JPS60262219A - Optical guide device of traveling object - Google Patents

Optical guide device of traveling object

Info

Publication number
JPS60262219A
JPS60262219A JP59118022A JP11802284A JPS60262219A JP S60262219 A JPS60262219 A JP S60262219A JP 59118022 A JP59118022 A JP 59118022A JP 11802284 A JP11802284 A JP 11802284A JP S60262219 A JPS60262219 A JP S60262219A
Authority
JP
Japan
Prior art keywords
light
target position
light receiving
traveling
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59118022A
Other languages
Japanese (ja)
Other versions
JPH0363084B2 (en
Inventor
Yoshikazu Kawashima
川嶋 良和
Kunio Fujiwara
藤原 邦雄
Toyomi Oshige
大重 豊実
Tomoyuki Kanda
智幸 神田
Hiroyuki Sasai
浩之 笹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59118022A priority Critical patent/JPS60262219A/en
Publication of JPS60262219A publication Critical patent/JPS60262219A/en
Publication of JPH0363084B2 publication Critical patent/JPH0363084B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To increase the allowance range for vertical movements of a traveling object by irradiating beams into a space having a slender section shape simultaneously or with parallel sweeping. CONSTITUTION:The slender and flat parallel light beams are radiated to a receiver 20 set on an unmanned truck 1 from an optical system 40 or 41. The truck 1 is guided by these beams and also projects some of flat beams in the lateral direction rectangular to a main drive route through a branch mirror 52. The approximate position of a target station can be known previously by the distance travelled of the truck 1. Thus the truck 1 is driven at a low speed at the positions near the target station and at the same time gives attention to the optical signal given from a photoelectric element 53. When the light sent from the mirror 52 hits a small reflector 51, the reflected light is irradiated to the element 53. Thus the electric signals can be obtained from the element 53, and the truck 1 can be stopped accurately at a desired position.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、無人搬送車や移動ロボット等の走行移動体
を光ビームを用いて自動誘導及び位置決め停止するため
の光誘導装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical guidance device for automatically guiding, positioning and stopping a traveling moving object such as an automatic guided vehicle or a mobile robot using a light beam.

〔従来技術〕[Prior art]

従来から、例えば日本自動制御協会において昭和57年
1力26日、27日に開催さ九た「第5回ビークル・オ
ートメーション−シンポジウム」及び昭和58年1月2
5日、26日に開催さn7’(r第6回ビークル・オー
トメーション・シンポジウム」で発表されているように
、無人搬送車會レーザビーム等の光ビームを用いて自動
誘導することは一般に知られている。
Traditionally, for example, the ``5th Vehicle Automation Symposium'' was held at the Japan Automatic Control Association on January 26th and 27th, 1982, and January 2nd, 1982.
As announced at the 6th Vehicle Automation Symposium held on the 5th and 26th, it is generally known that automated guided vehicles can be automatically guided using light beams such as laser beams. ing.

第16 tab) 、 (b)U従来のこの種の装置を
そnぞれ示し、また第17図は第16図(b) K示す
装置の詳細図、第18図はその受光装置の詳細図であり
、図中(1)は無人搬送車、(2)は例えば第18図に
示すように太陽電池等の光電センサ(2a)が多数個ア
レイ状に横方向に設けらfした受光装置、(8)はHe
−Nθ発撮管等のレーザ光源、(4)はビームスキャナ
(5)Icよって駆動される揺動ミラー、(6)はレー
ザ光源(8)から受光装置(2)に照射さnる細い直進
ビームs (6a)。
16 (tab) and (b) U respectively show conventional devices of this kind, and FIG. 17 is a detailed view of the device shown in FIG. 16 (b) K, and FIG. 18 is a detailed view of the light receiving device. In the figure, (1) is an automatic guided vehicle, (2) is a light receiving device in which a large number of photoelectric sensors (2a) such as solar cells are arranged laterally in an array, as shown in FIG. (8) is He
- A laser light source such as an Nθ firing tube, (4) is a swinging mirror driven by a beam scanner (5) Ic, and (6) is a narrow straight line that irradiates the light receiving device (2) from the laser light source (8). Beam s (6a).

(6b)は揺動ミラー(4)で扇形に角度αで掃引され
る光ビームの最大振れ幅、(γ)は無人搬送車(1)の
走行コースである。また(8)は受光装置(2)の中心
軸、(9)車体の中心軸である。
(6b) is the maximum amplitude of the light beam swept in a fan shape at an angle α by the swinging mirror (4), and (γ) is the travel course of the automatic guided vehicle (1). Further, (8) is the central axis of the light receiving device (2), and (9) is the central axis of the vehicle body.

次に動作について説明する。第16図(a)に示す従来
装置に2いては、レーザ光源(8)から出た光ビームは
、細い直進ビーム(6)として受光装置(2)Ic照射
される。また第16図(bJに示す従来装置に2いては
、レーザ光源(8)から出た光ビームは、ビームスキャ
ナ(6)の揺動ミラー(4)によって無人搬送車(1)
の走行予定コース(γ)VCそい一定周期で扇形TIc
掃引、11. され、受光装置(2)で受光さ几る。そ
していずnの従米装[VcBいても、例えば第18図に
示すように光ビームを受光した光電センサ(2a)の位
置[、J:す、受光装置(2)の走行予定コース(7)
に対する横ずn量Wを検知することができる。従って、
無人搬送車(1)は、投光ビームが中央部の光電センサ
(2a)で受光できるように横ずfl量Wに応じた操舵
をすることで走行予定コース(γ)にそって走行するこ
とができる。
Next, the operation will be explained. In the conventional device 2 shown in FIG. 16(a), a light beam emitted from a laser light source (8) is applied to a light receiving device (2) Ic as a narrow straight beam (6). Furthermore, in the conventional device shown in FIG. 16 (bJ), the light beam emitted from the laser light source (8) is transmitted to the automatic guided vehicle (1) by the swinging mirror (4) of the beam scanner (6).
Scheduled travel course (γ) VC is sector-shaped with a constant cycle
Sweep, 11. The light is then received by the light receiving device (2). For example, as shown in FIG. 18, the position of the photoelectric sensor (2a) that received the light beam [, J: , the planned travel course of the light receiving device (2) (7)]
It is possible to detect the amount W of lateral deviation n. Therefore,
The automatic guided vehicle (1) travels along the planned travel course (γ) by steering according to the sideways fl amount W so that the projected beam can be received by the photoelectric sensor (2a) in the center. I can do it.

