JPS60262049A - Analysis of concentration of solution - Google Patents

Analysis of concentration of solution

Info

Publication number
JPS60262049A
JPS60262049A JP59119379A JP11937984A JPS60262049A JP S60262049 A JPS60262049 A JP S60262049A JP 59119379 A JP59119379 A JP 59119379A JP 11937984 A JP11937984 A JP 11937984A JP S60262049 A JPS60262049 A JP S60262049A
Authority
JP
Japan
Prior art keywords
line
temp
urea
temperature
crystalline substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59119379A
Other languages
Japanese (ja)
Inventor
Toyotaro Kawabe
河辺 豊太郎
Masato Itaya
板谷 正人
Yasurou Masuyuki
舛行 康郎
Tetsuo Yoshiyama
吉山 哲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59119379A priority Critical patent/JPS60262049A/en
Publication of JPS60262049A publication Critical patent/JPS60262049A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/14Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Abstract

PURPOSE:To efficiently and continuously measure the concn. of a solution, by precipitating the crystalline substance in a specimen solution under cooling and detecting the change in the temp. within a measuring system caused by heat of precipitation while applying this temp. information to the memory system of crystalline substance and precipitation temp. CONSTITUTION:For example, gas containing ammonia, carbon dioxide steam and a minute amount of urea is introduced into an absorbing tower 2 under pressure of 17kg/cm<2>G at 125 deg.C through a line 1 and absorbed by the absorbing medium in said tower 2 while said absorbing medium is recirculated to a urea synthesis region 7 through a line 3, a pump 4, a strainer 5 and a line 3. A part of said medium is guided to the meandering tube 11 in a water bath 10 through a line 9 to be cooled at a cooling speed of about 5 deg.C/min and, when the temp. thereof reaches certain low temp. in a narrow path 14, a urea crystal begins to precipitate and the clogging of the narrow path 14 is judged at the point of time when the change in temp. T3 disappeared and the narrow path 14 is heated by a jacket 15 to melt the urea crystal while molten crystal is recovered to the line 1 through a line 16. Further, the concn. C of urea is preliminarily imparted to a measuring control system 12 as the function of water bath temp. T1, precipitation temp. T3 and pressure P to operate the concn. C.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は溶液濃度の分析方法に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for analyzing solution concentration.

〔背景技術〕[Background technology]

溶液の濃度を測定する方法として、化学的、電気的、あ
るいは光学的手法が種々開発されて実用に供されている
。一方、高温高圧下における溶液の濃度を測定しなけれ
ばならない化学プラントも各種存在している。
Various chemical, electrical, or optical methods have been developed and put into practical use as methods for measuring the concentration of a solution. On the other hand, there are various chemical plants in which the concentration of solutions must be measured under high temperature and high pressure.

例えば、尿素製造プラントにおいては、アンモニア、二
酸化炭素及び少量の尿素を溶解する溶液を取扱う配管が
数多く存在し、時により、尿素及び/又はカルバミン酸
アンモニウムの含有量が増えて配管内に晶出し固化し、
連続運転に支障を来たすことがある。このような高温高
圧下における特定物質の濃度を測定するためには、通常
は、ラインから一部サンプルを抜き出し、これを常法に
より分析する方法が採用されるが、プロセスの正常な運
転を確保するためには、プロセス外にサンプルを抜き出
すことなく、プロセスに結合した分析系とすることが望
ましい。
For example, in a urea production plant, there are many pipes that handle solutions that dissolve ammonia, carbon dioxide, and small amounts of urea, and sometimes the content of urea and/or ammonium carbamate increases and crystallizes and solidifies in the pipes. death,
It may interfere with continuous operation. In order to measure the concentration of a specific substance under such high temperature and high pressure conditions, a method is usually adopted in which a portion of the sample is extracted from the line and analyzed using conventional methods, but it is necessary to ensure the normal operation of the process. In order to do this, it is desirable to have an analysis system that is connected to the process without taking samples out of the process.

