JPS60262132A - Antidazzle type reflection mirror for automobile - Google Patents

Antidazzle type reflection mirror for automobile

Info

Publication number
JPS60262132A
JPS60262132A JP59118878A JP11887884A JPS60262132A JP S60262132 A JPS60262132 A JP S60262132A JP 59118878 A JP59118878 A JP 59118878A JP 11887884 A JP11887884 A JP 11887884A JP S60262132 A JPS60262132 A JP S60262132A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
refractive index
dielectric film
transparent dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59118878A
Other languages
Japanese (ja)
Inventor
Takashi Taguchi
隆志 田口
Yoshiki Ueno
上野 祥樹
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP59118878A priority Critical patent/JPS60262132A/en
Priority to US06/742,525 priority patent/US4696548A/en
Priority to DE19853520711 priority patent/DE3520711A1/en
Publication of JPS60262132A publication Critical patent/JPS60262132A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1313Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells specially adapted for a particular application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/08Rear-view mirror arrangements involving special optical features, e.g. avoiding blind spots, e.g. convex mirrors; Side-by-side associations of rear-view and other mirrors
    • B60R1/083Anti-glare mirrors, e.g. "day-night" mirrors
    • B60R1/088Anti-glare mirrors, e.g. "day-night" mirrors using a cell of electrically changeable optical characteristic, e.g. liquid-crystal or electrochromic mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To generate the change in color in the stage of preventing dazzle and not preventing dazzle by forming a dielectric film having the refractive index higher than the refractive index of a guest/host (G/H) liquid crystal on the metallic reflecting surface of an antidazzle type reflection mirror provided with the G/H liquid crystal layer on the front surface of the metallic surface to be formed as a reflecting surface. CONSTITUTION:A metallic film 2 is formed on substrate glass 1 to provide a reflecting film. The high refractive-index transparent dielectric film 3 consisting of TiO2, etc. is formed thereon to a prescribed thickness. The low-refractive-index transparent dielectric film 4 consisting of SiO2, etc. is further provided thereon to a prescribed thickness. The film 4 acts to intensity coloration by the liquid crystal by the light interference with the oriented film. The phase transfer type positive display G/H liquid crystal phase 5 which is transparent when no electric field is applied thereto and induces the absorption by a dye when the electric field is applied thereto out of the G/H liquid cystals mixed with the liquid crystal and dichromatic dye is provided thereon and further an oriented layer 6, transparent electrode 7 for orienting the liquid crystal and glass 8 for holding the liquid crystal are provided thereon. Electric power for driving the liquid crystal from a power source 10 is switched 9 to the film 2 and the electrode 7. The color of the reflected light is thus changed in the stage of preventing dazzle and not preventing dazzle so that the reflection mirror is made easy for driving.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動車用防眩型反射鏡に関し、ルームミラー、
ザイドミラー等の反射鏡に適用することができる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an anti-glare reflector for automobiles, including a rear-view mirror,
It can be applied to a reflecting mirror such as a Zide mirror.

(従来技術) 従来の自動車用反射鏡は、ガラス基板にアルミを蒸着し
たものがほとんどであり、この反射率は80〜90%と
高く、分光特性はフラットである。
(Prior Art) Most conventional automobile reflectors are made by vapor-depositing aluminum on a glass substrate, and have a high reflectance of 80 to 90% and flat spectral characteristics.

このため夜間、後続車のライトに照らされた場合には眩
惑を起こしがちであった。
For this reason, at night, when illuminated by the lights of a following vehicle, the vehicle tends to be dazzled.

これに対して、特公昭48−35384号の「自動防眩
型バックミラー」に示すように、液晶を用いて防眩を行
なうようにしたものがある。この種のものは、上記以外
にも種々提案されているが、いずれも単に防眩を行なう
だけのものであるため、防眩時、非防眩時等において反
射光に着色を与え、車のファション性を高めようとする
機能を有していなかった。
On the other hand, as shown in Japanese Patent Publication No. 48-35384 entitled "Automatically Dimming Rearview Mirror," there is a system that uses liquid crystal to provide antiglare. Various types of this type have been proposed in addition to the ones mentioned above, but all of them simply provide anti-glare, so they color the reflected light when anti-glare or when not anti-glare. It did not have a function to enhance fashionability.

