what is even more fatal is that there are always areas where insufficient alloying remains, which is the final product. This can become a weakness.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、種々の組成の合金マトリックスに適用
でき、かつ得られるODS合金の性質も非常に優れるO
DS耐熱合金の製造法を提供することにある。
The object of the present invention is to provide an ODS alloy that can be applied to alloy matrices of various compositions and that the obtained ODS alloy has very excellent properties.
An object of the present invention is to provide a method for manufacturing a DS heat-resistant alloy.

〔発明の概要〕[Summary of the invention]

本発明の要点は、不活性ガス中で合金を蒸発させること
によって、0.5μm以下の同合金超微粒子を生成させ
、続いてその雰囲気に制御された量の酸素を導入し、超
微粒子表面に酸化膜を形成させ、得られた超微粒字を圧
縮成形、押出加工してODS耐熱合金を製造することで
ある。この際生成させる超微粒子の組成は、Ni、Co
、Feのうちいずれかひとつをベースとし、酸化物生成
能の大きな元素、例えばAQ、Bet希土類元素のうち
少くとも一種を特定量以上含有することを特徴とする。
The key point of the present invention is to evaporate the alloy in an inert gas to produce ultrafine particles of the same alloy with a size of 0.5 μm or less, and then introduce a controlled amount of oxygen into the atmosphere to coat the surface of the ultrafine particles. An oxide film is formed, and the obtained ultrafine grains are compression molded and extruded to produce an ODS heat-resistant alloy. The composition of the ultrafine particles produced at this time is Ni, Co
, Fe as a base, and is characterized by containing at least a specific amount of at least one of the elements with high oxide-forming ability, such as AQ and Bet rare earth elements.

不活性ガス中で金属を溶融させると、蒸発した原子は不
活性ガス分子および他の蒸発原子と衝突を繰り返しなが
ら、冷却され、金属原子は融合成長してゆく。これが超
微粒子生成の原理と考えられている。また、合金の場合
−5構成酸分間に蒸気圧の差があっても、基本的に所望
の成分の超微粒子を生成できる。この場合、各元素が個
々に蒸発するのか、合金のままで蒸発するのか、または
その中間なのか明確ではないが、蒸発条件を一定にして
おけば、常に各元素はほぼ一定の割合で超微粒子中に入
る。予備実験によって元素間のその傾向を調べておけば
目的組成の範囲に超微粒子の合金組成を合わせることは
容易である。なお、構成成分元素をそれぞれ別々に、あ
るいは何種かの合金に別けて、各々を別個に蒸発させな
がら、つまり複数の蒸発源を設け、不活性ガス空間中で
目的の合金を形成させる方法も可能である。この方がよ
り精密な合金成分制御ができる。
When a metal is melted in an inert gas, the evaporated atoms repeatedly collide with inert gas molecules and other evaporated atoms and are cooled, resulting in fusion growth of the metal atoms. This is thought to be the principle of ultrafine particle generation. Further, in the case of an alloy, even if there is a difference in vapor pressure between the -5 constituent acids, ultrafine particles of the desired components can be basically produced. In this case, it is not clear whether each element evaporates individually, as an alloy, or somewhere in between, but if the evaporation conditions are kept constant, each element will always be evaporated into ultrafine particles at a constant rate. go inside. It is easy to adjust the alloy composition of the ultrafine particles to the target composition range by investigating the trends among the elements through preliminary experiments. In addition, there is also a method of forming the desired alloy in an inert gas space by separately evaporating each of the component elements or by dividing them into several types of alloys, that is, by providing multiple evaporation sources. It is possible. This allows for more precise alloy composition control.

生成した合金超微粒子表面は非常に活性である。The surface of the produced ultrafine alloy particles is very active.

従ってこの超微粒粉を大気中に取り出す場合には、徐々
に純酸素を導入し、これに触れさせる必要がある。注意
すべきことは、表面に生成する酸化膜を分散相として利
用するので、大気を導入してしまうと元素によっては窒
化物を生成してしまうおそれがあって良くない。
Therefore, when this ultrafine powder is taken out into the atmosphere, it is necessary to gradually introduce pure oxygen and allow it to come into contact with it. It should be noted that since the oxide film formed on the surface is used as a dispersed phase, if air is introduced, nitrides may be formed depending on the element, which is not a good idea.