ところで、第16図(aJに示す従来装置は、細い直進
ビームを用いているため、光強度が強く光信号のS/N
比がよく信号処理は容易であるが、無人車の走行路の凹
凸、車体の振動、荷重による車体の沈み等に対応できる
だけの受光面の高さ方向の寸法が必要であり、受光装置
のセンサや光学系が高価になる。また光強度が強いため
、人間の眼に対する危険性の問題も大きく、設置場所に
制限を受けるという問題もある。
By the way, since the conventional device shown in FIG. 16 (aJ) uses a narrow straight beam, the light intensity is high and the S/N of the optical signal is low.
The ratio is good and signal processing is easy, but the height dimension of the light-receiving surface must be large enough to cope with unevenness of the driving path of the unmanned vehicle, vibration of the vehicle body, sinking of the vehicle body due to load, etc. and optical systems become expensive. Furthermore, since the light intensity is strong, there is a serious problem of danger to human eyes, and there is also a problem that there are restrictions on the installation location.

こAfC対し第16図(b) K示す従来装置は、光ビ
ームを垂直面内で扇形に掃引するため、受光面の高さ方
向の制限はなくなるが、投光装置からの距離が増大する
に従って掃引周期に対する受光時間の割合が減少してい
き、光信号のS/N比が著しく低下するという欠点があ
る。このため、受光センサVc冒速応答のものが必要と
なる。
In contrast to this AfC, the conventional device shown in FIG. 16(b) K sweeps the light beam fan-shaped in a vertical plane, so there is no limit to the height of the light receiving surface, but as the distance from the light projector increases, There is a drawback that the ratio of the light reception time to the sweep period decreases, and the S/N ratio of the optical signal decreases significantly. For this reason, a light-receiving sensor Vc that responds to high speed is required.

また、上配いず庇の従来装置Vcfo−いても、受光し
た光電センサの中心軸に対する横ずn量を検出するもの
であるため、例えは第18図に示す姿勢角ψは、ある距
離ゲ直進走行した後でなけ几ば算出することができず、
迅速な軌道修正操舵はできなかった、また目標地点への
無人搬送車の位置決めのためには、磁気的、光学的、あ
るいは機械的等の他の手段葡必要とした。
Furthermore, even if the conventional device Vcfo- has no upper eaves, it detects the amount of lateral deviation n with respect to the center axis of the photoelectric sensor that receives light, so for example, the attitude angle ψ shown in FIG. It can only be calculated after driving straight,
Rapid course correction maneuvers were not possible, and other means such as magnetic, optical, or mechanical were required to position the automated guided vehicle to the target location.

〔発明の概要〕[Summary of the invention]

このシも明はかかる欠点全解消する目的でなされたもの
で、元ビームの形状あるいは掃引方式ケ改良するととも
に、受光装置の構造を改良し、もってln f t’L
量2よび姿勢角を同時に検知して迅速に軌道修正操舵が
できるようにし、また上記光ビームヶ用いて走行移動体
の停止位置kill出する目標位置検出装置v走行移動
体に設置し、もってN贋のよい位置決め停止が得られる
走行移動体の光誘導装置を提案するものである。
This invention was made with the aim of eliminating all such drawbacks, by improving the shape of the original beam or the sweeping method, as well as improving the structure of the light receiving device.
A target position detecting device is installed on the traveling vehicle, which detects the amount 2 and the attitude angle at the same time to enable quick trajectory correction and steering, and uses the above-mentioned light beam to determine the stopping position of the traveling vehicle. The present invention proposes a light guiding device for a traveling moving object that can achieve good positioning and stopping.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図〜第15図によってこの発明の詳細な説明
する。
The present invention will be explained in detail below with reference to FIGS. 1 to 15.

第1図はこの発明に係る光誘導装置の全体構成図であり
、図中(1)は無人搬送車、(8)はレーザ光源、(6
c)、(6a)は縦長横細ビームの上端及び下端、攻は
無人搬送車(1)上に設置さn光ビームに対する走行移
動体の横偏移動量及び姿勢角を同時に検出する受光装置
と走行移動体の停止位置を検出する目標位置検出装置と
を備えた検出装置、閣は縦長横細の偏平平行な光ビーム
ヶ形成する光学系である。
FIG. 1 is an overall configuration diagram of a light guiding device according to the present invention, in which (1) is an automatic guided vehicle, (8) is a laser light source, and (6) is an automatic guided vehicle.
c) and (6a) are the upper and lower ends of the vertically long and horizontally narrow beam, and the latter is a light receiving device that is installed on the automatic guided vehicle (1) and simultaneously detects the amount of lateral displacement and attitude angle of the traveling moving object with respect to the n light beam. The detection device is equipped with a target position detection device for detecting the stop position of a traveling moving body, and is an optical system that forms a vertically long, horizontally narrow, oblate and parallel light beam.