(発明が解決しようとする問題点) 本発明は、上記問題に鑑みたもので、液晶を用いた防眩
型反射鏡において、防眩時および非防眩時に反射光に着
色を与え、かつ防眩時と非防眩時とでその着色の色相を
変化させるようにしたものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned problems, and provides an anti-glare reflector using a liquid crystal, in which reflected light is colored during anti-glare and non-anti-glare states, and The hue of the coloring is changed depending on whether it is dazzling or not.

(発明の構成) 本発明の自動車用防眩型反射鏡は、液晶としてゲストホ
スト液晶(以下G/H液晶と称す)を用い、このG/H
液晶と反射面をなす金属膜の間であって、この金属膜上
に、前記G/H液晶よりも屈折率の高い高屈折率誘電体
膜を形成したことを特徴としている。
(Structure of the Invention) The anti-glare reflector for automobiles of the present invention uses a guest host liquid crystal (hereinafter referred to as G/H liquid crystal) as a liquid crystal, and the G/H
It is characterized in that a high refractive index dielectric film having a higher refractive index than the G/H liquid crystal is formed between the liquid crystal and the metal film forming the reflective surface and on the metal film.

(作用) 上記の自動車用防眩型反射鏡においては、非防眩時にG
 / H液晶を透過した前面からの光が高屈折率誘電体
膜と金属膜との作用により光干渉を生じ、反射光は着色
する。また、防眩時においては、G/H液晶の有する色
素の光吸収作用によって反射光は上記の非防眩時とは異
なった色相で着色する。
(Function) In the above anti-glare reflector for automobiles, G
/H Light from the front that has passed through the liquid crystal causes optical interference due to the action of the high refractive index dielectric film and the metal film, and the reflected light is colored. Furthermore, during anti-glare mode, the reflected light is colored in a different hue from that during non-glare mode due to the light absorption effect of the pigment of the G/H liquid crystal.

(発明の効果) 本発明は上記のように構成し作用するものであるから、
液晶を用いて防眩を行なうと同時に、非防眩時と防眩時
とで異なる色相の着色を反射光に与え、反射鏡のファツ
ション性を向上させることができるという優れた効果を
発する。
(Effect of the invention) Since the present invention is constructed and operates as described above,
While anti-glare is performed using liquid crystal, the reflected light is colored with different hues between non-anti-glare and anti-glare states, and has the excellent effect of improving the fashionability of the reflecting mirror.

(実施例) 以下、本発明を図に示す実施例について説明する。第1
図は本発明の第1の実施例を示す断面図である。基板ガ
ラス1の一方の面には、光の反射面なる役割と液晶の配
向電極なる役割を兼ねる、例えば、ニッケルークロム合
金からなる金属膜2が設けられている。金属膜2の膜厚
ば、光が透過しない程度の膜厚く約1000Å以上)で
あればよい。金属膜2の上には、例えば、T i O2
からなる高屈折率透明誘電体膜3が決められた膜厚で設
けられており、さらにその上には、液晶の配向膜たる役
割と光干渉による着色を強める役割を兼ねる、例えば、
S i O2からなる低屈折率透明誘電体膜4が決めら
れた膜厚で設げられている。その上には、液晶と2色性
色素を混合したG/H液晶のうちで、電界をかけない状
態で光を透過し、電界をかけた状態で色素による吸収を
起こすような周知の相転移形ポジ表示G/H液晶N5が
設けである。その上には、例えばS i 02からなる
配向膜6、[TOからなる液晶配向用透明電極7、液晶
保持ガラス8の順序で設けられている。
(Example) Hereinafter, an example of the present invention shown in the drawings will be described. 1st
The figure is a sectional view showing a first embodiment of the present invention. A metal film 2 made of, for example, a nickel-chromium alloy is provided on one surface of the substrate glass 1, which serves both as a light reflecting surface and as an alignment electrode for liquid crystal. The thickness of the metal film 2 may be as long as it is thick enough not to transmit light (approximately 1000 Å or more). On the metal film 2, for example, T i O2
A high refractive index transparent dielectric film 3 consisting of is provided with a predetermined film thickness, and on top of that, a film that serves both as an alignment film for the liquid crystal and a role of intensifying coloring due to optical interference, for example,
A low refractive index transparent dielectric film 4 made of SiO2 is provided with a predetermined thickness. On top of that, there is a well-known phase transition in G/H liquid crystal, which is a mixture of liquid crystal and dichroic dye, in which light is transmitted when no electric field is applied, and absorption by the dye occurs when an electric field is applied. A type positive display G/H liquid crystal N5 is provided. Thereon, an alignment film 6 made of, for example, S i 02, a transparent electrode for liquid crystal alignment 7 made of [TO, and a liquid crystal holding glass 8 are provided in this order.