分散相は高温でも安定でなければならない。そのため、
合金超微粒子中にはこの安定酸化物を生成する元素が少
なくとも一種、特定量以上含有されている必要がある6
安定性の基準は、酸化物の標準生成自由エネルギで与え
られる。−酸素原子当りの室−温の生成自由エネルギが
、たとえばAμでは一126kcanである。1000
〜1100℃の高温で粗大化したり分解したりしないた
めには少なくともこの値すなわち一100kcaΩ程度
より(負で)大きくあるべきであり、それらの元素とし
て、イツトリウム、トリウム、希土類の各元素が含まれ
る。酸素との結合しやすさは大きくても、その成分の含
有量が少なければ、微粒子表面をその酸化物が覆うのに
不十分であって、他の成分の酸化物との混合膜になって
しまう。どのような酸化物が生成するかは、各成分の含
有量(活量)、酸素との結合しやすさく酸化物の生成自
由エネルギ)、および酸素圧に依存する。いったん不安
定な酸化物が生成しても、後の還元処理工程で除去はで
きるが、処理時間が長くなるし、場合によっては特殊な
工程を取らねばならなくなる。
The dispersed phase must be stable even at high temperatures. Therefore,
The ultrafine alloy particles must contain at least one element that produces this stable oxide in a specified amount6.
The standard of stability is given by the standard free energy of formation of the oxide. The free energy of formation at room temperature per oxygen atom is, for example, -126 kcan at Aμ. 1000
In order to not coarsen or decompose at high temperatures of ~1100°C, it should be at least larger (negatively) than this value, that is, about -100 kcaΩ, and these elements include yttrium, thorium, and rare earth elements. . Even if the ease of bonding with oxygen is high, if the content of that component is low, the oxide will not be sufficient to cover the surface of the fine particles, and will form a mixed film with the oxides of other components. Put it away. What kind of oxide is generated depends on the content (activity) of each component, ease of bonding with oxygen (free energy of oxide formation), and oxygen pressure. Once unstable oxides are formed, they can be removed in a subsequent reduction treatment step, but the treatment time will be longer and, in some cases, special steps will have to be taken.

金属の高温変形、すなわちクリープのメカニズムについ
ては種々議論されているが、すべての現象を統一的に説
明できる理論は今のところない。
Although there have been various discussions about the mechanism of high-temperature deformation of metals, that is, creep, there is currently no theory that can explain all phenomena in a unified manner.

しかし、転位クリープ、拡散クリープ、粒界すべりによ
るクリープ等いずれの理論をみても、ODS合金に対し
ては、分散粒子の径は小さいほど、分散粒子の間隔は狭
い方が、強度が高くなることが説明される。たとえば粒
界すべりが支配的と考えられる場合、粒界すベリ速度す
。、9は次式で与えられる。
However, regardless of the theories such as dislocation creep, diffusion creep, and creep due to grain boundary slip, for ODS alloys, the smaller the diameter of the dispersed particles and the narrower the interval between the dispersed particles, the higher the strength. is explained. For example, if grain boundary slip is considered to be dominant, the grain boundary slip velocity will be , 9 are given by the following equation.

9、□=(8τΩλ2・δD、)/(kTR’) ・・
・(1)ここに、 τ:せん断応力(外力)、Ω:原子体積、δ:分散粒子
とマトリックス間の厚さ。
9, □=(8τΩλ2・δD,)/(kTR')...
・(1) Here, τ: shear stress (external force), Ω: atomic volume, δ: thickness between the dispersed particles and the matrix.

D、二枚界の拡散定数、に:ボルッマン定数T:温度、 そして、λ:粒子間距離 R:分散粒子の半径 すなわち(1)式より、クリープ速度を小さくするため
には、λ→小、R→小としなければならないことが明ら
かである。
D is the diffusion constant of the two-plane boundary, where: Borckmann's constant T: temperature, and λ: the distance between particles R: the radius of the dispersed particles From equation (1), in order to reduce the creep rate, λ → small, It is clear that R must be made small.