しかして、縦長ビームとすることにより、先光面の高さ
方向の制限がなく、さらにレーザ光源(8)から遠距離
の地点でも受光時間は同一でろるため、光信号のS/N
比の低下は極めてわずかである。また光ビームを縦方向
に拡大しているため、人間の眼に入る光の強度も緩和さ
れて安全である。iた、偏平光ビームは横細断面形状で
あるため、無人搬送車(1)の横偏移量及び姿勢角の検
出に対しても、精度の低下が生じないという利点がある
However, by using a vertically elongated beam, there is no restriction in the height direction of the destination light surface, and since the light reception time can be the same even at a point far from the laser light source (8), the S/N of the optical signal
The decrease in ratio is extremely small. Furthermore, since the light beam is expanded vertically, the intensity of light entering the human eye is reduced, making it safe. In addition, since the flattened light beam has a horizontally narrow cross-sectional shape, there is an advantage that accuracy does not deteriorate when detecting the amount of lateral deviation and attitude angle of the automatic guided vehicle (1).

第2図はこの発明に係る投光装置′の−実施例全示す。FIG. 2 shows a complete embodiment of a light projection device' according to the invention.

図vC分いて叩1はビームエクスパンタ、し8)ハシリ
ントリカル凹レンズ、晦)はシリンドリカル凸レンズ、
囮は偏平光ビームの断面形状を表わしている。レンズ囮
はレンズ囮からの細い円形断面形状の平行ビームを垂直
面についてのみ扇形に拡大し、レンズに)はこの扇形の
光を垂直面についてのみ平行光mvc戻丁働きをし、い
ずれも水平面については入射ビーム直径に等しい幅を維
持するものである。筐たビームエキスパンダ叩1は、レ
ーザ光諒(8)からのビームヶ所要の直径の円形平行ビ
ームに変換するものである。
1 is a beam expander, 8) is a cylindrical concave lens, 2) is a cylindrical convex lens,
The decoy represents the cross-sectional shape of the flattened light beam. The lens decoy expands the parallel beam with a thin circular cross-section from the lens decoy into a fan shape only on the vertical plane, and the lens) converts this fan-shaped light into a parallel beam only on the vertical plane. maintains a width equal to the incident beam diameter. The enclosed beam expander 1 converts the beam from the laser beam (8) into a circular parallel beam of the required diameter.

上記光学系は偏平形状断面の全域ケ、はソ均等な光強度
とするもの″Cある。なお、他の手段として、偏平断面
領域全円形平行ビームで上下に掃引させても、はソ一様
の効果ケ得ることができる。
The above-mentioned optical system has a system that provides a uniform light intensity over the entire area of the flat cross section.As another method, even if the entire flat cross section is swept up and down with a circular parallel beam, the light intensity is uniform. You can get the same effect.

第6図(a)〜(d)はそ几らの概略構成例であり、(
8)ノは多角形回転ミラー、凹)はコリメータレンズ、
聞ノはw1動ミラー、(49a) 、 (49b )は
1対として同一角度を揺動する平行ミラーまたは平行プ
リズム、(閣は垂直に上下するミラー、(6Dは光路断
面を表わし次に、受光装置の説明に先立ち、横偏移量と
姿勢角の検出原理について説明する。
Figures 6(a) to 6(d) show schematic configuration examples of the
8) ノ is a polygonal rotating mirror, concave) is a collimator lens,
(49a) and (49b) are parallel mirrors or parallel prisms that swing at the same angle as a pair; Prior to explaining the device, the principle of detecting the amount of lateral deviation and attitude angle will be explained.

第4図(a) 、 (b)はリニャポジションセンサノ
原理?示すものであり1平板状の光導電素子にバイアス
電圧 VB?f:印加し第4119 (a)に示すよう
l演昇増幅器回路全付加することによって、光ビームが
照射される位置に比例する電圧侶゛号が第4図(′b)
に示すように得らnる。
Is Figure 4 (a) and (b) the linear position sensor principle? 1A bias voltage VB? is applied to a flat photoconductive element. By adding the entire amplifier circuit as shown in Fig. 4(a), the voltage level proportional to the position where the light beam is irradiated becomes as shown in Fig. 4('b).
obtained as shown in .

第5図(a)は、この発嬰に係る受光装置の基本部分の
平面図であり、同図(b)は同正面図である。図中s 
(s□)′J?よび(S2)はリニヤポジションセンサ
であり、既知間隔eで平行に設置さ庇ている。またこれ
らは第5図(1)lの如く、商さケ異ならせて設置され
て−J?!l1%縦長・横細の光ビームヶ干渉なく同時
に受光することができるようになっている。
FIG. 5(a) is a plan view of the basic part of the light receiving device related to this light emitting device, and FIG. 5(b) is a front view thereof. s in the figure
(s□)′J? and (S2) are linear position sensors, which are installed in parallel with each other at a known interval e. Also, these are installed at different quotients, as shown in Figure 5 (1) l. ! 11% vertically long and horizontally narrow light beams can be received simultaneously without interference.

第5図(a)において、平行に設置さt′したリニヤポ
ジションセンサ(S□) p (”2 )の中心軸に対
し、ある角度ψで光ビームが照射さ九ている時、各七ン
丈(S工)y(8g)に付加した演算増幅器出方からは
光ビームの位1ifd工、a2に検知することができる
。ここで、各センサ(S工)、(612)の間隔eが既
知で、あるから、センサ中心0と光ビーム軸とのずfL
nyおよびセンサ中心軸と光ビーム軸との角度ψはv 
= (a、−a2)/ 2 ・・・(1)として容易1
c’X出することかできる。
In Fig. 5(a), when the light beam is irradiated at a certain angle ψ with respect to the central axis of the linear position sensor (S□) p ("2) installed in parallel t', each of the seven From the output of the operational amplifier added to the height (S) y (8g), the light beam can be detected at a distance of 1ifd, a2.Here, the distance e between each sensor (S), (612) is Since it is known and exists, the difference between the sensor center 0 and the optical beam axis fL
ny and the angle ψ between the sensor center axis and the light beam axis is v
= (a, -a2)/2 ...(1) is easily 1
It is possible to issue c'X.

つぎにこの原理ケ用いた受光装置i無人搬送車に搭載す
る場合について述べる。
Next, the case where the light receiving device i using this principle is mounted on an automatic guided vehicle will be described.

