JPS602618B2 - Atmospheric fluorine concentration measurement method - Google Patents

Atmospheric fluorine concentration measurement method

Info

Publication number
JPS602618B2
JPS602618B2 JP54039194A JP3919479A JPS602618B2 JP S602618 B2 JPS602618 B2 JP S602618B2 JP 54039194 A JP54039194 A JP 54039194A JP 3919479 A JP3919479 A JP 3919479A JP S602618 B2 JPS602618 B2 JP S602618B2
Authority
JP
Japan
Prior art keywords
fluorine
gas
concentration
absorption liquid
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54039194A
Other languages
Japanese (ja)
Other versions
JPS55131746A (en
Inventor
亨 秋山
祥二 高木
勉 上吹越
為治 川口
昇一 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP54039194A priority Critical patent/JPS602618B2/en
Publication of JPS55131746A publication Critical patent/JPS55131746A/en
Publication of JPS602618B2 publication Critical patent/JPS602618B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は大気中のフッ素濃度測定法に関する。[Detailed description of the invention] The present invention relates to a method for measuring fluorine concentration in the atmosphere.

さらに詳しくは、大気中のフッ素濃度をフッ素イオン電
極法を利用して連続的に測定する改良された方法に関す
る。フッ素化合物(フッ素ガスを含む、以下同様)が工
場などの廃ガス中に含まれる!まあし、、ごく徴量でも
植物に被害を与えるため、その測定には超微量分析が必
要とされる。
More specifically, the present invention relates to an improved method for continuously measuring fluorine concentration in the atmosphere using a fluorine ion electrode method. Fluorine compounds (including fluorine gas, hereinafter the same) are contained in waste gas from factories, etc.! Well, even a small amount can cause damage to plants, so ultra-trace analysis is required to measure it.

かかるフッ素化合物としては、たとえばフッ素ガス「
フッ化水素、フッ化ケイ素などのいわゆるガス状無機フ
ッ素化合物などがあげられる。就中「 フッ素は化学的
に非常に活性な化合物であるため、その影響はきわめて
大で、とくに超微量の測定が要求される。これら大気中
のフッ素化合物の測定法としては、たとえば自動化され
たフッ素イオン電極法や吸光光度法などの連続測定法が
多く用いられている。
Such fluorine compounds include, for example, fluorine gas "
Examples include so-called gaseous inorganic fluorine compounds such as hydrogen fluoride and silicon fluoride. Among these, ``Fluorine is a chemically very active compound, so its influence is extremely large, and measurement of ultra-trace quantities is required.Methods for measuring these fluorine compounds in the atmosphere include, for example, automated Continuous measurement methods such as fluorine ion electrode method and spectrophotometry are often used.

これらの測定法のうちトフッ素イオン電極法は定量範囲
が広く「簡便で迅速に分析ができるため〜吸光光度法な
どの他の測定法に比して手軽に測定できるという利点を
有する。
Among these measurement methods, the fluoride ion electrode method has the advantage of having a wide quantitative range and being able to perform simple and rapid analysis compared to other measurement methods such as spectrophotometry.

とくに自動化されたフッ素イオン電極法は発生源の廃ガ
ス中のフッ素化合物を吸収液と接触反応させ、フッ素イ
オン電極法により吸収液中のフッ素濃度を測定する方法
であって、遠い応答速度により連続的に濃度変化が測定
できる。
In particular, the automated fluorine ion electrode method is a method in which the fluorine compounds in the waste gas at the source are brought into contact with the absorption liquid, and the fluorine concentration in the absorption liquid is measured using the fluoride ion electrode method. Concentration changes can be measured directly.

ところでフッ素化合物がフッ素ガス(F2)のぱあし、
、該フッ素ガスは大気中で水蒸気とただちに反応してフ
ッ化水素に変化するものと考えられており(たとえば大
日本図書■発行の「環境汚染分析法0」15〜16頁参
照)「 水との反応も速いと予想されていたが「本発明
者らが種々検討した結果、フッ素ガスは反応性がきわめ
て高いにもかかわらず、水と反応は意外にも遅く、その
ため自動化されたフッ素イオン電極法による連続測定で
はフッ素イオンとして測定されていないことが明らかと
なった。
By the way, fluorine compounds are fluorine gas (F2),
It is thought that the fluorine gas reacts immediately with water vapor in the atmosphere and changes to hydrogen fluoride (for example, see pages 15-16 of "Environmental Pollution Analysis Method 0" published by Dainippon Tosho ■). It was expected that the reaction would be fast, but ``As a result of various studies by the present inventors, we found that although fluorine gas has extremely high reactivity, it reacts surprisingly slowly with water. Continuous measurements using the method revealed that fluorine ions were not measured as fluorine ions.

なおJISKKO150一1967には廃ガス中のフッ
素化合物分析方法が記載されているが、フッ素ガスの分
析については何ら触れられてし、なし、。そのため、ま
ず吸収液の種類をフッ素と反応性の高いものに変えて種
々検討したが、いずれのぱあし、にも前記と同機に殆ん
ど測定されなかった。
Although JIS KKO 150-1967 describes a method for analyzing fluorine compounds in waste gas, it does not mention anything about the analysis of fluorine gas. Therefore, various studies were first conducted by changing the type of absorption liquid to one that is highly reactive with fluorine, but almost no performance was measured in any of the cases on the same aircraft as above.