超微粒子表面の酸化膜は、熱間押出加工の際に加わる大
きなせん断力によって、ひきちぎられ凝集して微細粒子
となるものと考えられる。従って分散するこれらの粒子
の間隔は、金属超微粒子の直径程度にした微細にできな
いことになる。ここにガス中蒸発法で製造する超微粉の
価値があるのである。すなわち、粒径1/100〜1/
10μmオーダの微粒子が、比較的シャープな分布をも
って生成できるからである。その際雰囲気ガス圧、蒸発
温度等に依存して粒径は変化する。あまり微細にすると
、取扱いが困難(脱ガスや圧粉がしにくい)なことがあ
るので、0.03μm以上が取扱いには都合が良い。粒
径が大きくなると、固型化した時の酸化物粒子間距離が
大きくなってしまい、強化に寄与しなくなる傾向であり
、さらに、生成する酸化膜の体積の金属の体積に対する
割合も小さくなるため、所望のVOQ%分酸化物を生成
させるのに付加的な酸化処理が必要になるなど不都合が
多い、0.5μ腸程度を境界としてこれらの現象が見ら
れるようになる。
It is thought that the oxide film on the surface of the ultrafine particles is torn off and aggregated into fine particles by the large shear force applied during hot extrusion. Therefore, the distance between these dispersed particles cannot be made as fine as the diameter of the ultrafine metal particles. This is where the value of ultrafine powder produced by evaporation in gas lies. That is, the particle size is 1/100 to 1/
This is because fine particles on the order of 10 μm can be generated with a relatively sharp distribution. At this time, the particle size changes depending on the atmospheric gas pressure, evaporation temperature, etc. If it is too fine, it may be difficult to handle (difficult to degas or compact), so 0.03 μm or more is convenient for handling. As the particle size increases, the distance between the oxide particles increases when solidified, which tends not to contribute to strengthening, and the ratio of the volume of the oxide film formed to the volume of the metal also decreases. , these phenomena are observed at a limit of about 0.5μ intestine, which has many disadvantages such as the need for additional oxidation treatment to generate the desired VOQ% oxide.

前述したように徐酸化工程で、不安定酸化物を生成して
しまうような場合には、圧粉工程の後に還元処理を行な
う。通常、400〜tooo℃の温度で、乾燥水素気流
中で処理する。圧粉体はポーラスであるので、圧粉体内
部まで十分還元される。
As mentioned above, if unstable oxides are generated in the slow oxidation step, a reduction treatment is performed after the powder compaction step. Usually, the treatment is carried out at a temperature of 400 to toooC in a stream of dry hydrogen. Since the green compact is porous, the inside of the green compact is sufficiently reduced.

超微粉の粒径が小さい場合には、還元処理中焼結が進み
、内部までの還元に時間を要する場合がある。この際は
、還元処理および圧粉工程の前にボールミル工程を加え
て、超微粉をあらかじめ塊状化しておくと良い、この塊
状化した超微粉をそのままか、あるいは軽く圧粉成型し
て還元処理すれば、容易に還元が進行する。この処理後
は不活性ガスで置換し次の工程に移る。
When the particle size of the ultrafine powder is small, sintering progresses during the reduction process, and it may take time for the reduction to reach the inside. In this case, it is best to add a ball mill process before the reduction treatment and powder compaction process to agglomerate the ultrafine powder in advance.The agglomerated ultrafine powder can be used as it is, or it can be lightly compacted and then subjected to the reduction treatment. If so, the reduction will proceed easily. After this treatment, the gas is replaced with an inert gas and the next step is carried out.

ODS合金を製造するiIk終工程は、熱間押出工程で
ある。この場合、得られた超微粉体は缶に詰められる。
The iIk final process for producing ODS alloys is a hot extrusion process. In this case, the obtained ultrafine powder is packed into cans.

材質は軟鋼、SUS等で十分である。As for the material, mild steel, SUS, etc. are sufficient.