第6図において(llfflは無人搬送車(1)に搭載
された受光装置、■)はMiJ述した偏平ビーム全発生
する投光装置である。またAニーA2は光ビーム軸、B
ニーB2及びC□−C2は無人搬送車(1)の車体中心
軸である。
In FIG. 6, (llffl is a light receiving device mounted on an automatic guided vehicle (1), and ■) is a light projecting device that generates all flat beams as described in MiJ. Also, A knee A2 is the optical beam axis, B
Knee B2 and C□-C2 are the center axis of the vehicle body of the automatic guided vehicle (1).

第6図に2いては、受光装置(10)は車体中心軸に一
致して搭載さ九ているため、車体の姿勢角ψおよび楕ず
れ量yは前記(1)式及び(2)式よりただちにめるこ
とができる。しかしs 1/ rψが大きくなル1/C
つ九で受光装置α0)及びリニヤポジションセンサ(S
よ)、(E12)の寸法も大きくする必要がある。
2 in Fig. 6, the light receiving device (10) is mounted in alignment with the center axis of the vehicle body, so the attitude angle ψ of the vehicle body and the amount of elliptical deviation y are calculated from equations (1) and (2) above. It can be done immediately. However, when s 1/ rψ is large, r 1/C
The light receiving device α0) and the linear position sensor (S
It is also necessary to increase the dimensions of (Y) and (E12).

第7図はこの点を改良した受光装置の一例ケ示すもので
あり1同一符号は同一構成要素を示す。
FIG. 7 shows an example of a light receiving device improved in this respect, and the same reference numerals indicate the same components.

この場合、受光装置(ICi)は車体中心軸Cよ−c2
上で移動可能であり、さらに受光装置叫自体も旋回可能
なように載置されている。そして上記の移動2よび旋回
可能な機構は、光ビーム軸AニーA2が受光装置(至)
の中心軸と一致するように追従制御さnるようになって
いる。
In this case, the light receiving device (ICi)
The light receiving device itself is also mounted so as to be able to rotate. The movement 2 and rotation mechanism described above is such that the light beam axis A knee A2 is connected to the light receiving device
Follow-up control is performed to match the central axis of the axis.

このような方式によnば、ψ、1の増大に対しても小形
の受光装置およびリニヤポジションセンサで対応できる
According to such a method, an increase in ψ, 1 can be dealt with using a small light receiving device and a linear position sensor.

第8図は無人搬送車に搭載さfLfc上記受光装置によ
って姿勢角ψおよび横ず′n童′jIを算出するための
説明図である。第8図では説明勿藺羊にするため、受光
装置の旋(ロ)可能軸および光ヒーム軸がリニヤポジシ
ョンセンサ(S工)の中央と一致している場合について
示している。図に2いて0は車体中心、θは受光装置旋
回角度、Wは受光装置横移動量、dはリニヤポジション
センサ(S2)I/l:、1:る偏移検出量であり、θ
・W・dはそれそn計測制飾装置により検出可能である
とする。この時、’II = w cos ψ1111
@ (41として算出することができる。なお、受光装
置の旋回可能軸および光ビーム軸がリニヤポジションセ
ンサ(S工)の中央に一致しない場合についても、概略
同様の方式で計算できることは百うまでもない。
FIG. 8 is an explanatory diagram for calculating the attitude angle ψ and the horizontal angle ψ by the light receiving device fLfc mounted on the automatic guided vehicle. In order to simplify the explanation, FIG. 8 shows a case where the rotatable axis of the light receiving device and the optical beam axis coincide with the center of the linear position sensor (S). In the figure, 0 is the center of the vehicle body, θ is the turning angle of the light receiving device, W is the amount of lateral movement of the light receiving device, d is the detected deviation amount of the linear position sensor (S2) I/l:, 1:, and θ
- It is assumed that W.d can be detected by a measurement decoration device. At this time, 'II = w cos ψ1111
@ (It can be calculated as 41.It goes without saying that even if the rotatable axis of the light receiving device and the optical beam axis do not coincide with the center of the linear position sensor (S work), calculations can be made using roughly the same method. do not have.

第9凶は受光装置主安部の構造概略r示すもの′″′C
あV、同図tarは平面図、同図(b)は正面図、同図
telは側■図である。図中、01Jは暗箱、(121
は旋回紘(閾は外乱光ケ防御するフード、041は投光
ビーム波長を透過するフィルタである。
The ninth thing is the structure outline of the main part of the light receiving device.''''C
A V, the same figure tar is a plan view, the same figure (b) is a front view, the same figure tel is a side view. In the figure, 01J is a dark box, (121
041 is a rotating filter (threshold is a hood that protects from disturbance light, and 041 is a filter that transmits the wavelength of the projected beam).

第10図は受光装置を搬送車上で旋回・移動させる伽構
の概要を説明するためのものであり、(至)はセンサ#
動軸C1刊、に沿って受光装置を偏移さ1′: ぜると
共に基準軸からの偏移量Wも検知できる水平駆動機構、
 (16iは水平駆動機構C15)によって水平方向に
移動可能であり、車体基準方向に対する旋回角θも検知
できる受光装置旋回機構である。
Figure 10 is for explaining the outline of the structure in which the light receiving device is rotated and moved on the transport vehicle, and (to) is the sensor #
Shifting the light receiving device along the moving axis C1': A horizontal drive mechanism that can also detect the amount of deviation W from the reference axis as well as zero.
(16i is a light receiving device turning mechanism which can be moved in the horizontal direction by a horizontal drive mechanism C15 and can also detect the turning angle θ with respect to the vehicle body reference direction.