しかるに本発明者らは鋭意研究を重ねた結果、その原因
は驚くべきことにフッ素ガスを含有する被検出ガスの吸
収液接触流量に起因しており「通常の吸収液接触流量(
10〜300そ/分/10の【−吸収液)においてフッ
素ガスは吸収液に殆んど吸収されずへフッ素ガスと吸収
液との反応においては該フッ素ガスの吸収液への溶解が
律速であることをついにつきとめた。しかして本発明は
かかる被検出ガスの流量を、従来測定に長時間を要し好
ましくないと考えられていた低い範囲に限り被検出ガス
を吸収液と充分に接触させ、フッ素ガスを吸収液に溶解
反応させるとにより、大気中のフッ素ガス濃度をも有効
に測定しうる改良されたフッ素濃度測定法を提供するも
のである。
However, as a result of extensive research by the present inventors, we found that the cause of this problem was surprisingly due to the absorption liquid contact flow rate of the detected gas containing fluorine gas.
At a rate of 10 to 300 so/min/10 (-absorption liquid), fluorine gas is hardly absorbed by the absorption liquid.In the reaction between fluorine gas and absorption liquid, the rate-determining rate is the dissolution of the fluorine gas into the absorption liquid. I finally figured out something. However, the present invention limits the flow rate of the gas to be detected to a low range, which was conventionally considered to be undesirable due to the long time required for measurement, so that the gas to be detected is brought into sufficient contact with the absorption liquid, and the fluorine gas is brought into contact with the absorption liquid. The object of the present invention is to provide an improved method for measuring fluorine concentration that can effectively measure the concentration of fluorine gas in the atmosphere by performing a dissolution reaction.

すなわち本発明はもフッ素イオン電極法により大気中の
フッ素濃度を連続的に測定するにあたり、被検出ガスを
1。
That is, in the present invention, when continuously measuring the fluorine concentration in the atmosphere using the fluorine ion electrode method, the gas to be detected is 1.

5〆/分ノ10の上−吸収液以下の吸収液接触流量(以
下、婆勉流量という)で吸収液に接触させることを特徴
とする大気中のフッ素濃度測定法に関する。
The present invention relates to a method for measuring fluorine concentration in the atmosphere, which is characterized by contacting an absorbent with an absorbent at a contact flow rate (hereinafter referred to as a "baker flow rate") of an absorbent at a flow rate of 5.0/min to 10.

なお、本明細書における被検出ガスの接触流量は「吸収
液の液面下職肌もこ位置する孔径0.2〜0.4肋の孔
を有するノズルから被検出ガスを送入するぱあし、の流
量であり、液面の高さやノズルの孔の孔径が変わるぱあ
し、は、前記の条件を基準にして変更されうる。かかる
本発明の方法は、従釆のフッ素イオン電極法において測
定されなかったフッ素ガスの濃度で、かつppbオーダ
ーのごとく徴量の濃度までも測定できるという顕著な効
果を奏しうる。
In this specification, the contact flow rate of the gas to be detected refers to the flow rate of the gas to be detected through a nozzle having a hole with a hole diameter of 0.2 to 0.4 holes located close to the surface of the absorption liquid. The flow rate and the rate at which the height of the liquid level and the diameter of the nozzle hole change can be changed based on the above-mentioned conditions. This method has the remarkable effect of being able to measure concentrations of fluorine gas that were previously absent, even at levels as low as ppb.

それゆ・え前述のごとき本発明の方法を実際のフッ素濃
度の測定に適用するときは、大気中のフッ化水素などの
フッ素化合物のフッ素濃度と共に前記従来の測定法では
検出されていなかったフッ素ガスを含めたいわゆる全フ
ッ素濃度の測定が可能となる。・ しかしながら、種々
のフッ素化合物中からフッ素ガス濃度のみを測定する‘
まあし、は、前述のごとき方法に基づく別の測定法が提
供されなければならない。しかして本発明は、種々のフ
ッ素化合物を含む大気中よりフッ素ガス濃度のみを測定
する新規な測定法をも提供するものである。
Therefore, when applying the method of the present invention as described above to the actual measurement of fluorine concentration, it is necessary to measure the fluorine concentration of fluorine compounds such as hydrogen fluoride in the atmosphere as well as the fluorine concentration that was not detected by the conventional measurement method. It becomes possible to measure the so-called total fluorine concentration including gas.・However, it is difficult to measure only the fluorine gas concentration from various fluorine compounds.
Well, another measurement method based on the method described above must be provided. Therefore, the present invention also provides a novel method for measuring only the fluorine gas concentration in the atmosphere containing various fluorine compounds.

かかる測定法としては2種類の測定系統を並列に配魔す
る並列法と直列に配置する直列法とがあげられる。まず
並列法は、フッ素イオン電極法により大気中のフッ素濃
度を連続的に測定するにあたり、2種類の測定系統を並
製に配置し、一方の測定系統において被検出ガスを12
夕/分/10私吸収液以上の接触流量で吸収液と接触さ
せ、フッ素ガス以外の他のフッ素化合物のフッ素濃度を
測定し、他方の測定系統において被検出ガスをli5そ
/分/10の‘−吸収液以下の接触流量で吸収液を接触
させ、全フッ素濃度を測定し、該全フッ素濃度から前記
他のフッ素化合物のフッ素濃度を差引〈ことにより、フ
ッ素ガス濃度を求めるものである。
Such measurement methods include a parallel method in which two types of measurement systems are arranged in parallel, and a series method in which they are arranged in series. First, in the parallel method, when continuously measuring the fluorine concentration in the atmosphere using the fluorine ion electrode method, two types of measurement systems are arranged in parallel, and one measurement system is used to measure the gas to be detected at 12
The fluorine concentration of other fluorine compounds other than fluorine gas is measured by contacting the absorption liquid at a contact flow rate higher than 1/min/10 pm, and in the other measurement system, the gas to be detected is The fluorine gas concentration is determined by contacting the absorption liquid at a contact flow rate less than or equal to the absorption liquid, measuring the total fluorine concentration, and subtracting the fluorine concentration of the other fluorine compound from the total fluorine concentration.

また直列法は、フッ素イオン電極法により大気中のフッ
素濃度を連続的に測定するにあたり、2種類の測定系統
を直列に配置し、まず前の測定系統において被検出ガス
を12〆/分/10泌−吸収液以上の接触流量で吸収液
と接触させ、フッ素ガス以外の他のフッ素化合物のフッ
素濃度を測定し、ついであとの測定系統において、前の
測定系統を通過した被検出ガスを1.5と/分/10の
‘−吸収液以下の接触流量で吸収液と接触させ、フッ素
ガス濃度を測定するものである。
In addition, in the series method, when continuously measuring the fluorine concentration in the atmosphere using the fluoride ion electrode method, two types of measurement systems are arranged in series, and the gas to be detected is first measured at 12/min/10 in the previous measurement system. The fluorine concentration of other fluorine compounds other than fluorine gas is measured by contacting the absorption liquid at a contact flow rate higher than that of the secretion-absorption liquid, and then in the subsequent measurement system, the gas to be detected that has passed through the previous measurement system is 1. The fluorine gas concentration is measured by bringing the sample into contact with the absorption liquid at a contact flow rate of less than 5 minutes/minute/10' of the absorption liquid.