缶内を真空排気し、排気孔を密閉する。押出温度は材料
に依存するが、超合金の場合には950〜1200℃の
範囲である。製造された押出品は、適当な熱処理を行な
って供試材となる。
Evacuate the inside of the can and seal the exhaust hole. The extrusion temperature depends on the material, but ranges from 950 to 1200°C for superalloys. The produced extruded product is subjected to appropriate heat treatment to become a test material.

以上述べたように、本発明の特徴は、ガス中蒸発法で生
成させた合金超微粉の表面に、安定酸化物を形成させ、
これを積極的に利用して分散強化材を製造するというも
のである。
As described above, the feature of the present invention is to form stable oxides on the surface of ultrafine alloy powder produced by in-gas evaporation method,
This is actively utilized to produce dispersion reinforced materials.

なお、分散させる酸化物量の制御を補なう方法として、
付加的に酸化物超微粉を混合添加しても良い、ボールミ
ル工程で添加すれば、均一な分散が得られる。また、徐
酸化工程の後で、金属超微粉と一緒に所定量の酸化物超
微粒子を有機溶媒(極性溶媒のメタノール等が良い)中
に混だくさせ、V型ミキサ等で撹拌混合後、溶媒を乾燥
除去させれば、極めて均一な混合体が得られる。
In addition, as a method to supplement the control of the amount of oxide to be dispersed,
Additionally, ultrafine oxide powder may be mixed and added. If added during the ball milling process, uniform dispersion can be obtained. In addition, after the gradual oxidation process, a predetermined amount of ultrafine oxide particles are mixed with ultrafine metal powder in an organic solvent (polar solvent such as methanol is good), and after stirring and mixing with a V-type mixer, the solvent If the is removed by drying, a very homogeneous mixture is obtained.

超微粉を圧密化する工程では、熱間押出のみを述べたが
、HI P (Hot 1sostatic Pres
s)後、熱間圧延あるいは熱間スェージ等を行なって同
様な素材を得ても良い。留意すべき点は断面積を塑性変
形によって115程度以下にすることである。
In the process of compacting ultrafine powder, only hot extrusion was described, but HI P (Hot 1 Sostatic Pres
After s), a similar material may be obtained by hot rolling or hot swaging. What should be noted is that the cross-sectional area should be reduced to about 115 or less by plastic deformation.

これ以上では緻密化が不十分である。If it is more than this, densification is insufficient.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例I NlNi−8(%)AQ金合金減圧Ar雰囲気中で、プ
ラズマアークにより蒸発させた。この超微粉に徐々に空
気を入れて、表面に酸化膜を形成させた。この酸化処理
後の超微粉を分析した所、AQが7.3wt%、酸素が
0.8wt%であることがわかった。また分光分析の結
果はぼ100%表面酸化物はA Q t O3であった
。そこで得られた超微粉を5US304製の円筒容器の
中に2t/aJで加圧し充填させた。容器内を400℃
にて真空排気し、2 X 10−”Torrの真空度と
した。これを1150℃に加熱し、押出成形した。断面
減少比は20:1とした。得られた棒状試験片を次に結
晶粒粗大化熱処理を加え、クリープ強度を向上させる試
みをした。これは再結晶温度以上に保持した炉中へ、徐
々に試料を通して行く処理であって、結晶粒が長さ方向
に伸長してゆく。この試験片かせ透過電子顕微鏡用薄膜
、およびクリープ試験片を切り出し、組織構造m察と高
温強度試験を行なった。
Example I NlNi-8(%)AQ gold alloy was evaporated by plasma arc in a reduced pressure Ar atmosphere. Air was gradually introduced into this ultrafine powder to form an oxide film on the surface. Analysis of the ultrafine powder after this oxidation treatment revealed that AQ was 7.3 wt% and oxygen was 0.8 wt%. Moreover, the results of spectroscopic analysis showed that the surface oxide was almost 100% A Q t O3. The obtained ultrafine powder was pressurized at 2 t/aJ and filled into a 5US304 cylindrical container. 400℃ inside the container
The vacuum was evacuated to 2 x 10-" Torr. This was heated to 1150°C and extrusion molded. The cross-section reduction ratio was 20:1. The obtained rod-shaped specimen was then crystallized. An attempt was made to improve the creep strength by adding grain coarsening heat treatment.This is a process in which the sample is gradually passed through a furnace maintained at a temperature above the recrystallization temperature, and the grains elongate in the length direction. A thin film for transmission electron microscopy and a creep test piece were cut out from this test piece, and the microstructure was examined and a high temperature strength test was conducted.