金属膜2と透明電極7は、スイッチ9を介して電源10
とつながっており、液晶駆動に必要な電圧を供給できる
ようになっている。
The metal film 2 and the transparent electrode 7 are connected to a power source 10 via a switch 9.
It is connected to the LCD and can supply the voltage necessary to drive the liquid crystal.

上記構成において、その作動を説明する。まず、G /
 H液晶層5に電圧を印加しない状態では、G/H液晶
層5は光を透過する。第1図上方からきた光りは、G/
H液晶M5を透過し、金属膜2で反射して再び入射方向
にもどるが、この時透明誘電体膜3および配向膜4が存
在することによって光干渉を起し、反射光は着色する。
The operation of the above configuration will be explained. First, G/
When no voltage is applied to the H liquid crystal layer 5, the G/H liquid crystal layer 5 transmits light. Figure 1: The light coming from above is G/
The light passes through the H liquid crystal M5, is reflected by the metal film 2, and returns to the incident direction, but at this time, the presence of the transparent dielectric film 3 and the alignment film 4 causes optical interference, and the reflected light is colored.

反射光の色調は、主に透明誘電体膜3の膜厚によって決
まる。
The color tone of the reflected light is mainly determined by the thickness of the transparent dielectric film 3.

配向膜4の膜厚を850人一定としておき、透明誘電体
膜3の膜厚を変化させた時の色調の変化を第2図に示す
FIG. 2 shows the change in color tone when the thickness of the transparent dielectric film 3 is changed while the thickness of the alignment film 4 is kept constant at 850 people.

第2図は、透明誘電体薄膜3の膜厚と色調との関係を示
したもので、第1実施例の反射鏡に、JISZ8701
で定められた標準の光Cが垂直に入射した時の反射光の
色調を色度を色度座標で表わしである。この第2図にお
いて、色度座標はXか赤の成分、Yが緑の成分、1−(
X+Y)が青の成分を表わすもので、大まかにいって第
2図中点線で囲った領域Gは緑、領域Yは黄、領域Rは
赤、領域■は紫、領域Bは青′の色調をとり、各々の領
域の間はその中間色となる。第2図から明らかなように
、適当な膜厚を選ぶことによってどのような色調でも得
ることができる。
FIG. 2 shows the relationship between the thickness of the transparent dielectric thin film 3 and the color tone.
The color tone of the reflected light when the standard light C defined by C is perpendicularly incident is expressed by the chromaticity coordinates. In this figure 2, the chromaticity coordinates are X or red component, Y is green component, 1-(
Roughly speaking, the area G surrounded by the dotted line in Figure 2 is green, the area Y is yellow, the area R is red, the area ■ is purple, and the area B is blue'. , and the color between each area is the intermediate color. As is clear from FIG. 2, any color tone can be obtained by selecting an appropriate film thickness.