これら並列および直列法は、いずれも被検出ガスの接触
流量が12夕/分/10机−吸収液以上のときは、フッ
素ガスが吸収液と殆んど反応しないが、接触流量が1.
5〆/分/10の【−吸収液以下になるとフッ素ガスと
よく反応するという新たな知見に基づいて完成されたも
のである。
In both of these parallel and series methods, when the contact flow rate of the gas to be detected is 12 days/minute/10 days - absorption liquid or more, the fluorine gas hardly reacts with the absorption liquid, but when the contact flow rate is 1.
This was completed based on the new finding that when the absorption liquid is below 5〆/min/10, it reacts well with fluorine gas.

フッ素イオン電極法とは、一定量の被検出ガス中に含ま
るガス状の無機フッ素化合物を吸収液中に捕集し、この
液中のフッ素イオン濃度をイオン電極法によって測定さ
れる従来公知の方法をいつo 、本発明にお
けるかかる並列法および直列法を図面を用いて説明する
The fluorine ion electrode method is a conventional method in which gaseous inorganic fluorine compounds contained in a certain amount of gas to be detected are collected in an absorption liquid, and the fluorine ion concentration in this liquid is measured by the ion electrode method. The parallel method and the serial method of the present invention will be explained with reference to the drawings.

第1図は本発明における並列法の一実施例を示す概略説
明図、第2図は本発明における直列法の一実施例を示す
概略説明図である。
FIG. 1 is a schematic explanatory diagram showing an embodiment of the parallel method in the present invention, and FIG. 2 is a schematic explanatory diagram showing an embodiment of the serial method in the present invention.

第1図および第2図において、1および2はそれぞれそ
のなかに吸収液3および31を有する吸収器であって、
水素イオン電極4および41がそれぞれ吸収液3および
31に挿入されてなる。
1 and 2, 1 and 2 are absorbers having absorption liquids 3 and 31 therein, respectively;
Hydrogen ion electrodes 4 and 41 are inserted into absorption liquids 3 and 31, respectively.

第1図に示された並列法では、前記吸収器1および2は
被検出ガス(大気)を吸収液および31内に送入するた
めの送入管5および51によって並列に配置される。ま
た第2図に示された直列法では、吸収器1および2は吸
収器1に連結した排気管6と吸収器2に連結した送入管
51とが連結されることによって直列に配置される。第
1図において、被検出ガス(大気)は送入管5を経て1
2夕/分/10の【−吸収液以上の接触流量で吸収器1
に送られ、吸収液3と接触せられる。
In the parallel method shown in FIG. 1, the absorbers 1 and 2 are arranged in parallel by feed pipes 5 and 51 for feeding the gas to be detected (atmosphere) into the absorption liquid and 31. In the series method shown in FIG. 2, absorbers 1 and 2 are arranged in series by connecting an exhaust pipe 6 connected to absorber 1 and an inlet pipe 51 connected to absorber 2. . In FIG. 1, the gas to be detected (atmosphere) passes through the inlet pipe 5
Absorber 1 with a contact flow rate of 2 min/min/10 [-absorbing liquid or higher]
and brought into contact with the absorbing liquid 3.

該吸収液3においてフッ素ガス以外の他のフッ素化合物
のフッ素濃度がフッ素イオン電極4により測定される。
他方、被検出ガスの一部は別の送入管51を経て1.5
そノ分/10の‘−吸収液以下の接触流量で吸収器2に
送られ、吸収液31と接触せられてフッ素ガスを含む全
フッ素濃度がフッ素イオン電極法41により測定される
。水素イオン電極4および41はアンプ7および71を
経て演算機8に接続せられ、指示メーター9により自動
的に被検出ガス(大気)中のフッ素濃度およびフッ素ガ
ス濃度が表示されるよう緩成せしめるのが好ましい。吸
収器1および2においてそれぞれ排出せられるガスはそ
の先端にェアポンプ12が設けられてなる排気管6およ
び61によりローターメーター10,11、ついでバル
ブ3,4を経て系外に排気される。第2図においては、
被検出ガス(大気)はまず送入管5を経て12Z/分ノ
10の【−吸収液以上の接触流量で吸収器1に送られ、
吸収液3と接触せられてフッ素ガス以外の他のフッ素化
合物のフッ素濃度がフッ素イオン電極4により測定され
る。
In the absorption liquid 3, the fluorine concentration of fluorine compounds other than fluorine gas is measured by the fluorine ion electrode 4.
On the other hand, a part of the gas to be detected passes through another feed pipe 51 to 1.5
The absorbent is sent to the absorber 2 at a contact flow rate of less than 1/10' of the absorption liquid, is brought into contact with the absorption liquid 31, and the total fluorine concentration including fluorine gas is measured by the fluorine ion electrode method 41. The hydrogen ion electrodes 4 and 41 are connected to the computer 8 via amplifiers 7 and 71, and are slowly generated so that the indicator meter 9 automatically displays the fluorine concentration in the gas to be detected (atmosphere) and the fluorine gas concentration. is preferable. The gas discharged from the absorbers 1 and 2, respectively, is exhausted to the outside of the system through exhaust pipes 6 and 61 each having an air pump 12 at its tip, through rotameters 10 and 11, and then through valves 3 and 4. In Figure 2,
The gas to be detected (atmosphere) is first sent to the absorber 1 through the inlet pipe 5 at a contact flow rate of 12Z/min.
The fluorine concentration of a fluorine compound other than fluorine gas that is brought into contact with the absorption liquid 3 is measured by a fluorine ion electrode 4 .