本発明者は、以上のような問題に鑑み、結4品性物質を
含有溶解する溶液の分析方法について鋭意研究を行ない
、本発明を完成するに至ったものである。
In view of the above-mentioned problems, the present inventor has conducted intensive research on a method for analyzing a solution containing and dissolving the four substances, and has completed the present invention.

〔発明の開示〕[Disclosure of the invention]

すなわち、本発明の溶液濃度の分析方法は、結晶性物質
を含有溶解する被検溶液を冷却しながら。
That is, in the solution concentration analysis method of the present invention, a test solution containing and dissolving a crystalline substance is cooled.

結晶性物質を晶出せしめ、この際の結晶化熱による測定
系内の温度変化を検知し、この温度情報を、特定圧力下
における結晶性物質の濃度と晶出温度の記憶系に与え被
検溶液中の結晶性物質の濃度をめることを特徴とするも
のである。
The crystalline substance is crystallized, the temperature change in the measurement system due to the heat of crystallization at this time is detected, and this temperature information is sent to the storage system of the concentration of the crystalline substance and the crystallization temperature under a specific pressure to be measured. It is characterized by increasing the concentration of crystalline substances in the solution.

本発明の対象となる溶液は、結晶性物質を含有溶解する
溶液である。ガス状混合物であっても冷却することによ
り液体となし、本発明における被検溶液となしうろこと
は言うまでもない。被検溶〜 液は冷却されなから晶出
工程に送られる。晶出は、例えば、被検溶液を1乃至数
個所の絞りを有する隘路に導くことにより行われる。l
乃至数個所の絞りは、隘路内において十分攪拌効果を生
じさせ過飽和状態となることを防止する。絞りの数は隘
路の径、形状に応じて適宜定められる。所定の温度間隔
で冷却をつづけるとある温度で溶解している結晶性物質
は晶出する。このとき結晶化熱により温度変化が生ずる
。これを晶出温度とする。ある圧力における晶出温度と
濃度との関係をあらかじめ測定しておき、実測した晶出
温度から被検溶液の濃度が測定される。
The solution targeted by the present invention is a solution containing and dissolving a crystalline substance. It goes without saying that even a gaseous mixture can be turned into a liquid by cooling and can be used as the test solution in the present invention. The test solution is sent to the crystallization process without being cooled. Crystallization is carried out, for example, by introducing the test solution into a bottleneck having one or several constrictions. l
The throttling at one or several locations produces a sufficient stirring effect within the bottleneck to prevent oversaturation. The number of apertures is determined as appropriate depending on the diameter and shape of the bottleneck. If cooling is continued at predetermined temperature intervals, the crystalline substance that is dissolved at a certain temperature will crystallize. At this time, a temperature change occurs due to heat of crystallization. This is taken as the crystallization temperature. The relationship between crystallization temperature and concentration at a certain pressure is measured in advance, and the concentration of the test solution is measured from the actually measured crystallization temperature.

本発明を尿素製造プロセスに適用した例にもとづき具体
的に説明する。
The present invention will be specifically explained based on an example in which the present invention is applied to a urea production process.

尿素の製造方法として、二酸化炭素とアンモニアとを尿
素生成温度及び圧力において反応させ、得られた尿素合
成液を順次圧力が低下する複数の未反応アンモニウムカ
ーバメート分解段階を通して該尿素合成液中に含まれる
未反応アンモニラ、ムカーバメートを分解し、アンモニ
ア、二酸化炭素及び水蒸気の混合ガスとして分離し、こ
うして得られた僅かな量のアンモニア及び二酸化炭素を
含 )有する尿素水溶液を減圧濃縮して結晶尿素を生成
させ、遠心分離し、一方分離された該混合ガスを吸収媒
体に順次吸収させ、尿素合成域に循環回収する方法が確
立された技術として知られている。
As a method for producing urea, carbon dioxide and ammonia are reacted at a urea production temperature and pressure, and the resulting urea synthesis liquid is passed through a plurality of unreacted ammonium carbamate decomposition stages in which the pressure is sequentially reduced. Unreacted ammonia and mucarbamate are decomposed and separated as a mixed gas of ammonia, carbon dioxide and water vapor, and the resulting aqueous urea solution containing a small amount of ammonia and carbon dioxide is concentrated under reduced pressure to produce crystalline urea. A method is known as an established technique in which the separated gas mixture is sequentially absorbed into an absorption medium and recycled to the urea synthesis zone.