光りはガラス8、透明誘電体膜7、配向膜6を透過して
G/H液晶層5に入るので、この部分での光干渉も反射
的に影響して(るが、ガラス8、透明誘電体膜7、配向
膜6、G/H液晶5のそれぞれの屈折率の差はあまり大
きくないので、この部分での干渉着色はほとんど無視し
てよい。例えば、透明誘電体膜7を750人、配向膜6
を1900人とした時の分光透過率は第3図に示すよう
であり、はぼフラットな透過特性といえる。この透過特
性は、膜厚が変わっても大きく変化することばない。
Since the light passes through the glass 8, the transparent dielectric film 7, and the alignment film 6 and enters the G/H liquid crystal layer 5, light interference in this area also has a reflective effect (although the glass 8, the transparent dielectric film 7, and the alignment film 6 Since the difference in the refractive index of the body film 7, the alignment film 6, and the G/H liquid crystal 5 is not so large, interference coloring in this part can be almost ignored.For example, the transparent dielectric film 7 is exposed to 750 people, Orientation film 6
The spectral transmittance when the number of people is 1900 is as shown in Fig. 3, and it can be said that the transmittance characteristics are almost flat. This transmission characteristic does not change significantly even if the film thickness changes.

ここで、1つの例として、第1図において、透明誘電体
l1ll!3の膜厚が880人である場合の反射特性を
第4図に示す。反射極大が青色領域にあり、G/H液晶
層5に電圧を加えない状態では青色ミラーであるといえ
る。人間の視感度が5500人付近で最大となるため、
この時の視感反射率は約44%である。
Here, as an example, in FIG. 1, the transparent dielectric l1ll! FIG. 4 shows the reflection characteristics when the film thickness of No. 3 is 880 mm. The reflection maximum is in the blue region, and it can be said that it is a blue mirror when no voltage is applied to the G/H liquid crystal layer 5. Since human visibility reaches its maximum around 5,500 people,
The luminous reflectance at this time is about 44%.

そして、夜間において、後続車のライトを受けた時や、
太陽光が後方より入射する時にスイッチ9をONL、G
/H液晶層5に電圧を印加する。
At night, when you receive the lights of a following vehicle,
Turn switch 9 ONL and G when sunlight enters from the rear.
/H A voltage is applied to the liquid crystal layer 5.

すると、ネマチック相がとけてコレステリック相になり
、2色性色素により吸収が生ずる。例えば、2色性色素
として最大吸収波長を55 s、o 入にもつアントラ
キノン系の色素を用いれば、その吸収性は第5図に示ず
ものであるから、反射鏡の反射特性は第6図のようにな
る。電圧を印加していない時の反射特性である第4図と
比較すると、人間の視感度が最大である5550入付近
の反射率が低くなっており、視感反射率は11%程度と
なる。
Then, the nematic phase melts into a cholesteric phase, and absorption occurs due to the dichroic dye. For example, if an anthraquinone dye with a maximum absorption wavelength of 55 seconds, o is used as a dichroic dye, its absorption properties are not shown in Figure 5, so the reflection characteristics of the reflector are as shown in Figure 6. become that way. When compared with FIG. 4, which shows the reflection characteristics when no voltage is applied, the reflectance is low near 5550, where human visibility is the maximum, and the luminous reflectance is about 11%.

この程度の反射率であれば、後続車のライトも、太陽も
眩しく感じることはない。また、反射域もより短波長側
へ移動しており、紫色に近い色となって色調が変化する
ことがわかる。
With this level of reflectance, you won't feel dazzled by the lights of cars behind you or the sun. It can also be seen that the reflection region has also moved to the shorter wavelength side, and the color tone has changed to a color closer to purple.

以上、1つの例について述べたが、透明誘電体!・:゛
 膜3の膜厚と2色性色素の種類を選ぶことにより、様
々の色調の組み合わせを得ることができる。
I mentioned one example above, but transparent dielectrics!・:゛ Various color tone combinations can be obtained by selecting the thickness of the film 3 and the type of dichroic dye.