透過電子顕微鏡観察の結果、酸化物(AQzO,)微粒
子はかなり良好な状態に分散していることがわかった。
As a result of transmission electron microscopy, it was found that the oxide (AQzO,) fine particles were dispersed in a fairly good condition.

平均粒子径は0.035μmであった。酸素分析結果か
ら計算すると、含有されるAQ20.量は体積で約3.
5%である。従って分散粒子間隔は計算から約0.17
μmとなる。
The average particle diameter was 0.035 μm. Calculated from the oxygen analysis results, the contained AQ20. The amount is approximately 3.
It is 5%. Therefore, the distance between dispersed particles is approximately 0.17 from the calculation.
It becomes μm.

クリープ破断試験は、871℃、982℃。Creep rupture test was performed at 871°C and 982°C.

1093℃の3温度において、それぞれ応力を3種に変
えて行なった。試験後のデータを整理し、100時間ク
リープ破断応力をめて第1図にプロットした。ODS合
金であるTD−Ni(Ni−T h Os )および鋳
造型Ni基超合金中最強のlN−100の値を比較のた
めに示した。TD−Niに比べ1本発明の製法によるN
i−8AQ合金は、AQ、O,が微細に分散しているだ
けでなく、マトリクス中にはγ′相(Ni3AM)が析
出しているため、全温度域にわたって強度が優れている
Tests were conducted at three temperatures of 1093° C. and with three types of stress applied. The data after the test was organized, and the creep rupture stress for 100 hours was calculated and plotted in FIG. The value of 1N-100, which is the strongest among the ODS alloy TD-Ni (Ni-ThOs) and the cast Ni-based superalloy, is shown for comparison. Compared to TD-Ni, the production method of the present invention
The i-8AQ alloy has excellent strength over the entire temperature range because not only AQ and O are finely dispersed, but also the γ' phase (Ni3AM) is precipitated in the matrix.

lN−100は実用されている動翼材で、多量に合金成
分を含有しているので、1050℃以下では上記2者よ
り強度が大である。しかし強化に寄与するγ′相は高温
で粗大化、再固溶をするので、強度の減少が著しい、 
1050℃以上では、ODS合金より強度は低下してし
まう、将来のガスタービンでは動翼あるいは静翼は11
00℃程度の環境に置かれることが予想され、ここにO
DS合金の優位性がある。なお、本発明におけるNi−
8AQ合金は、TD−Niより耐酸化性も優れている。
1N-100 is a material for moving blades in practical use, and since it contains a large amount of alloy components, it has higher strength than the above two materials at temperatures below 1050°C. However, the γ′ phase, which contributes to strengthening, becomes coarser and re-dissolves at high temperatures, resulting in a significant decrease in strength.
At temperatures above 1050°C, the strength will be lower than that of ODS alloy.In future gas turbines, the rotor blades or stationary blades will be 11
It is expected that it will be placed in an environment of around 00℃, and here
DS alloy has an advantage. In addition, in the present invention, Ni-
The 8AQ alloy also has better oxidation resistance than TD-Ni.