尿素合成液中に含まれる未反応アンモニウムカーバメー
トを分解して得られるアンモニア、二酸化炭素を順次吸
収させた吸収溶液には、通常アンモニア0〜50%(重
量)、二酸化炭素0〜50%(重量)のほか、尿素が0
〜100%(重量)含まれている。この吸収溶液は尿素
合成域に循環されるが、このラインから該吸収溶液の一
部を本発明に係る濃度分析系に取り出す。取り出された
吸収溶液は、結晶性物質が過飽和にならないよう、所定
の温度間隔で冷却される。この温度情報は、計測制御系
に伝達されるようにしておく。冷却は、例えば、ライン
を蛇管にして水浴を通すことによって行なわれ、水浴温
度としては、冷却の段階で結晶性物質が析出しない温度
(胃)が選ばれる。冷却された吸収溶液は、圧力(P)
及び温度(T2)の測定のできるラインを通じて1乃至
数個所の絞りを有する隘路に導かれる。圧力情報(P)
は計測制御系に伝達されるようにしておく。この隘路中
において、1乃至数個所の絞りによって吸収溶液は十分
攪拌され、晶出温度にまで冷却されると、隘路中で吸収
溶液中の結晶性物質の一部又は全部が晶出される。隘路
末端は、分離された混合ガスを吸収媒体に順次吸収させ
る系内とラインで結ばれ、このラインの隘路末端付近に
はライン内の温度(T3)を計測できるよう温度計を設
け、この温度情報は計測制御系に伝達される。
The absorption solution that sequentially absorbs ammonia and carbon dioxide obtained by decomposing unreacted ammonium carbamate contained in the urea synthesis solution usually contains 0 to 50% (by weight) ammonia and 0 to 50% (by weight) carbon dioxide. Besides, urea is 0
Contains ~100% (by weight). This absorption solution is circulated to the urea synthesis zone, and a portion of the absorption solution is taken out from this line to the concentration analysis system according to the present invention. The removed absorption solution is cooled at predetermined temperature intervals to avoid supersaturation of the crystalline material. This temperature information is transmitted to the measurement control system. Cooling is performed, for example, by making the line a spiral pipe and passing it through a water bath, and the water bath temperature is selected to be a temperature (stomach) at which crystalline substances do not precipitate during the cooling stage. The cooled absorption solution has a pressure (P)
and a line through which the temperature (T2) can be measured, leading to a bottleneck with one or several apertures. Pressure information (P)
shall be transmitted to the measurement control system. In this bottleneck, the absorption solution is sufficiently stirred by one or several constrictions, and when cooled to the crystallization temperature, part or all of the crystalline substance in the absorption solution is crystallized in the bottleneck. The end of the bottleneck is connected by a line to the inside of the system in which the separated mixed gas is sequentially absorbed into an absorption medium, and a thermometer is installed near the end of the bottleneck to measure the temperature (T3) in the line. The information is transmitted to the measurement control system.

また、隘路部分は、ジャケット等で加熱できるようにし
ておく。隘路内で結晶性物質の一部又は全部の晶出が始
まると、結晶化熱により温度T3が変化する。とともに
全部が晶出すると隘路内の圧力(P)も変化する。計測
制御系にはあらかじめ、吸収溶液中の結晶性物質濃度が
圧力、冷却温度及び晶出温度の関数として情報が与えら
れており、計測値T、、T3.P、により吸収溶液中の
結晶性物質濃度(C)がめられる。この濃度情報は、分
離された混合ガA収媒体に順次吸収させる系の吸収媒体
の供給量の制御系に連動させておき、所定の濃度以上に
なったら濃度を小さく維持することができるようにして
おくのが好ましい。勿論、濃度情報にもとづき手動で吸
収媒体の供給量を変化させてもよい。
Also, make sure that the bottleneck area can be heated with a jacket, etc. When some or all of the crystalline substance begins to crystallize within the bottleneck, the temperature T3 changes due to the heat of crystallization. At the same time, when all of the water crystallizes, the pressure (P) inside the bottleneck also changes. The measurement control system is given information in advance about the concentration of the crystalline substance in the absorption solution as a function of pressure, cooling temperature, and crystallization temperature, and the measured values T, , T3 . The crystalline substance concentration (C) in the absorption solution is determined by P. This concentration information is linked to the control system for the supply amount of the absorption medium in which the separated mixed gas is sequentially absorbed into the storage medium A, so that when the concentration exceeds a predetermined concentration, the concentration can be kept small. It is preferable to keep it. Of course, the supply amount of the absorption medium may be changed manually based on the concentration information.