ついで吸収器3から排気された被検出ガスは排気管6お
よび該排気管6と接続した送入管51を経て1.5〆/
分/10の‘−吸収液の接触流量で吸収器2に送られ、
吸収液31と接触せられてフッ素ガス濃度がフッ素イオ
ン電極法により測定される。本発明において用いられる
吸収液3,31としては、従来より前述のごときフッ素
イオン電極法におし、使用されている吸収液がそのまま
使用される。かかる吸収液3,31としては、たとえば
あらかじめ一定量の濃度既知のフッ素イオンを含み、p
Hが約5.4〜7.5である緩衝液が好適に使用される
。前記フッ素イオンはイオン電極の発生起電力を安定化
せしめるために緩衝液中に加えられるものであって、通
常フツ化ナトリウムが約1×10‐5M(約0.1卵/
wppm)の濃度で使用される。前記緩衝液としては、
一般に高級有機酸塩−水酸化ナトリウム系緩衝液などが
使用せられるが、具体例としてはクエン酸−クエン酸塩
(たとえばクエン酸3ナトリウム、クエン酸水素カリウ
ムなど)系緩衝液、クエン酸塩(前記と同じ)−水酸化
ナトリウム系緩衝液、マレィン酸塩(たとえばマレィン
酸水素ナトリウムなど)−水酸化ナトリウム系緩衝液な
どがあげられる。これらの緩衝液のほかに、リン酸塩系
緩衝液、氷酢酸−塩化ナトリウム−水酸化ナトリウム系
緩衝液、酢酸ナトリウム−塩化ナトリウム−酢酸系緩衝
液などがあげられる。本発明において、フッ素ガスや他
のフッ素化合物を含む被検出ガス中のフッ素濃度を測定
するときの該被検出ガスの接触流量は1.5夕/分/1
0w‘−吸収液以下、なかんづく1〜0.1Z/分/1
0の【−吸収液であるのが好ましく、接触流量がそれよ
りも大なるときはフッ素ガスが吸収液31に充分に吸収
されなくなる。
Next, the gas to be detected exhausted from the absorber 3 passes through an exhaust pipe 6 and an inlet pipe 51 connected to the exhaust pipe 6 to a
min/10'-contact flow rate of the absorption liquid to the absorber 2,
It is brought into contact with the absorption liquid 31 and the fluorine gas concentration is measured by a fluorine ion electrode method. As the absorption liquids 3 and 31 used in the present invention, the absorption liquids conventionally used in the fluorine ion electrode method as described above can be used as they are. Such absorption liquids 3 and 31 may contain, for example, a certain amount of fluorine ions with a known concentration in advance, and p
Buffers with H between about 5.4 and 7.5 are preferably used. The fluorine ions are added to the buffer solution in order to stabilize the electromotive force generated by the ion electrode, and usually sodium fluoride is added to the buffer solution at a concentration of about 1 x 10-5M (about 0.1 egg/ml).
wppm). As the buffer solution,
Higher organic acid salt-sodium hydroxide-based buffers are generally used, but specific examples include citric acid-citrate (e.g. trisodium citrate, potassium hydrogen citrate, etc.)-based buffers, citrate ( (same as above)-sodium hydroxide-based buffer, maleate (for example, sodium hydrogen maleate, etc.)-sodium hydroxide-based buffer, and the like. In addition to these buffers, examples include phosphate buffers, glacial acetic acid-sodium chloride-sodium hydroxide buffers, and sodium acetate-sodium chloride-acetic acid buffers. In the present invention, when measuring the fluorine concentration in a gas to be detected containing fluorine gas or other fluorine compounds, the contact flow rate of the gas to be detected is 1.5 m/min/1.
Below 0w'-absorbing liquid, especially 1 to 0.1Z/min/1
It is preferable that the absorption liquid is 0. If the contact flow rate is larger than this, the fluorine gas will not be sufficiently absorbed by the absorption liquid 31.

一方、接触流量があまりに小なるときは、フッ素の低濃
度ガスの測定に長時間を要し、好ましくない。かかる被
検出ガスの接触流量は、前記並列法における他方の全フ
ッ素濃度の測定や前記直列法における後のフッ素ガス濃
度の測定に適用され、それぞれ目的とする全フッ素濃度
あるいはフッ素ガス濃度が高精度で測定される。
On the other hand, when the contact flow rate is too small, it takes a long time to measure a gas with a low concentration of fluorine, which is not preferable. This contact flow rate of the gas to be detected is applied to the measurement of the other total fluorine concentration in the parallel method and the subsequent measurement of the fluorine gas concentration in the series method, so that the target total fluorine concentration or fluorine gas concentration can be determined with high accuracy. It is measured in

また前記直列法において、これら全フッ素濃度やフッ素
ガス濃度と併行あるいは連続して測定されるフッ素以外
の他のフッ素化合物のフッ素濃度は、その測定にあたっ
て被検出ガスを12夕/分/10泌−吸収液以上の接触
流量で吸収液3と接触される。以上述べたごとく、本発
明は大気中に含まれるフッ素、フッ化水素、フッ化ケイ
素などのガス状無機フッ素化合物の混合物あるいはフッ
素ガス単独の濃度をフッ素イオン電極法により測定する
方法を提供するものであって、フッ素イオン電極法によ
るフッ素濃度測定において、従釆測定されていなかった
フッ素ガス濃度をも高感度(ppbオーダー)で測定で
き、また大気中の全フッ素濃度を正確に測定できるとい
う顕著な効果を奏し、大気中のフッ素濃度測定法として
好適に使用せられるものである。
In addition, in the series method, the fluorine concentration of other fluorine compounds other than fluorine, which is measured concurrently or continuously with the total fluorine concentration and fluorine gas concentration, is determined by measuring the fluorine concentration of the detected gas at 12 days/minute/10 hours. It is contacted with the absorption liquid 3 at a contact flow rate higher than that of the absorption liquid. As described above, the present invention provides a method for measuring the concentration of a mixture of gaseous inorganic fluorine compounds such as fluorine, hydrogen fluoride, and silicon fluoride contained in the atmosphere, or of fluorine gas alone, using a fluorine ion electrode method. In measuring fluorine concentration using the fluorine ion electrode method, it is possible to measure fluorine gas concentration, which has not been previously measured, with high sensitivity (ppb order), and it is remarkable that the total fluorine concentration in the atmosphere can be measured accurately. This method has excellent effects and can be suitably used as a method for measuring fluorine concentration in the atmosphere.