実施例2 Ni−24Cr−5AQ−2Y合金をプラズマアークに
より減圧Ar雰囲気中で蒸発させた。実施例1と同様に
酸化処理後、大気中に取り出し、圧粉成型しベレット状
にした。これを700℃の電気炉中、水素を流しながら
5時間還元処理を行なった。水素気流をAr流に切り換
え、さらにAr中に純02 を加えて表面酸化物の安定
化処理を700℃にて2時間行なった。この後は実施例
1と同様、SUS製の缶に詰め、熱間押出しを行なった
。押出し材から薄片を切り出し、電解研摩し透過電子顕
4IItlItll!察に供した。電子線回折、および
EDX分析も同時に行ない1分散相はほとんどがY、O
,粒子またはY、03とA Q、o□の混合酸化物であ
ることが判明した。また粒子径の平均は約0.55μ−
1分布率は約avoρ%であった。これらの値はODS
合金として非常に効果的な結果をもたらすことが期待で
きるものである。また押出材の低酸化性試験および耐食
性試験も行なった。
Example 2 Ni-24Cr-5AQ-2Y alloy was evaporated by plasma arc in a reduced pressure Ar atmosphere. After the oxidation treatment in the same manner as in Example 1, it was taken out into the atmosphere and compacted into a pellet shape. This was reduced in an electric furnace at 700° C. for 5 hours while flowing hydrogen. The hydrogen flow was switched to an Ar flow, and pure 02 was added to the Ar to stabilize the surface oxide at 700° C. for 2 hours. After that, as in Example 1, it was packed into a SUS can and hot extruded. A thin section is cut from the extruded material, electrolytically polished, and subjected to a transmission electron microscope 4IItlItll! I submitted it to the police. Electron beam diffraction and EDX analysis were also performed at the same time, and the first dispersed phase was mostly Y and O.
, particles or a mixed oxide of Y,03 and AQ,o□. The average particle size is approximately 0.55 μ-
1 distribution rate was approximately avo %. These values are ODS
This alloy can be expected to produce very effective results. A low oxidation test and a corrosion resistance test of the extruded material were also conducted.

前者については、1100℃の酸素富化雰囲気中で10
0時間行ない、酸化による重量増加が0.1%以下と優
れていた。後者については、バーナリグ試験(ガスター
ビンの雰囲気の模擬)を800℃で100時間行ない、
腐食による内部劣化が表面から0.1+m程度以下と優
れていることが明らかとなった。
For the former, 10
The test was carried out for 0 hours, and the weight increase due to oxidation was 0.1% or less, which was excellent. Regarding the latter, a burner rig test (simulating the atmosphere of a gas turbine) was conducted at 800°C for 100 hours.
It has become clear that internal deterioration due to corrosion is approximately 0.1+m or less from the surface, which is excellent.

実施例3 Rena’ 80という商品名のNi基超超合金減圧A
r中プラズマアークによって溶解し、蒸発させて超微粉
を製造した。Rane’80の組成は次の通りである。
Example 3 Ni-based superalloy decompression A with the trade name Rena' 80
Ultrafine powder was produced by melting and evaporating by plasma arc in r. The composition of Rane'80 is as follows.

Ni : 60.5.Cr :13.9.Co : 9
.5゜Mo : 3.9.w: 4.0.AQ : 3
.0.Ti :5.0.Ci:0.15.B:0.01
.Zr:0.04 生成した超微粉の平均粒径は0.1μmであり、はぼ全
組成が含まれていることをEDX分析によって確認した
Ni: 60.5. Cr: 13.9. Co: 9
.. 5°Mo: 3.9. w: 4.0. AQ: 3
.. 0. Ti:5.0. Ci: 0.15. B:0.01
.. Zr: 0.04 The average particle size of the produced ultrafine powder was 0.1 μm, and it was confirmed by EDX analysis that it contained almost the entire composition.

実施例と同様に酸化処理後、1.0voQ%のY、03
超微粉(粒子径〜0.03μm平均)とボールミル中で
混合し、塊状化した0次に900℃において水素気流中
で5時間還元処理を行なった。
After oxidation treatment as in the example, 1.0voQ% Y, 03
The powder was mixed with ultrafine powder (average particle size of 0.03 μm) in a ball mill, and the resulting mass was subjected to reduction treatment at 900° C. for 5 hours in a hydrogen stream.

その後は実施例1と同様で、SUS製の缶に詰め。After that, the process was the same as in Example 1, and it was packed in SUS cans.

真空排気後密閉し、1150℃にて熱間押出しを行なっ
た。押出比は1/20とした。その後、1250℃に保
持した高周波炉中に、約1cn/hrの速度で侵入させ
、結晶粒を粗大化させると共に長さ方向に伸長させる処
理を行なった。
After evacuation, the container was sealed and hot extrusion was performed at 1150°C. The extrusion ratio was 1/20. Thereafter, it was introduced into a high frequency furnace maintained at 1250° C. at a rate of about 1 cn/hr to coarsen the crystal grains and elongate them in the length direction.