隘路内の晶出した結晶性物質は、計測終了後ジャケット
により加熱溶解せしめ、分離された混合ガスを吸収媒体
に順次吸収させる系内に回収される。
After the measurement is completed, the crystalline substance crystallized in the bottleneck is heated and melted by a jacket, and the separated mixed gas is collected into a system that sequentially absorbs it into an absorption medium.

本発明によれば、結晶性物質を溶解する溶液中の濃度を
効率よく、連続的に測定することが、可能となる。化学
プラントのプロセスに直結すれば、プロセスの正常な運
転を確保しながら溶液濃度を分析することができる。
According to the present invention, it becomes possible to efficiently and continuously measure the concentration in a solution in which a crystalline substance is dissolved. If connected directly to a chemical plant process, the solution concentration can be analyzed while ensuring the normal operation of the process.

〔発明を実施するための好ましい形態〕以下に実施例に
より本発明を具体的に説明する。
[Preferred Mode for Carrying Out the Invention] The present invention will be specifically explained below with reference to Examples.

実施例 二酸化炭素とアンモニアとを尿素マ成温度及びゝ 圧力
において反応させ、得られた尿素合成液を順次圧力が低
下する複数の未反応アンモニウムカーバメート分解段階
を通して該尿素合成液中に含まれる未反応アンモニウム
カーバメートを分解し、アンモニア、二酸化炭素及び水
蒸気の混合ガスとして分離し、こうして得られた僅かな
量のアンモニア及び二酸化炭素を含有する尿素水溶液を
減圧濃縮して、結晶尿素を生成させ、遠心分離し、一方
分離された混合ガスは、吸収媒体に順次吸収させ尿素合
成域に循環させた。
Example Carbon dioxide and ammonia are reacted at the urea synthesis temperature and pressure, and the resulting urea synthesis solution is passed through a plurality of unreacted ammonium carbamate decomposition stages in which the pressure is sequentially reduced to remove unreacted components contained in the urea synthesis solution. Ammonium carbamate is decomposed and separated as a mixed gas of ammonia, carbon dioxide, and water vapor, and the resulting aqueous urea solution containing a small amount of ammonia and carbon dioxide is concentrated under reduced pressure to produce crystalline urea, which is then centrifuged. However, the separated mixed gas was sequentially absorbed into an absorption medium and circulated to the urea synthesis zone.

第1図は、このプロセス中吸収塔から尿素合成域に循環
するラインに、本発明の1例としての濃度分析系を組み
込んだフローを示すものである。
FIG. 1 shows a flow diagram in which a concentration analysis system as an example of the present invention is incorporated into the line circulating from the absorption tower to the urea synthesis zone during this process.

ライン1を通して圧力17kg/cJG、温度125°
Cのアンモニア、二酸化炭素、水蒸気及び微量の尿素を
含有する混合ガスを吸収塔2において吸収媒体に吸収さ
せ、ライン3、ポンプ4、ストレーナ−5、ライン6を
経て尿素合成域7に循環させた。
Pressure 17kg/cJG through line 1, temperature 125°
A mixed gas containing ammonia, carbon dioxide, water vapor, and a trace amount of urea in C was absorbed into an absorption medium in an absorption tower 2, and was circulated to a urea synthesis zone 7 via a line 3, a pump 4, a strainer 5, and a line 6. .