つぎに実施例および比較例をあげて本発明の方法を説明
する。
Next, the method of the present invention will be explained with reference to Examples and Comparative Examples.

実施例1〜7および比較例1〜4 直径約6仇舷のポリエチレン製容器250の‘(ただし
、比較例1〜4では100泌の容器を使用)に、試料ガ
ス送入管(ポリテトラフルオロェチレン製、外座3.5
豚◇、内径2.5肋少、先端を溶封し、その先端部に直
径0.2〜0.4肋ぐの小孔1の函を設けたもの)およ
びガス出口管(三フッ化塩化エチレン樹脂製、外径6.
5肋?、内径3.8肋◇)を取りつけた菱(ポリテトラ
フルオロェチレン製)をしたガス吸収器(取つけ後のガ
ス出口管の先端部は容器の底より1凧の位置となる)に
、フッ素試料ガス(F2:5び/vppm)を流量計〔
ハスティングス・マス・フローメーター(HASTIN
GSMASSFLOWMETER、ヘスティングス社製
)、ALL−IK型、トランスデュ−サーH−IKM型
(オリオン社製)〕を通してその所定量を送入し、さら
に必要に応じて稀釈ガス(チッ素)を送入して吸収器通
過ガス量を後層の湿式ガスメーターで測定する吸収装置
において、前記フッ素試料ガスおよびチッ素ガスを前記
ガス吸収器に送入し、試料ガス中のフッ素ガス濃度を調
整したのち、このものを吸収液としてクエン酸ナトリウ
ム緩衝液Aの一定量を入れたポリエチレン製容器(吸収
液50の‘を入れたぱあし、液高は2仇舷となりガス出
口管端と液面との距離は19舷となる)に通じ、種々の
のフッ素ガス濃度における吸収を行なった。
Examples 1 to 7 and Comparative Examples 1 to 4 A sample gas inlet pipe (polytetrafluorocarbon Made of ethylene, outer seat 3.5
Pork ◇, inner diameter 2.5 mm, the tip is melt-sealed, and a box with 1 small hole with a diameter of 0.2 to 0.4 mm is provided at the tip) and gas outlet pipe (trifluorochloride) Made of ethylene resin, outer diameter 6.
5 ribs? , inner diameter 3.8 ribs ◇) attached to a diamond-shaped gas absorber (made of polytetrafluoroethylene) (after installation, the tip of the gas outlet pipe will be one kite from the bottom of the container), Measure the fluorine sample gas (F2: 5 mm/vppm) with a flowmeter [
Hastings Mass Flow Meter (HASTIN)
GSMASS FLOWMETER, manufactured by Hastings), ALL-IK type, transducer H-IKM type (Orion manufactured)], and further diluent gas (nitrogen) is supplied as necessary. In an absorption device in which the amount of gas passing through the absorber is measured using a wet gas meter in the rear layer, the fluorine sample gas and nitrogen gas are fed into the gas absorber, and the fluorine gas concentration in the sample gas is adjusted. , A polyethylene container containing a certain amount of sodium citrate buffer A as an absorption liquid (a container containing 50% of the absorption liquid), the liquid height is 2 ships, and the gas outlet pipe end and the liquid level are (The distance was 19 ships), and absorption was carried out at various fluorine gas concentrations.

吸収後、吸収液サンプルに吸収液と同容量のTISAB
溶液を加え、フッ素イオンメーター(オリオン社製の「
オリオン・イオン’アナライザー(ORlONIONA
NALIZER)」40隻型)により各吸収液中のフッ
素イオン濃度測定値からブランク値を差し引いた濃度)
およびフッ素補集率を測定した。その結果を第1表に示
す。川 フッ素試料ガスの調製:ボンベ充填フッ素ガス
(純度99.5v/vppm以上)を用いて、チッ素加
圧「稀釈および放出を5回繰り返して調製した。
After absorption, add the same volume of TISAB to the absorbent sample as the absorbent.
Add the solution and use a fluorine ion meter (Orion's "
Orion Ion'Analyzer (ORlONIONA)
Concentration obtained by subtracting the blank value from the measured fluorine ion concentration in each absorption liquid using NALIZER) (40-ship type)
and the fluorine scavenging rate was measured. The results are shown in Table 1. Preparation of fluorine sample gas: Using fluorine gas filled in a cylinder (purity of 99.5 v/vppm or higher), it was prepared by repeating nitrogen pressurization (dilution and release) five times.

‘2’ クエン酸ナトリウム緩衝液A:クエン酸(1水
塩)2夕/夕、クエン酸3ナトリウム(2水塩)20夕
/夕および0.0075夕/夕を加えた1×10‐5M
−フツ化ナトリウム水溶液。
'2' Sodium citrate buffer A: 1 x 10-5M with the addition of citric acid (monohydrate) 2 t/d, trisodium citrate (dihydrate) 20 t/d and 0.0075 t/d.
- Sodium fluoride aqueous solution.

【3’ TFSAB溶液(イオン強度調整用緩衝液):
塩化ナトリウム58夕、酢酸57Mおよびクエン酸ナト
リウム0.3夕を水に溶解して500の上としたの*ち
、弧‐水酸化ナトリウム溶液でpH5.5に中和し、冷
却後、蒸留水を加えて全量を1そとしたもの。
[3' TFSAB solution (ionic strength adjustment buffer):
Sodium chloride 58M, acetic acid 57M and sodium citrate 0.3M were dissolved in water to give a pH above 500*, then neutralized to pH 5.5 with sodium hydroxide solution, and after cooling, distilled water was added. Add and reduce the total amount by 1.

第1表 これら実施例1〜7および比較例1〜4の測定結果から
、被検出ガスの接触流量が1.5夕/分/10M−吸収
液より大きくなると、フッ素ガスの補集率が急激に低下
するのがわかる。
Table 1 From the measurement results of Examples 1 to 7 and Comparative Examples 1 to 4, when the contact flow rate of the gas to be detected is greater than 1.5 m/min/10 M-absorbing liquid, the collection rate of fluorine gas increases rapidly. It can be seen that the value decreases to .