次に、この発明による偏平光ビームケ用いて、無人搬送
車(1)を目標位置に位置決めするための、目標位置検
出装置について説明する。第11図は、その原理説明図
であり、 15o;は移載設備などの目的ステーション
、団)は位置決め目標位置に取りつけら九た小形反射鏡
、(5匂は無人搬送車(1)に搭載される目標位置検出
装置に内蔵さnた分岐ミラー、t581はリニヤポジシ
ョンセンサなどの光電素子である。
Next, a target position detection device for positioning the automatic guided vehicle (1) at a target position using the flat light beam according to the present invention will be described. Figure 11 is an explanatory diagram of its principle. The branch mirror t581 is built into the target position detection device, and t581 is a photoelectric element such as a linear position sensor.

図Vcかいて無人搬送車(1)は、幹線走行路上の偏平
光ビームに酩導されて走行しながら、分岐ミラー+5匂
により偏平光ビームの一部會幹巌走行路に直角な横方向
に投射している。目的ステーションの概略位置は走行距
離などによりあらがじめ知ることができるから、目的ス
テーション近くでは低速で走行しつつ、光[累子瞥から
の光信号に注目する。分岐ミラー瞥からの投射光がステ
ーションの小形反射鏡φllIC当たると、その反射光
を光電素子−が受光するので目標位置全正確に検知し、
位置決め停止することができる。
As shown in Figure Vc, while the automatic guided vehicle (1) is traveling guided by the flat light beam on the main road, part of the flat light beam is deflected in the lateral direction perpendicular to the main road by the branching mirror +5. It is projecting. Since the approximate location of the destination station can be known in advance by the distance traveled, etc., while driving at low speed near the destination station, pay attention to the light signal from the light beam. When the projected light from the branching mirror hits the station's small reflector φllIC, the photoelectric element receives the reflected light, so it can accurately detect the target position.
Can be positioned and stopped.

第12図は目標位置検出装置の構造概略ケ示すものであ
り、前述の分岐ミラーM j、−J:びリニヤポジショ
ンセンサ等の光電素子(53a)が装置筐体例の中に収
納さnている。幹線の偏平光ビームは取込み窓9)1通
して入射し、分岐ミラー恒々によって分岐ビーム窓tn
i通じて目標位置の小形反射鏡(51a)に向って投射
される。(51a)からの反射光は分岐ビーム窓に)内
に設けらfした光電素子(S3a)により受光さn1光
電素子(53a)上の受光位置によって、目標位置に対
する無人搬送車(1)の位置を正確に知ることができる
FIG. 12 schematically shows the structure of the target position detection device, in which the above-mentioned branching mirrors Mj, -J and photoelectric elements (53a) such as linear position sensors are housed in an example of the device housing. . The main flattened light beam enters through the intake window 9) and is split into a branch beam window tn by a branch mirror.
i is projected toward the small reflecting mirror (51a) at the target position. The reflected light from (51a) is received by a photoelectric element (S3a) provided in the branched beam window).The position of the automatic guided vehicle (1) relative to the target position is determined by the light receiving position on the photoelectric element (53a). can be known accurately.

第13図は、分岐ミラーM’k(ロ)転可能とし、さら
に別のリニヤポジションセンサ等の光電素子(53b)
 i光′亀素子(53a )と対象位tiltVC設置
することに1’)s幹線走行路の反対側の目標位置の小
形反射鏡(51b)も検出可能としたものである。さら
に分岐ミラーf51180°N転させるか、或いは両面
ミラーとすることにより、無人搬送車の進行方向が反転
して偏平光ビームの方向が逆になった場合にも対応でき
ることを示している。
FIG. 13 shows a branch mirror M'k (b) that can be rotated, and a photoelectric element (53b) such as another linear position sensor.
By installing the optical tome element (53a) and the tiltVC at the target position, it is possible to also detect the small reflector (51b) at the target position on the opposite side of the main road. Furthermore, by rotating the branching mirror f51180°N or using a double-sided mirror, it is shown that it is possible to cope with the case where the traveling direction of the automatic guided vehicle is reversed and the direction of the flat light beam is reversed.

第14図は目標位置検出装置の一具体例を示すものであ
り、同図(a)は平面図(一部所面図)、1旬図(b)
は側面図、同図(03は立面図である。図中、(靭はフ
ード、a(転)はフィルタ、rjは分岐ミラーの回転駆
動機構である。
Figure 14 shows a specific example of the target position detection device, where (a) is a plan view (partial view), and (b) is a top view.
03 is a side view, the same figure (03 is an elevational view. In the figure, (b) is a hood, a (rotation) is a filter, and rj is a rotational drive mechanism of a branching mirror.

第15図はこの発明に係る投光装置、受光装置、目標位
置検出装置ケ適用した光誘導方式による無人搬送システ
ムの一例を示すものであり、(1)は無人搬送車、(至
)は水平駆w/IIJ機構、06ンは受光装置旋回機構
、−)は第10図にて説明したと同様の単体位置・姿勢
検出用の受光装置、呻)は第14図で説明したと同様の
目標位置検出装置% ’61)はステーション嘱などに
設けらT′した目標位置検出装置、囮は幹線通路上の偏
平光ビームの断面形状を表わしている。
Fig. 15 shows an example of an unmanned transport system using a light guidance method to which a light projecting device, a light receiving device, and a target position detecting device are applied according to the present invention. 06 is a light receiving device rotating mechanism, -) is a light receiving device for detecting the position and orientation of a single unit similar to that explained in Fig. 10, and (b) is a target similar to that explained in Fig. 14. The position detecting device %'61) is a target position detecting device installed at a station or the like, and the decoy represents the cross-sectional shape of the flat light beam on the main path.