上記の処理によって得られた材料を、光学顕微鏡観察お
よびSEM*察することによって、組織構造の確認をし
た。その結果、酸化物超微粒子は約0.2μ厘の間隔で
均一に分散していることがわかった。結晶粒も長さ3〜
10m、幅1m程度に粗大化していた。
The structure of the material obtained by the above treatment was confirmed by optical microscopic observation and SEM* observation. As a result, it was found that the ultrafine oxide particles were uniformly dispersed at intervals of about 0.2 μm. The length of crystal grains is 3~
It had grown to about 10m long and 1m wide.

熱処理は、1120℃で2時間および850℃で16時
間行なった。この結果室温での引張強度は、125kg
/m”であり、伸びは2.5%であった。
Heat treatment was performed at 1120°C for 2 hours and at 850°C for 16 hours. As a result, the tensile strength at room temperature is 125 kg.
/m'', and the elongation was 2.5%.

クリープ破断試験は982℃、および1150℃で行な
った。応力はそれぞれ26,24kgf/m”、14.
12kgf/m”の2点ずつである。結果は第2図に示
しである。比較のために機械的合金化法によるM A 
6000のデータを示した。982℃で+iy A 6
000よりわずかに優れている。1150℃では多少者
るが、これはマトリクスの組成がODS用に特別に調整
されていないためであると考えられる。合金組成をさら
に改良すれば、M A 6000を上回る性能を達成す
ることも可能である。
Creep rupture tests were conducted at 982°C and 1150°C. Stresses are 26 and 24 kgf/m", respectively, 14.
12 kgf/m" at two points each. The results are shown in Figure 2. For comparison, M A by mechanical alloying method
6000 data were shown. +iy A 6 at 982℃
Slightly better than 000. Although there is some difference at 1150° C., this is thought to be because the matrix composition is not specially adjusted for ODS. If the alloy composition is further improved, it is possible to achieve performance exceeding M A 6000.

C発明の効果〕 以上述べたように1本発明の方法によって製造した酸化
物分散耐熱合金は極めて優れた特性を示す。
C. Effects of the Invention As described above, the oxide-dispersed heat-resistant alloy produced by the method of the present invention exhibits extremely excellent properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は100時間クリープ破断強度を示す線図、第2
図はクリープ破断試験結果を示す線図である。 2・・・TD−Ni、5・・・MA6000.6・・・
982℃。 7・・・1150℃。 代理人 弁理士 高橋明夫
Figure 1 is a diagram showing 100 hour creep rupture strength, Figure 2 is a diagram showing 100 hour creep rupture strength.
The figure is a diagram showing creep rupture test results. 2...TD-Ni, 5...MA6000.6...
982℃. 7...1150℃. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】[Claims] 1、Ni、Fee Coのうちいずれか一つを基質とし
、室温での酸化物生成自由エネルギが100kcoQ/
moQ以上の元素を少なくともひとつ含有する合金を、
不活性ガス雰囲気中で蒸発させ、該合金の超微粉を製造
する工程、不活性ガス中に置かれた該超微粉を酸化し、
該超微粉表面を酸化物で皮層する工程、酸化された該超
微粉に十分な熱と塑性変形を加え緻密化する工程を含む
ことを特徴とする酸化物分散耐熱合金の製造方法。
1. Using either Ni or Fee Co as a substrate, the free energy of oxide formation at room temperature is 100 kcoQ/
An alloy containing at least one element with moQ or higher,
evaporating in an inert gas atmosphere to produce ultrafine powder of the alloy; oxidizing the ultrafine powder placed in the inert gas;
A method for producing an oxide-dispersed heat-resistant alloy, comprising the steps of coating the surface of the ultrafine powder with an oxide, and applying sufficient heat and plastic deformation to the oxidized ultrafine powder to make it dense.
JP59116426A 1984-06-08 1984-06-08 Manufacture of heat resistant alloy containing dispersed oxide Pending JPS60262928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116426A JPS60262928A (en) 1984-06-08 1984-06-08 Manufacture of heat resistant alloy containing dispersed oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116426A JPS60262928A (en) 1984-06-08 1984-06-08 Manufacture of heat resistant alloy containing dispersed oxide