比較例 5〜8 フッ素ガスに代えてフツ化水素を用いてフッ化.多水素
試料ガス(HF:5び/vppm)を用いたほかは実施
列1と同様にしてその接触流量を種々変更したときの吸
収液中のフッ素イオン濃度(前記と同じ)およびフッ素
補集率を測定した。
Comparative Examples 5 to 8 Fluorination using hydrogen fluoride instead of fluorine gas. Fluorine ion concentration in the absorption liquid (same as above) and fluorine collection rate when the contact flow rate was variously changed in the same manner as in Example 1 except that a polyhydrogen sample gas (HF: 5 vppm) was used. was measured.

その結果を第2表に示す。第2表 これら比較例5〜8から、測定ガスがフッ化水素のぱあ
いは、接触流量の大中な変化にもかかわらず、フッ素補
集率はあまり変化しないことがわかる。
The results are shown in Table 2. From these Comparative Examples 5 to 8 in Table 2, it can be seen that when the measurement gas is hydrogen fluoride, the fluorine collection rate does not change much even though the contact flow rate changes considerably.

実施例 8 実施例1で用いたと同じ吸収装置および方法を用、52
、5.2および3.1v/vppmにそれぞれ調製した
フッ素試料ガスについて第3表に示す各接触流量の吸収
液に吸収させたときの液中のフッ素イオン濃度およびフ
ッ素補集率を測定した。
Example 8 Using the same absorption apparatus and method used in Example 1, 52
, 5.2, and 3.1 v/vppm were absorbed into the absorption liquid at each contact flow rate shown in Table 3, and the fluorine ion concentration and fluorine collection rate in the liquid were measured.

その結果を第3表に示す。はお実施例8で用いた主な吸
収液はつぎのとおりである。
The results are shown in Table 3. The main absorption liquids used in Example 8 are as follows.

■クエン酸ナトリウム緩衝液A 前記実施例1と同じ。■Sodium citrate buffer A Same as Example 1 above.

■クエン酸ナトリウム緩衝液B O.IMクエン酸ナトリウム溶液(C6は07・日20
の21.0夕をIN−水酸化ナトリウム溶液200の‘
と混合し、全量を1夕とした溶液)60の‘と0.1N
−水酸化ナトリウム溶液40の‘とを混合した水溶液に
、フッ化ナトリウムをその濃度が1×10‐5Mとなる
ように添加して調製した。
■Sodium citrate buffer B O. IM sodium citrate solution (C6 is 07/day 20
21.0 min of sodium hydroxide solution 200'
(solution) 60' and 0.1N
- Sodium fluoride was added to a mixed aqueous solution of 40' of sodium hydroxide solution to a concentration of 1 x 10-5M.

■クエン酸水素カリウム緩衝液0.1Mクエン酸水素カ
リウム(KC6日707の23.タノク)25.0机上
と0.1N−水酸化ナトリウム40.6の‘とを混合し
た水溶液に、フツ化ナトリウムをその濃度が1×10‐
5Mとなるように添加して調製した。
■Potassium hydrogen citrate buffer 0.1M Potassium hydrogen citrate (KC 6th 707, 23. Tanok) Its concentration is 1×10-
It was prepared by adding it to a concentration of 5M.

■マレィン酸水素ナトリウム緩衝液 0.1Mーマレィン酸水素ナトリウム溶液(NaC4は
04の13.8多/夕)50の【と0.1N−水酸化ナ
トリウム溶液26.9の‘とを混合し、水で稀釈して全
量を100の上とした水溶液に、フツ化ナトリウムをそ
の濃度が1×10‐5Mとなるように添加して調製した
o■TISAB溶液 前記実施例1と同じ。
■ Sodium hydrogen maleate buffer 0.1M - Sodium hydrogen maleate solution (NaC4 is 04 13.8 times a day) Mix 50 [ and 0.1N - sodium hydroxide solution 26.9' o TISAB solution prepared by adding sodium fluoride to a concentration of 1 x 10-5M to an aqueous solution diluted with 100% of the total volume. Same as in Example 1 above.

■ 船 実施例8から、フッ素の橘集率は吸収液の種類を変えて
も殆んど変化せず、該橘集率は被検出ガスの接触流量に
つて大きく変化することがわかる。
(2) From Ship Example 8, it can be seen that the collection rate of fluorine hardly changes even if the type of absorption liquid is changed, and the collection rate of fluorine changes greatly with the contact flow rate of the gas to be detected.

実施例 9 フッ素イオン電極法による自動計測器として湿式補集型
大気中フッ素化合物自動計測器(ェアリフト型吸収器を
有する)を用い、かつ吸収液として前記クエン酸ナトリ
ウム緩衝液Aを用いて、このものに流量計によって所定
の接触流量のフッ素試料ガス(F2:5び/vppm)
を所定流量の大気(アルカリ液洗浄後、シリカゲルで乾
燥させた大気)と共に吸収させた。
Example 9 Using a wet collection type atmospheric fluorine compound automatic measuring device (having a fairlift type absorber) as an automatic measuring device using a fluorine ion electrode method, and using the above-mentioned sodium citrate buffer solution A as an absorption liquid, this Fluorine sample gas (F2: 5/vppm) at a predetermined contact flow rate using a flowmeter.
was absorbed together with a predetermined flow rate of air (air dried with silica gel after washing with alkaline solution).

その際、吸収管内の吸収液はその蒸発水分量を附属の液
面計によって自動的に補給し、その液量が一定となるよ
うにした。吸収液に前記試料ガスを含む大気を50分間
吸収させたのち、吸収管内の吸収液を取り出し、実施例
1と同様にして核吸収液中のフッ素イオン濃度を測定し
、フッ素構築率を求めた。これらの測定結果を第4表に
示す。比較例 9 フッ素試料ガスに代えてフッ素試料ガス (HF:5Y/vppm)を用い、所定の送入流量で大
気と共に吸収管に吸引したほかは実施例9と同様にして
吸収液中のフッ素イオン濃度およびフッ素補集率を求め
た。
At this time, the amount of evaporated water in the absorption liquid in the absorption tube was automatically replenished using an attached liquid level gauge, so that the amount of liquid remained constant. After allowing the absorption liquid to absorb the atmosphere containing the sample gas for 50 minutes, the absorption liquid in the absorption tube was taken out, and the fluorine ion concentration in the nuclear absorption liquid was measured in the same manner as in Example 1 to determine the fluorine construction rate. . The results of these measurements are shown in Table 4. Comparative Example 9 Fluorine ions in the absorption liquid were removed in the same manner as in Example 9, except that a fluorine sample gas (HF: 5Y/vppm) was used instead of the fluorine sample gas, and it was sucked into the absorption tube together with the atmosphere at a predetermined flow rate. The concentration and fluorine scavenging rate were determined.