なお上記実施例では構成を明らかにするため、受光装置
■)と目標位置検出装置1591−独立装置とし、−’
Hnらを組合せた構造として示したが、受光装置(58
)へ目標位置検出装!−に内蔵したと同様の分岐ミラー
171 k付加することにより、上記2装置の磯能?併
せ持つ装置全実現できることは言うまでもない。また、
この発明に係る諸装置の無人搬送車(1)への搭載位置
2よび取付方向は、車体上部および幹線ビームに垂直方
向だけでなく、各種方式が可能である。
In the above embodiment, in order to clarify the configuration, the light receiving device (1) and the target position detecting device 1591 are independent devices, and -'
Although the structure is shown as a combination of Hn et al., the light receiving device (58
) target position detection device! - By adding a branching mirror 171k similar to that built in, the Isono function of the above two devices can be improved. Needless to say, it is possible to realize all the devices that have the same features. Also,
The mounting position 2 and mounting direction of the various devices according to the present invention on the automatic guided vehicle (1) can be not only perpendicular to the upper part of the vehicle body and the main beam, but also various methods.

また受光装置内の2個の光電センサの配[は。Also, the arrangement of the two photoelectric sensors in the light receiving device is as follows.

第5図では段差ケつけて設けるようにしたものについて
示したが、半透鏡(〕・−フミラー)やプリズムにより
分光して、互いのセンサが干渉せずに偏平光ビームヶ同
時fc受光できるように丁nは同様の効果が得ら几る。
Fig. 5 shows a device installed with a step, but it is also possible to split the light using a semi-transparent mirror or a prism so that the sensors can simultaneously receive the flat light beams without interfering with each other. A similar effect can be obtained with Ding.

きらに光電センサはリニヤポジションセンサだけC′な
く、集積化したフォトダイオ−°ドアレイやラインイメ
ージセンサなどのように受光位置が読みとれるものであ
れば同様に利用できる。
The photoelectric sensor can be used not only as a linear position sensor C', but also as long as it can read the light receiving position, such as an integrated photodiode array or a line image sensor.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、縦長横細の断面形状ケ
なす空間内に同時に又は平行体用して光ビーム?照射す
るようにしているので、走行移動体の上下動に対する許
容量が大きく、受光装置及び受光センサの上下視野が小
さくてもよく、さらに遠地点での受光時間の減少がない
S/N比の高い光信号を得ることができる。
As explained above, the present invention is capable of transmitting light beams simultaneously or using a parallel body in a space having a vertically long and horizontally thin cross-sectional shape. Since it is designed to irradiate light, it has a large tolerance for vertical movement of the traveling moving object, the vertical field of view of the light receiving device and light receiving sensor may be small, and furthermore, it has a high S/N ratio without decreasing the light receiving time at the apogee. Optical signals can be obtained.

′1′た、光ビームの照射方向に所定の間隔上層して光
ビームを互いに干渉なく同時に受光する複数のセンサに
より光ビームに対する走行移動体の横偏移量及び姿勢角
上同時vc検出するようにしているので、走行移動体の
操舵修正を迅速に行なって走行精度ヶ同上させることが
できる。
'1' In addition, a plurality of sensors arranged at predetermined intervals in the irradiation direction of the light beam and receiving the light beam simultaneously without mutual interference are used to simultaneously detect the amount of lateral deviation and the attitude angle of the traveling moving body with respect to the light beam. Therefore, the steering of the traveling vehicle can be quickly corrected and the traveling accuracy can be improved.

また、光ビームケ受光して少なくともその一部を走行移
動体の側方に反射し目標位置で反射した反射光ケ受光し
て走行移動体の停止位置を検出する目標位thf検出装
置を走行移動体に設置しているので、位置決め用として
別の光源?必要とぜず、しかも走行移動体の姿勢も含め
た精度の商い目標位置情報を迅速に知ることができる。
Additionally, a target position thf detection device is installed on the traveling vehicle, which receives the light beam, reflects at least part of it to the side of the traveling vehicle, and receives the reflected light reflected at the target position to detect the stop position of the traveling vehicle. Is there another light source for positioning? The target position information can be quickly obtained without the need for accurate information including the attitude of the moving vehicle.

筐た目標位置は、目標位置検出装置からの光ビーム會反
射する機能を備えていればよく特別な位置決め手段ケ要
しないので、複数の目標位置全設置する場合にも安価な
システム’It−41!l成することができる。
The target position in the enclosure only needs to have the function of reflecting the light beam from the target position detection device, and no special positioning means is required. ! can be made.

また、受光装置及び目標位置検出装置を同一原理の光位
置検出七ンサ全用いて共用化すれば、両装置の機能を併
せ持つように構成でき、安価な検出手段が得らnる。
Furthermore, if all seven optical position detection sensors based on the same principle are used in common as the light receiving device and the target position detection device, it is possible to configure the device to have the functions of both devices, and an inexpensive detection means can be obtained.

また、こnら両装置を移動、旋回可能な構成とし、光ビ
ームを常時追従できるように丁nば、両装置の視野及び
光電センサの寸法を小さくできる。
Further, by making both of these devices movable and rotatable so that the light beam can be tracked at all times, the field of view of both devices and the dimensions of the photoelectric sensors can be reduced.