なお、スイッチ9は簡単には手動式としてよいが、光ス
ィッチを用いた自動式とすれば一層便利である。第7図
にそのブロック図を示す。11は第1図に示した反射鏡
であり、12はこれを納めるハウジングである。液晶駆
動電源10と反射鏡11との接続はスイッチ回路13に
よって開閉される。スイッチ回路13は、2つの受光器
15a815bの出力を除算する除算回路14の出力に
よって作動するようになっている。2つの受光器15a
、15bを有するのは、人間の眼に感じる眩しさを検出
するためである。人間の眼は、周囲が明るければ、ある
光源に対してあまり眩しいとは感じないが、周囲が暗い
と非常に眩しく感じる。
The switch 9 may simply be a manual type, but it is more convenient to use an automatic type using an optical switch. FIG. 7 shows its block diagram. Reference numeral 11 is the reflecting mirror shown in FIG. 1, and 12 is a housing in which this is housed. The connection between the liquid crystal drive power source 10 and the reflecting mirror 11 is opened and closed by a switch circuit 13. The switch circuit 13 is operated by the output of a division circuit 14 that divides the outputs of the two light receivers 15a815b. Two light receivers 15a
, 15b is provided to detect glare felt by human eyes. Human eyes do not perceive a certain light source as being very dazzling when the surroundings are bright, but they perceive it as extremely dazzling when the surroundings are dark.

即ち、一方の受光器15aで周囲の明るさを検出し、他
方の受光器15bで後方の明るさを検出して、その出力
比が一定水準値以上、つまり周囲の明るさに対して、後
方の明るさがある程度以上になると、防眩作動を行なう
ようになっている。このものの詳細回路を第8図に示し
ている。16はアナログ演算器(例: CR−BOX!
!JLXO31)、17a、17b、17cはオペアン
プ(例:μA74])、18はリレーである。除算回路
14の出力が、基準電圧Vより高ければオペアンプ17
aの出力は電源電圧となり、リレー18を駆動する。従
って、液晶駆動電源10からの電源供給を受けて反射鏡
11はON状態になる。反対に、除算回路14の出力が
基準電圧■より低ければ、つまり周囲の明るさと後方の
明るさが同程度であれば、オペアンプ17aの出力はほ
ぼOとなり、反射鏡11はOFF状態となる。2つの受
光器15a、15bの取付は位置は、要は後方の光を感
知する位置と、後方以外の周囲の光を感知する位置なら
どこでもよいが、例えば、周囲の光の検出用はダツシュ
ボードに横向きに取り付け、後方の光の検出用はミラ一
部、あるいは、リヤウィンド部に後向きに取り付ければ
よい。
That is, one light receiver 15a detects the surrounding brightness, the other light receiver 15b detects the rear brightness, and the output ratio is above a certain level, that is, the rear brightness is detected with respect to the surrounding brightness. When the brightness of the screen reaches a certain level, the anti-glare function is activated. A detailed circuit of this device is shown in FIG. 16 is an analog computing unit (e.g. CR-BOX!
! JLXO31), 17a, 17b, and 17c are operational amplifiers (eg, μA74]), and 18 is a relay. If the output of the divider circuit 14 is higher than the reference voltage V, the operational amplifier 17
The output of a becomes the power supply voltage and drives the relay 18. Therefore, upon receiving power supply from the liquid crystal drive power source 10, the reflecting mirror 11 is turned on. On the other hand, if the output of the divider circuit 14 is lower than the reference voltage (2), that is, if the ambient brightness and the rear brightness are approximately the same, the output of the operational amplifier 17a will be approximately O, and the reflecting mirror 11 will be in the OFF state. The two light receivers 15a and 15b can be mounted anywhere as long as they can detect the rear light and the surrounding light other than the rear. It can be installed horizontally, and for detecting rear light, it can be installed backwards on a part of the mirror or rear window.

なお、本発明に係る反射鏡はフェンダ−ミラー、ドアミ
ラー、ルームミラーいずれに用いても有効である。
Note that the reflecting mirror according to the present invention is effective even when used as a fender mirror, a door mirror, or a room mirror.