その結果を第4表に示す。船舷 実施例 10(並列法) 吸引ポンプによって大気が定流量でフィルター、ガス混
合器を通過し、並列に配置された2種のガス吸引器(実
施例9に記載したと同じェアリフト型吸収器(以下、吸
収器1という)および実施例1に記載したと同じ4フツ
化エチレン樹脂の100舷吸収器(以下、吸収器0とい
う)でフツ化水素およびフッ素ガスをフ素イオンとして
捕集させたのち、各流量計をを経て吸引ポンプで排気す
る吸収装置を用い、吸収器1およびローこクエン酸カリ
ウム緩衝液Aをそれぞれ17の‘入れ、吸引ポンプによ
って大気を22そ/分で吸引すると共に、この吸引大気
流中へフッ素試料ガス(5仇ノvppm)およびフツ化
水素試料ガス(5びノvppm)をそれぞれ100の‘
/分の流尊でガス浪合器に送入し、えられた混合試料ガ
ス(F2濃度0.23/vppm、HF濃度0.2$/
vppm)をそれぞれ吸収器1へ20.8夕/分、吸収
器ロへ1.2夕/分で流し、それぞれ30分間接触させ
た。
The results are shown in Table 4. Shipboard Example 10 (Parallel Method) Air is passed through a filter and a gas mixer at a constant flow rate by a suction pump, and two types of gas suction devices are arranged in parallel (the same airlift type absorber as described in Example 9). Hydrogen fluoride and fluorine gas were collected as fluorine ions using a 100-board absorber (hereinafter referred to as absorber 0) made of the same tetrafluoroethylene resin as described in Example 1 (hereinafter referred to as absorber 1). Afterwards, using an absorption device that exhausts air with a suction pump through each flow meter, absorber 1 and potassium citrate buffer A are each charged at 17 m, and atmospheric air is sucked in at a rate of 22 m/min using the suction pump. 100' of each of fluorine sample gas (5 vppm) and hydrogen fluoride sample gas (5 vppm) were introduced into this suction atmospheric flow.
The mixed sample gas (F2 concentration 0.23/vppm, HF concentration 0.2$/
vppm) was flowed into absorber 1 at a rate of 20.8 pm/min and into absorber RO at a rate of 1.2 pm/min, and contacted for 30 minutes.

吸収器1における接触流量は12.2ぞ/分/10泌−
吸収液、吸収器D‘こおける援触流量は0.71そ/分
ノ1物と−吸収液となる。混合料ガスを吸収後、吸収器
1の吸収におけるフッ素イオン濃度は6.5w/wpp
mであり、吸収器0の吸収液におけるフッ素イオン濃度
は1.1w/WPPmであった。吸収器1の吸収液にお
いて測定されたフッ素イオンはフッ化水素の吸収による
もので、混合試料ガス中のフッ化水素濃度は0.2か/
vppm、送入フッ化水素に対するフッ素補集率は96
%である。
The contact flow rate in absorber 1 is 12.2 mm/min/10 secretions.
The catalytic flow rate of the absorption liquid in the absorber D' is 0.71 mm/min. After absorbing the mixture gas, the fluorine ion concentration in absorber 1 is 6.5 w/wpp.
m, and the fluorine ion concentration in the absorption liquid of absorber 0 was 1.1 w/WPPm. The fluorine ions measured in the absorption liquid of absorber 1 are due to the absorption of hydrogen fluoride, and the hydrogen fluoride concentration in the mixed sample gas is 0.2/
vppm, fluorine scavenging rate for incoming hydrogen fluoride is 96
%.

また吸収器0で測定されたフッ素イオンはフッ化水素お
よびフッ素ガスの吸収によるもので、吸収器0で測定さ
れたフッ素イオン濃度から吸収器1で測定されたフッ素
イオン濃度を流量換算を行なった上で差し引くことによ
り、混合試料ガス中のフッ素ガス濃度は1.2が/vp
pm、送入フッ素ガスに対するフッ素補集率は96%で
あることが判明した。実施例 11(直列法)実施例1
0におけるガス吸収装置において、吸収器1およびロを
直列に接続し、吸収器1と0との中間より吸収器0と並
列に配置される流量計を有する流路を設けてなるガス吸
収装置を用い、吸収器1およびローこクエン酸ナトリウ
ム緩衝液Aをそれぞれ17の上入れ、吸引ポンプによっ
て大気を22そ/分の流量で吸引すると共に、この吸引
大気中へフッ素試料ガス(5び/vppm)およびフツ
化水素試料ガス(5仇/vppm)をそれぞれ100肌
/分の流量で送入し、混合してえられた混合試料ガス全
量を吸収器1を通し、ついで吸収器nlこ後贋の流量計
およびバルブで調節した混合試料ガスの一部を1.7そ
/分の流量で流した。
In addition, the fluorine ions measured in absorber 0 are due to absorption of hydrogen fluoride and fluorine gas, and the fluorine ion concentration measured in absorber 1 was converted from the fluorine ion concentration measured in absorber 0 to the flow rate. By subtracting the above, the fluorine gas concentration in the mixed sample gas is 1.2/vp
pm, and the fluorine scavenging rate with respect to the supplied fluorine gas was found to be 96%. Example 11 (Series method) Example 1
In the gas absorption device in 0, absorbers 1 and 2 are connected in series, and a flow path having a flow meter placed in parallel with absorber 0 from the middle of absorbers 1 and 0 is provided. The absorber 1 and sodium citrate buffer A were each charged at 17 ml, and the air was sucked in at a flow rate of 22 ml/min using a suction pump, and a fluorine sample gas (5 ml/vppm) was added into the sucked atmosphere. ) and hydrogen fluoride sample gas (5 ppm/vppm) are each fed at a flow rate of 100 cells/min, and the entire amount of the mixed sample gas obtained by mixing is passed through the absorber 1. A portion of the mixed sample gas was flowed at a flow rate of 1.7 som/min, which was adjusted using a flow meter and a valve.