ま几その際、両装置の移動量及び旋回角?読み取nる工
うに丁れば、幹線通路での軌道修正のみならず、車体の
幅寄せや斜め走行等の複雑な操舵制御が必9な走行移動
体にも適用できる。
In that case, what is the amount of movement and turning angle of both devices? The method can be applied not only to trajectory correction on main roads, but also to moving vehicles that require complex steering control such as moving the vehicle closer to its width or driving diagonally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る光誘導装置[−示す全体徊成図
、第2図はこの発明に係る投光装置の一例を示す斜視図
、第3因(a)〜(司はこの発明に係る投光装置の他の
例會それぞれ示す峨略構成図、第4図斡)ハリニヤポジ
ションセンサの原理説明図、同図(b)はその田力波形
図、第5図(a)はこの発明に係る受光装置の原理を示
す平面図、同図世)は同正面図、第6図は受光装置の走
行移動体への搭載の一例?示す平面図、第7図は受光装
置の走行移動体への搭載の他の例を示す平面図、第8図
は第7図に示す受光装置による走行移動体の横偏移量及
び姿勢角の算出方法を示す説明図、第9図faJは受光
装置の主要部の構成を示す平面図、同図(blは同正面
図、同図(C)は同側面図、第10図は受光装置の移動
、旋回機構ケ示す斜視図、第11図はこの発明に係る目
標位置検出装置の原理?示す平面図、第12図は目標位
置検出装置の一例?示す斜視図、第15図は目標位置検
出装置の他の例會示す斜視図、第14図(a)は目標位
置検出装置の一具体例會示す平面図、同図(bJは側面
図、同図tc+は立面図、第15凶はこの発明に係る投
光装置、受光装置。 目標位置検出装置?通用した光誘導方式の無人搬送シス
テムの一例を示す斜視図、第16図(aJ T (1)
)は従来の光誘導装置をそれぞれ示す第1図相肖図、第
17図は第16図(b)に示す従来装置の詳細図。 第18商は第17図に示す受光装置の詳細図である。 (1):無人搬送車 (S):レーザ光源(1,0) 
p晩):受光装置 0匈:水平駆動機構(1O) :受
光装置旋回機構 閣:光学系 囮:偏平光ビームの断面形状 150、二目的ステーション t511 、 (51a)、(51b) :小形反射鏡
i5々:分岐ミラー 1581 、 (53a)、(53b) :光電素子−
)二目標位置検出装置 (Sよ)、(S2) :リニャボジショ/センサな2谷
図中、同一符号は同−又は相幽部分ケ示すもの′とする
。 代理人 大 岩 増 雄 11″ 第1図 第16図 第 2 図 第3図 第4図 第5図 第6図 第8図 27− 第9図 1ム 第10図 第11図 第1頁の続き @発明者 笹井 浩之 蹟市塚ロ、tjBTs術研究所
内 下目1番1号 三菱電機株式会社生産技手続補正書(自
発) l 事件の表示 特願昭 59−118022号2、発
明の名称 走行移動体の光誘導装置 3、補正をする者 代表者片山仁へ部 6、補正の内容 (1)明細書第6頁第7行の「横偏移動量」という記載
を「横偏移量」と補正する。 (2)明細書第6頁第11行ないし第12行の「光光面
」という記載を「受光面」と補正する。 (3)明細書第7頁第4行の「レンズ(42)Jという
記載を[ビームエクスパンダ(42)」と補正する。 (4)明細書第9頁第5行の ry=(dt−d2)/2 J という記載を[Y= 
(dt +62)/2 J と補正する。 (5)明細書第11頁第10行の[同図(b)は止面図
、」という記載を「同図(b)は正面図(一部断面図)
1.1と補止する。 (6)明細書第13頁第14行の「対象位置」という記
載を「対称位僅」と補圧する。 (7)図面中温4図(b)を別紙の通り補正する。 7、添付書類の目録 図面 1 通 以 L 第41 (b) →L
FIG. 1 is an overall schematic diagram showing a light guiding device according to the present invention; FIG. 2 is a perspective view showing an example of a light projecting device according to the present invention; Figure 4(b) is a schematic diagram showing the principle of a linear position sensor; Figure 5(a) is a power waveform diagram thereof; A plan view showing the principle of such a light receiving device, Figure 6) is a front view of the same, and Fig. 6 is an example of mounting the light receiving device on a moving vehicle. 7 is a plan view showing another example of mounting the light receiving device on a moving vehicle, and FIG. 8 is a plan view showing the amount of lateral deviation and attitude angle of the moving vehicle using the light receiving device shown in FIG. An explanatory diagram showing the calculation method, Fig. 9 faJ is a plan view showing the configuration of the main part of the light receiving device, the same figure (bl is the front view, the same figure (C) is the same side view, and Fig. 10 is the plan view of the light receiving device. FIG. 11 is a plan view showing the principle of the target position detection device according to the present invention; FIG. 12 is a perspective view showing an example of the target position detection device; FIG. 15 is a perspective view showing the target position detection device. FIG. 14(a) is a perspective view showing another example of the device; FIG. 14(a) is a plan view showing a specific example of the target position detecting device; FIG. Light projecting device and light receiving device.Target position detection device?A perspective view showing an example of a commonly used optical guidance type unmanned transportation system, Fig. 16 (aJ T (1)
) is a first portrait showing a conventional light guiding device, and FIG. 17 is a detailed view of the conventional device shown in FIG. 16(b). The 18th quotient is a detailed diagram of the light receiving device shown in FIG. 17. (1): Automatic guided vehicle (S): Laser light source (1,0)
p night): Light receiving device 0: Horizontal drive mechanism (1O): Light receiving device rotating mechanism: Optical system decoy: Cross-sectional shape of flat light beam 150, dual purpose station t511, (51a), (51b): Small reflecting mirror i5: Branching mirror 1581, (53a), (53b): Photoelectric element -
) Two target position detection devices (S), (S2): Linear position/sensor In the two valley diagrams, the same reference numerals indicate the same or parallel parts. Agent Masuo Oiwa 11'' Figure 1 Figure 16 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 27- Figure 9 1 Figure 10 Figure 11 Figure 1 Continued @ Inventor: Hiroyuki Sasai, Roo Ichizuka, tjBTs Technology Research Institute, No. 1, No. 1 Mitsubishi Electric Corporation Production Engineering Procedures Amendment (self-initiated) l Indication of the case Patent Application No. 59-118022 No. 2, Name of Invention Traveling Vehicle Light guiding device 3, representative of the person making the correction Hitoshi Katayama Department 6, Contents of the correction (1) The description “lateral deviation amount” on page 6, line 7 of the specification is corrected to “lateral deviation amount” do. (2) The description "light light surface" on page 6, lines 11 and 12 of the specification is corrected to "light receiving surface." (3) The description "lens (42) J" on page 7, line 4 of the specification is corrected to "beam expander (42)." (4) The description ry=(dt-d2)/2 J on page 9, line 5 of the specification is changed to [Y=
Correct it as (dt +62)/2 J. (5) On page 11, line 10 of the specification, the statement ``The figure (b) is a top view,'' has been changed to ``The figure (b) is a front view (partially sectional view).
1.1. (6) The statement "target position" on page 13, line 14 of the specification is supplemented with "slightly symmetrical position." (7) Correct the drawing medium temperature 4 (b) as shown in the attached sheet. 7. Inventory drawing of attached documents 1 copy or more L No. 41 (b) →L