また、本実施例では金属膜としてニッケルークロム合金
、高屈折率透明誘電体としてT iO2、低屈折透明率
誘電体として5i02を用いたが、これに限らない。ク
ロム、アルミニウム、ニッケル、チタン等必要な反射率
が得られる金属と、ZrO2,Ce’02等のG/H液
晶より高い屈折率を有する高屈折率誘電体と、M g 
F 2等のG/H液晶より低い屈折率を有する低屈折率
誘電体を用いればよい。
Further, in this example, a nickel-chromium alloy was used as the metal film, TiO2 was used as the high refractive index transparent dielectric, and 5i02 was used as the low refractive index transparent dielectric, but the present invention is not limited thereto. Metals such as chromium, aluminum, nickel, and titanium that provide the necessary reflectance; high refractive index dielectrics that have a higher refractive index than G/H liquid crystals such as ZrO2 and Ce'02; and Mg
A low refractive index dielectric having a lower refractive index than the G/H liquid crystal such as F2 may be used.

次に、本発明の第2の実施例を説明する。第9図はその
断面図である。第1の実施例では、高屈折率透明誘電体
膜3の上に、配向膜として低屈折率透明誘電体膜4が設
けられていたが、本実施例ではこの低屈折率透明誘電体
膜4が省略されている。このため、例えば、TiO2か
らなる高屈折率透明誘電体膜3に配向膜としての機能が
持たせである。この高屈折率透明誘電、体膜3の膜厚を
変化させた時の反射光の色相変化を第10図に示す。
Next, a second embodiment of the present invention will be described. FIG. 9 is a sectional view thereof. In the first embodiment, a low refractive index transparent dielectric film 4 was provided on the high refractive index transparent dielectric film 3 as an alignment film, but in this embodiment, this low refractive index transparent dielectric film 4 is omitted. Therefore, for example, the high refractive index transparent dielectric film 3 made of TiO2 has a function as an alignment film. FIG. 10 shows the change in hue of reflected light when the thickness of the high refractive index transparent dielectric body film 3 is changed.

これを第2図と較べると軌跡が小さくなっており、第1
の実施例の場合より淡い色しか表せなくなっていること
がわかる。これは干渉効果を高める役割をしていた配向
膜4がなくなったことにより、分光反射率の起伏が小さ
くなったためである。従って、G / H液晶に電圧を
印加しない時の色は淡くなるが、防眩効果および電圧を
印加すると色が変化する点では、第1の実施例と同様の
効果を得る。
Comparing this with Figure 2, the trajectory is smaller, and the first
It can be seen that only lighter colors can be expressed than in the case of the example. This is because the alignment film 4, which had the role of enhancing the interference effect, was removed, and the undulations of the spectral reflectance became smaller. Therefore, although the color becomes pale when no voltage is applied to the G/H liquid crystal, the same effects as the first embodiment are obtained in terms of anti-glare effect and color change when voltage is applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は発明の第1実施例を示す断面図、第2図は第1
実施例における高屈折率透明誘電体膜の膜厚と色調との
関係を示す特性図、第3図、第4図、第6図は作動説明
に供する分光透過率の特性図、第5図はアントラキノン
系の色素の吸収特性を示す特性図、第7図は反射鏡を防
眩駆動回路のブロック構成図、第8図は第7図に示すも
のの詳細回路構成図、第9図は本発明の第2実施例を示
す断面図、第10図は第2実施例における高屈折率誘電
体膜の膜厚と色調と関係を示す特性図である。 2・・・金属膜、3・・・高屈折率透明誘電体膜、5・
・・G/H液晶層。 第1図 ↓ 久 第2図 第3図 第5図 100L 璃畏(入) xioo。 第6図 j艮 景 (人、 X100O 第7図 2 第8図
FIG. 1 is a sectional view showing the first embodiment of the invention, and FIG. 2 is a cross-sectional view showing the first embodiment of the invention.
Characteristic diagrams showing the relationship between the film thickness and color tone of the high refractive index transparent dielectric film in Examples, Figures 3, 4, and 6 are characteristic diagrams of spectral transmittance used to explain the operation. A characteristic diagram showing the absorption characteristics of anthraquinone dyes, Fig. 7 is a block diagram of an anti-glare driving circuit for a reflecting mirror, Fig. 8 is a detailed circuit diagram of the circuit shown in Fig. 7, and Fig. 9 is a block diagram of an anti-glare driving circuit for a reflecting mirror. A sectional view showing the second embodiment, and FIG. 10 are characteristic diagrams showing the relationship between the film thickness and color tone of the high refractive index dielectric film in the second embodiment. 2... Metal film, 3... High refractive index transparent dielectric film, 5...
...G/H liquid crystal layer. Figure 1 ↓ Figure 2 Figure 3 Figure 5 100L xioo. Fig. 6 j A view (person, X100O Fig. 7 2 Fig. 8