ライン6から、バルブ7.8を有するライン9を通じて
吸収溶液の一部を水浴10に通した。水浴10内では、
配管は蛇管11とした。水浴10は、わ5.C7ケ。工
61工いいつぇ。 (この温度情報T、は、計測制御系
12に伝達した。
From line 6, a portion of the absorption solution was passed through line 9 with valve 7.8 to water bath 10. Inside the water bath 10,
The piping was a serpentine pipe 11. Water bath 10 is 5. C7ke. 61st grade is good. (This temperature information T was transmitted to the measurement control system 12.

冷却さ九た吸収溶液はライン13を通じて隘路14に導
かれる。ライン13の圧力情報Pは計測制御系12に伝
達した。隘路14は加熱ジャケット15により加熱可能
にしておく。隘路14はライン16、を介してラインl
に接続した。ライン16の隘路14近傍の温度情報T3
は計測制御系12に伝達した。温度T3が低くなり、あ
る温度に達すると隘路14内で尿素結晶が晶出しはじめ
、晶出とともに結晶化熱により温度T3は上昇し、隘路
14内が閉塞すると温度T3の変化がなくなった。その
時点でジャケット 15により一隘路14を加熱して晶
出 尿素を溶解し、ライン16を通じてライン1に回収
された。温度T3と時間の関係のパターン数として尿素
濃度Cの情報をあらかじめ与えておいた。計測制御系に
おける演算により、この吸収溶液中の尿素の濃度は20
%(重量)とめられ、′こあ数値は、安全運転条件の限
界18%を超過していたため、ただちにライン1に水蒸
気を供給するライン(図示しない)を通してライン1に
水蒸気を供給し、18%(重量)以下となるよう希釈し
た。
The cooled absorption solution is directed through line 13 to bottleneck 14 . Pressure information P on the line 13 was transmitted to the measurement control system 12. The bottleneck 14 is made heatable by a heating jacket 15. The bottleneck 14 is connected to the line 16 via the line l
connected to. Temperature information T3 near bottleneck 14 of line 16
was transmitted to the measurement control system 12. When the temperature T3 became low and reached a certain temperature, urea crystals began to crystallize in the bottleneck 14, and as the crystallized, the temperature T3 rose due to the heat of crystallization, and when the bottleneck 14 was closed, the temperature T3 stopped changing. At that point, jacket 15 heated one passage 14 to dissolve the crystallized urea, which was recovered through line 16 to line 1. Information on the urea concentration C was given in advance as the number of patterns of the relationship between temperature T3 and time. By calculation in the measurement control system, the concentration of urea in this absorption solution is 20
% (weight), and the value exceeded the safe operating condition limit of 18%, so steam was immediately supplied to line 1 through a line (not shown) that supplied steam to line 1, and the value was reduced to 18%. (weight) It was diluted to the following.

実施例2 ホルムアルデヒド、水酸化ナトリウム、アセトアルデヒ
ドを反応させペントエリニストールを生成させ、余剰の
アルカリをギ酸等で中和し濾過分離して粗ペンタエリニ
ストールを得、これを高純度品とする為に再溶解槽に投
入し、後述する遠心分離様母液と濃度調整の為の純水で
完全に溶解し活性炭等の吸着材層を通すことにより精製
する。
Example 2 Formaldehyde, sodium hydroxide, and acetaldehyde are reacted to produce pentaerinistol, excess alkali is neutralized with formic acid, etc., and crude pentaerinistol is obtained by filtration separation, which is used as a high-purity product. For this purpose, it is poured into a re-dissolution tank, completely dissolved with a centrifugation-like mother liquor described later and pure water for concentration adjustment, and purified by passing through a layer of adsorbent such as activated carbon.

この処理された液を濃縮晶出させ遠心分離機により結晶
を分離し乾燥させて製品ペンタエリニストール″結晶と
する。
The treated liquid is concentrated and crystallized, and the crystals are separated using a centrifuge and dried to obtain the product "Pentaerinistol" crystals.

第3図はこのプロセス中再溶解槽から吸着塔へ送液する
ラインに本発明の濃度分析系を組み込んだフローを示す
ものである。
FIG. 3 shows a flowchart in which the concentration analysis system of the present invention is installed in the line for sending liquid from the redissolution tank to the adsorption tower during this process.