Claims (2)

【特許請求の範囲】[Claims] (1)地上側の固定点に設置され縦長横細の断面形状倉
なす空間内に同時に又は平行掃引して光ビームを照射す
る投光装置と、走行移動体に設置さn上配光ビームの照
射方向に所定の間隔を有して光ビームを互いに干渉なく
同時に受光する複数の受光センサにより光ビームに対す
る走行移動体の横偏移量及び姿勢角を同時に嵌出する受
光装置と、地上側の固定点に設置され走行移動体の側方
に位置する走行移動体停止用の目標位置と、走行移動体
に設置さn上記光ビームを受光して少なくともその一部
ケ走行移動体の側方に反射し上記目標位置で反射した反
射光を受光して走行移動体の停止位置?検出する目標位
置検出装置とを具備することを特徴とする走行移動体の
光誘導装置。
(1) A light projector installed at a fixed point on the ground side that irradiates a light beam simultaneously or in a parallel sweep into a space with a vertically long and narrow cross-sectional shape; A light receiving device that simultaneously measures the amount of lateral deviation and attitude angle of a traveling moving body with respect to the light beam using a plurality of light receiving sensors that receive the light beam simultaneously without interference with each other at a predetermined interval in the irradiation direction; A target position for stopping the traveling movable body installed at a fixed point and located to the side of the traveling movable body, and a target position for stopping the traveling movable body installed at a fixed point and located on the side of the traveling movable body, The stopping position of the traveling moving object is determined by receiving the reflected light reflected at the above target position? 1. A light guiding device for a traveling moving body, comprising: a target position detecting device for detecting a target position.
(2)受光装置および目標位置検出装置のうちの少なく
ともいずれか一方を、水平移動及び水平面旋回可能とし
たことt−特徴とする特許請求の範囲第1項記載の走行
移動体の光誘導装置。
(2) The light guide device for a traveling moving object according to claim 1, characterized in that at least one of the light receiving device and the target position detecting device is capable of horizontal movement and rotation on a horizontal plane.
JP59118022A 1984-06-08 1984-06-08 Optical guide device of traveling object Granted JPS60262219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59118022A JPS60262219A (en) 1984-06-08 1984-06-08 Optical guide device of traveling object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118022A JPS60262219A (en) 1984-06-08 1984-06-08 Optical guide device of traveling object

Publications (2)

Publication Number Publication Date
JPS60262219A true JPS60262219A (en) 1985-12-25
JPH0363084B2 JPH0363084B2 (en) 1991-09-30

Family

ID=14726127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118022A Granted JPS60262219A (en) 1984-06-08 1984-06-08 Optical guide device of traveling object

Country Status (1)

Country Link
JP (1) JPS60262219A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242205A (en) * 1986-04-14 1987-10-22 Toshihiro Tsumura Mobile body guiding device
EP0307381A2 (en) * 1987-09-11 1989-03-15 NDC NETZLER & DAHLGREN CO. AB Optical navigation system for an automatic guided vehicle, and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242205A (en) * 1986-04-14 1987-10-22 Toshihiro Tsumura Mobile body guiding device
EP0307381A2 (en) * 1987-09-11 1989-03-15 NDC NETZLER & DAHLGREN CO. AB Optical navigation system for an automatic guided vehicle, and method
EP0307381A3 (en) * 1987-09-11 1990-07-25 NDC NETZLER & DAHLGREN CO. AB Optical navigation system for an automatic guided vehicle, and method

Also Published As

Publication number Publication date
JPH0363084B2 (en) 1991-09-30

Similar Documents

Publication Publication Date Title
KR100264719B1 (en) Measuring system for testing the position of a vehicle and sensing device therefore
EP0374265B1 (en) Automatic tracking type surveying apparatus
US4732472A (en) Methods of, and systems for, determining the position of an object
JP2004198330A (en) Method and apparatus for detecting position of subject
JPH1068635A (en) Optical position detector
JP3647608B2 (en) Surveyor automatic tracking device
JP2740920B2 (en) Method for astronomical observation by scanning and measurement of angular velocity of spacecraft, observation apparatus for executing the method, and spacecraft equipped with the observation apparatus
JPS60262219A (en) Optical guide device of traveling object
Takeda et al. Automated vehicle guidance using spotmark
JP3244642B2 (en) Mobile body guidance equipment
JP3784165B2 (en) Mobile body position detection equipment
JP2728332B2 (en) Automatic position / posture measuring device for moving objects
JPS6161070B2 (en)
JP2784481B2 (en) 2D position and direction measurement device for moving objects
JP2728326B2 (en) Automatic position / posture measuring device for moving objects
JPH0480405B2 (en)
JP2936074B2 (en) Optical distance measuring device
JP2784480B2 (en) 2D position and direction measurement device for moving objects
JPH0133792B2 (en)
JP2572641B2 (en) Light beam reflector, light emitting / receiving device thereof, moving object position detecting method and moving object traveling control method
JPS5985507A (en) Automatic steering device of traveling object
JPS60508A (en) Automatic outdoor steering device of moving body
SU1573342A1 (en) Arrangement for checking rectilinearity
JP2617392B2 (en) Direction, Position and Attitude Measurement of Moving Object Using Double Corner Cube and Double Corner Cube
JP3491182B2 (en) Moving body position recognition method and moving body position recognition device