Publications (1)

Publication Number Publication Date
JPS60262928A true JPS60262928A (en) 1985-12-26

Family

ID=14686795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116426A Pending JPS60262928A (en) 1984-06-08 1984-06-08 Manufacture of heat resistant alloy containing dispersed oxide

Country Status (1)

Country Link
JP (1) JPS60262928A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925526A (en) * 1995-07-07 1997-01-28 Agency Of Ind Science & Technol Production of oxide grain dispersed metal matrix composite
WO1999050009A1 (en) * 1998-03-26 1999-10-07 Japan As Represented By Director General Of National Research Institute For Metals High-strength metal solidified material and acid steel and manufacturing methods thereof
JP2002348603A (en) * 2001-05-24 2002-12-04 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component
GB2475064A (en) * 2009-11-04 2011-05-11 Rolls Royce Plc Making an oxide dispersion strengthened nickel-based superalloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0925526A (en) * 1995-07-07 1997-01-28 Agency Of Ind Science & Technol Production of oxide grain dispersed metal matrix composite
WO1999050009A1 (en) * 1998-03-26 1999-10-07 Japan As Represented By Director General Of National Research Institute For Metals High-strength metal solidified material and acid steel and manufacturing methods thereof
JP2002348603A (en) * 2001-05-24 2002-12-04 Murata Mfg Co Ltd Method for manufacturing metal powder, metal powder, conductive paste, and laminated ceramic electronic component
GB2475064A (en) * 2009-11-04 2011-05-11 Rolls Royce Plc Making an oxide dispersion strengthened nickel-based superalloy
GB2475064B (en) * 2009-11-04 2011-12-14 Rolls Royce Plc A method of producing an oxide coated nickel-base superalloy and a method of producing an oxide dispersion strengthened nickel-base superalloy

Similar Documents

Publication Publication Date Title
US6312643B1 (en) Synthesis of nanoscale aluminum alloy powders and devices therefrom
US6902699B2 (en) Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US4915905A (en) Process for rapid solidification of intermetallic-second phase composites
US5728195A (en) Method for producing nanocrystalline multicomponent and multiphase materials
US6010661A (en) Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
JP2001181767A (en) High strength aluminum alloy
US5015534A (en) Rapidly solidified intermetallic-second phase composites
US4981512A (en) Methods are producing composite materials of metal matrix containing tungsten grain
JP3774758B2 (en) TiB particle reinforced Ti2AlNb intermetallic compound matrix composite and production method thereof
Bernard et al. One‐Step Synthesis and Consolidation of Nanophase Iron Aluminide
JPS6289803A (en) Powdery particle for fine granular hard alloy and its production
JPS63274736A (en) Niobium alloy
Nie Patents of methods to prepare intermetallic matrix composites: A Review
Suryanarayana Mechanical alloying of nanocrystalline materials and nanocomposites
EP0250163B1 (en) A method for the preparation of an alloy of nickel and titanium
JPH0832934B2 (en) Manufacturing method of intermetallic compounds
WO2016100226A1 (en) Incorporation of nano-size particles into aluminum or other light metals by decoration of micron size particles
JPS60262928A (en) Manufacture of heat resistant alloy containing dispersed oxide
JP2001226734A (en) Niobium base composite material and its producing method
US20180105901A1 (en) Method of making a molybdenum alloy having a high titanium content
Ahn et al. Preparation of Ti-Base Intermetallic Compounds by Mechanical Alloying (Overview)
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
USH1146H (en) Plasma spraying tungsten heavy alloys
CN115287504B (en) Light Al-Sc-Zr-Y-O heat-resistant aluminum alloy and preparation method thereof
Nam et al. Effect of ball milling conditions on the microstructure and the transformation behavior of Ti− Ni and Ti− Ni− Cu shape memory alloy powders