粗ペントール結晶はライン1を通して再溶解槽4に投入
されライン2からの遠心分離様母液及びライン3からの
純水により溶解させポンプ5.うイン6、吸着塔7.ラ
イン8を経て濃縮系9に送液した。
Crude pentol crystals are fed into redissolution tank 4 through line 1, dissolved by centrifuged mother liquor from line 2 and purified water from line 3, and pumped to pump 5. 6. Adsorption tower 7. The liquid was sent to a concentration system 9 through a line 8.

ライン6かもバルブ10.11を有するライン12を通
して溶解液の一部を水浴13に通した。水浴13内では
配管は蛇管14とした。水浴13は約り℃/゛分の温度
間隔で冷却していった。この温度情報T、は計測制御系
19に伝達した。
Line 6 also passed a portion of the lysate to water bath 13 through line 12 with valve 10.11. The piping inside the water bath 13 was a serpentine pipe 14. The water bath 13 was cooled at temperature intervals of approximately °C/min. This temperature information T was transmitted to the measurement control system 19.

冷却された吸収液はライン15を通じて隘路16に導か
れる。ライン15の圧力情報Pは計測制御系19に伝達
し、隘路16は加熱ジャケット17により加熱可能にし
ておき1、ライン18を介して再溶解槽4に循環した。
The cooled absorption liquid is led through line 15 to bottleneck 16 . The pressure information P in the line 15 was transmitted to the measurement control system 19, the bottleneck 16 was made heatable by the heating jacket 17, and was circulated to the remelting tank 4 via the line 18.

ライン18の隘路16近傍の温度情報T3は計測制御系
19に伝達した。
Temperature information T3 near the bottleneck 16 of the line 18 was transmitted to the measurement control system 19.

温度T3が低くなりある温度に達すると隘路16内で結
晶が晶出しはじめ、晶出とともに結晶加熱により温度T
3は上昇し、隘路1・6内が閉塞すると温度T3の変化
がな(なった。その時点でジャケラ〜 1□7えより隘
路16を加熱い晶出物質を溶解。
When the temperature T3 decreases and reaches a certain temperature, crystals begin to crystallize in the bottleneck 16, and as the crystals crystallize, the temperature T3 decreases due to crystal heating.
3 rose, and when the insides of the bottlenecks 1 and 6 were blocked, there was no change in the temperature T3.At that point, the bottleneck 16 was heated from the 1□7e to dissolve the crystallized substance.