Claims (1)

【特許請求の範囲】 反射面をなす金属膜の前面にゲストホスト液晶層を設り
てなる自動車用防眩型反射鏡であって、前記金属膜とゲ
ストホスト液晶層の間の前記金属膜上に、前記ゲストホ
スト液晶よりも屈折率の高い高屈折率誘電体膜を形成し
た ことを特徴とする自動車用防眩型反射鏡。
[Scope of Claims] An anti-glare reflector for an automobile, comprising a guest-host liquid crystal layer provided on the front surface of a metal film forming a reflective surface, wherein the metal film is provided between the metal film and the guest-host liquid crystal layer. An anti-glare reflector for an automobile, characterized in that a high refractive index dielectric film having a higher refractive index than the guest-host liquid crystal is formed.
JP59118878A 1984-06-08 1984-06-08 Antidazzle type reflection mirror for automobile Pending JPS60262132A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59118878A JPS60262132A (en) 1984-06-08 1984-06-08 Antidazzle type reflection mirror for automobile
US06/742,525 US4696548A (en) 1984-06-08 1985-06-07 Antiglare mirror for an automobile
DE19853520711 DE3520711A1 (en) 1984-06-08 1985-06-10 GLARE-FREE MIRROR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118878A JPS60262132A (en) 1984-06-08 1984-06-08 Antidazzle type reflection mirror for automobile

Publications (1)

Publication Number Publication Date
JPS60262132A true JPS60262132A (en) 1985-12-25

Family

ID=14747355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118878A Pending JPS60262132A (en) 1984-06-08 1984-06-08 Antidazzle type reflection mirror for automobile

Country Status (1)

Country Link
JP (1) JPS60262132A (en)

Similar Documents

Publication Publication Date Title
US5808778A (en) Electro-optic rearview mirror for automotive vehicles
US5168378A (en) Mirror with dazzle light attenuation zone
Lynam Automotive applications of chromogenic materials
CA2013410C (en) Automotive head-up display with high brightness in daytime and high contrast in nighttime
US4632509A (en) Glare-shielding type reflector
US20060221452A1 (en) Anti-glare reflective and transmissive devices
JPS6141128A (en) Glare proof device of reflector for automobile
JP2901489B2 (en) Rearview mirror
US5373392A (en) Photochromic light control mirror
CA2513063A1 (en) Vehicle information displays
CN100514090C (en) Low glare rear-view mirror for vehicles
CN214523571U (en) Anti-glare rearview mirror and automobile
WO2021000824A1 (en) Anti-dazzling rear view mirror and automobile
US4696548A (en) Antiglare mirror for an automobile
US5322996A (en) Mirror with dynamic dazzle light attenuation zone
CN105353511A (en) Light transmission adjustable reflection screen, control device and display system with reflection screen and control device
US4655553A (en) High contrast back lit liquid crystal display system
JPS60262132A (en) Antidazzle type reflection mirror for automobile
JP3628540B2 (en) Optical interference color prism anti-glare mirror
JPH0425174B2 (en)
JPS622587Y2 (en)
JPS6157929A (en) Glare-preventing type reflector for automobile
CN219715873U (en) Anti-dazzle LCD mirror and automobile rearview mirror
JP2891566B2 (en) Anti-glare mirror
JPH0746910Y2 (en) Driving circuit for ECD anti-glare mirror