ライン18を通じて再溶解槽4に回収された。温度T3
と時間の関係のパターンは第2図と同様になつた。計測
制御計19には水浴温度T1、晶出温度T8、圧力Pの
関数として再溶解液濃度Cの情報をあらかじめ与えてお
いた。計測制御系における演算により、この再溶解溶液
中のペンタエリニストール濃度は30%(重量)とめら
れ、この数値は運転限界の31%綜下回っていたため、
ただちにライン3かもの純水量を減じ31%(重量)程
度となる様に制御した。
It was collected into the remelting tank 4 through the line 18. Temperature T3
The pattern of the relationship between time and time was similar to that shown in Figure 2. Information on the redissolved liquid concentration C as a function of the water bath temperature T1, crystallization temperature T8, and pressure P was given to the measurement controller 19 in advance. The concentration of pentaerinistol in this redissolved solution was determined to be 30% (by weight) by calculation in the measurement control system, and this value was approximately 31% below the operating limit.
Immediately, the amount of pure water in line 3 was reduced to approximately 31% (by weight).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1を示すフローシートである。 第2図は温度(T3)と時間の関係のパターンを示すグ
ラフである。 第3図は本発明の実施例2を示すフローシートである。 特許出願人 三井東圧化学株式会社 會 四 V艶)
FIG. 1 is a flow sheet showing Example 1 of the present invention. FIG. 2 is a graph showing a pattern of the relationship between temperature (T3) and time. FIG. 3 is a flow sheet showing Example 2 of the present invention. Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)結晶性物質を含有溶解する被検溶液を冷却しなが
ら結晶性物質を晶出せしめ、この際の結晶化熱による測
定系内の温度変化を検知し、この温度情報を、特定圧力
下における結晶性物質の濃度と晶出温度の記憶系に与え
被検溶液中の結晶性物質の温度をめることを特徴とする
溶液濃度の分析方法。
(1) The crystalline substance is crystallized while cooling the test solution that contains and dissolves the crystalline substance, and the temperature change in the measurement system due to the heat of crystallization at this time is detected, and this temperature information is used under a specific pressure. A method for analyzing the concentration of a solution, characterized in that the temperature of the crystalline substance in the test solution is determined by applying the concentration and crystallization temperature of the crystalline substance to a storage system.
(2)結晶性物質の晶出を被検溶液を1乃至数個所の絞
りを有する隘路に導くことにより行う特許請求の範囲第
1項記載の方法。
(2) The method according to claim 1, wherein the crystalline substance is crystallized by introducing the test solution into a bottleneck having one to several constrictions.
(3)結晶性物質が尿素結晶である特許請求の範囲第1
項もしくは第2填に記載の方法。
(3) Claim 1 in which the crystalline substance is urea crystals
or the method described in Section 2.
(4)結晶性物質がペンタエリスリトール結晶である特
許請求の範囲第1項もしくは第2項、に記載の方法。
(4) The method according to claim 1 or 2, wherein the crystalline substance is a pentaerythritol crystal.
JP59119379A 1984-06-11 1984-06-11 Analysis of concentration of solution Pending JPS60262049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59119379A JPS60262049A (en) 1984-06-11 1984-06-11 Analysis of concentration of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119379A JPS60262049A (en) 1984-06-11 1984-06-11 Analysis of concentration of solution

Publications (1)

Publication Number Publication Date
JPS60262049A true JPS60262049A (en) 1985-12-25

Family

ID=14760050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119379A Pending JPS60262049A (en) 1984-06-11 1984-06-11 Analysis of concentration of solution

Country Status (1)

Country Link
JP (1) JPS60262049A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102096A (en) * 1977-02-18 1978-09-06 Chino Works Ltd Automatic measuring device for carbon and silicon in melt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53102096A (en) * 1977-02-18 1978-09-06 Chino Works Ltd Automatic measuring device for carbon and silicon in melt

Similar Documents

Publication Publication Date Title
JP6473785B2 (en) Method for circulating production of taurine with high yield
US6818194B2 (en) Process for removing hydrogen sulfide from gas streams which include or are supplemented with sulfur dioxide, by scrubbing with a nonaqueous sorbent
ES2395971A1 (en) Process for producing methionine
JPS5879519A (en) Method and apparatus for adjusting nh3 content in washed gas
EP1334069B1 (en) System and method for precipitating salts
US3005684A (en) Process for making ammonium bifluoride
CA2759569C (en) Sodium cyanide process
JPS60262049A (en) Analysis of concentration of solution
US4898990A (en) Process for the extraction of vanillin
JPS60262047A (en) Analysis of concentration of solution
JPS60262048A (en) Analysis of concentration of solution
US7985396B2 (en) Process for production of sodium bisulfite
BR112019018446B1 (en) METHOD FOR CONTINUOUS GRANULATIONS OF UREA
JPS6162A (en) Preparation of urea
US4112061A (en) Production of sodium sulfite utilizing mother liquor from the sodium metabisulfite process
US2024680A (en) Apparatus for the manufacture of ammonium chloride
CA1140730A (en) Process for producing magnesium oxide from an aqueous magnesium sulphate solution
CN110981775B (en) Method for removing ammonia in thiourea feed liquid
CN112704902B (en) Method for accurately regulating and controlling back extraction-crystallization process of regeneration of amine extractant
US1303167A (en) nahcos
JP7141612B2 (en) bunsen reactor
CN110229934A (en) New and effective sulfurous method sugar refining technology
JP2000026390A (en) Production of acrylonitrile or methacrylonitrile
US2890935A (en) Method of minimizing water hammer in evaporative crystallization processes
SU1729277A3 (en) Method of nitrogen oxides removal from excreted gases