吸収器1における接触流量は12.9〆/分ノ10叫−
吸収液、吸収器0における接触流量は1.0〆ノ分ノ1
0机−吸収液となる。
The contact flow rate in absorber 1 is 12.9/min.
The contact flow rate of absorption liquid and absorber 0 is 1.0/min.
0 machine - becomes absorption liquid.

混合試料ガスを3船ご間吸収させたのち各吸収器内の吸
収液中におけるフッ素イオン濃度を前記実施例と同様に
して測定した。
After the mixed sample gas was absorbed by three vessels, the fluorine ion concentration in the absorption liquid in each absorber was measured in the same manner as in the previous example.

その結果、吸収器1の吸収液におけるフッ素イオン濃度
は6.7w/wppm、混合試料ガス中のフッ化水素濃
度は0.2ふ/vppmで、そのフッ素補集率は96%
であり、吸収器Dの吸収液におけるフッ素イオン濃度は
1.5w/wppm、混合試料ガス中のフッ素ガス濃度
は0.21v/vppmで、そのフッ素補集率は91%
であった。
As a result, the fluorine ion concentration in the absorption liquid of absorber 1 was 6.7w/wppm, the hydrogen fluoride concentration in the mixed sample gas was 0.2f/vppm, and the fluorine collection rate was 96%.
The fluorine ion concentration in the absorption liquid of absorber D is 1.5 w/wppm, the fluorine gas concentration in the mixed sample gas is 0.21 v/vppm, and the fluorine collection rate is 91%.
Met.

【図面の簡単な説明】[Brief explanation of the drawing]

第i図は本発明における並列法の一実施例を示す概略説
明図、第2図は本発明における直列法の一実施例を示す
概略説明図である。 図面の主要符号、1,2:吸収器、3,31:吸収液、
4,14:フッ素イオン電極。 才1図 才2図
FIG. i is a schematic explanatory diagram showing an embodiment of the parallel method in the present invention, and FIG. 2 is a schematic explanatory diagram showing an embodiment of the serial method in the present invention. Main symbols in the drawings: 1, 2: absorber, 3, 31: absorption liquid,
4,14: Fluorine ion electrode. 1 figure, 2 figures

Claims (1)

【特許請求の範囲】 1 フツ素イオン電極法により大気中のフツ素濃度を連
続的の測定するためにあたり、吸収液の液面下19mm
に位置する孔径0.2〜0.4mmの孔を有するノズル
から被検出ガス送入するばあいに1.5l/分/10m
l−吸収液以下となるような割合の吸収液接触流量で被
検出ガスを吸収液にに接触させることを特徴とする大気
中ののフツ素濃度測定法。 2 被検出ガスを1〜0.1l/分/10ml−吸収液
の吸収液接触流量で吸収液に接触させることを特徴とす
る特許請求の範囲第1項記載方法。 3 フツ素イオン電極法により大気中のフツ素濃度を連
続的に測定するにあたり、2種類の測定系統を並列に配
置し、一方の測定系統において吸収液の液面下19mm
に位置する孔径0.2〜0.4mmの孔を有するノズル
から被検出ガスを送入するばあいに12l/分/10m
l−吸収液以上となるような割合の吸収液接触流量で被
検出ガスを吸収液と接触させ、フツ素ガス以外の他のフ
ツ素化合物のフツ素濃度を測定し、他方の測定系統にお
いて吸収液の液面下19mmに位置する孔径0.2〜0
.4mmの孔を有するノズルから被検出ガスを送入くる
ばあいに1.5l/分/10ml−吸収液以下となるよ
うな割合の吸収液接触流量で被検出ガスを吸収液と接触
させ、全フツ素濃度を測定し、該全フツ素濃度から前記
他のフツ素化合物のフツ素濃度を差し引くことにより、
フツ素ガス濃度を求めることを特徴とする大気中のフツ
素濃度測定法。 4 前記他方の測定系統において、被検出ガスを1〜0
.1l/分/10ml−吸収液の吸収液接触流量で吸収
液に接触させることを特徴とする特許請求の範囲第3項
記載の方法。 5 フツ素イオン電極法により大気中のフツ素濃度を連
続的に測定するにあたり、2種類の測定系統を直列に配
置し、まず前の測定系統において吸収液の液面下19m
mに位置する孔径0.2〜0.4mmの孔を有するノズ
ルから被検出ガスを送入するばあいに12l/分/10
ml−吸収液以上となるような割合の吸収液接触流量で
被検出ガスを吸収液と接触させ、フツ素ガス以外の他の
フツ素化合物のフツ素濃度を測定し、ついで後の測定系
統において吸収液の液面下19mmに位置する孔径0.
2〜0.4mmの孔を有するノズルから被検出ガスを送
入するばあいに1.5l/分/10ml−吸収液以下と
なるような割合の吸収液接触流量で前記の測定系統を通
過した被検出ガスを吸収液と接触させ、フツ素ガス濃度
を測定することを特徴とする大気中のフツ素濃度測定法
。 6 前記後の測定系統において、被検出ガスを1〜0.
1l/分/10ml−吸収液の吸収液接触流量で吸収に
接触させることを特徴とする特許請求の範囲第5項記載
の方法。
[Claims] 1. In order to continuously measure the fluorine concentration in the atmosphere using the fluorine ion electrode method,
1.5 l/min/10 m when the gas to be detected is fed from a nozzle with a hole diameter of 0.2 to 0.4 mm located at
A method for measuring the concentration of fluorine in the atmosphere, characterized in that a gas to be detected is brought into contact with an absorbent at a flow rate of contact with the absorbent such that the flow rate is less than or equal to 1-absorbent. 2. The method according to claim 1, wherein the gas to be detected is brought into contact with the absorption liquid at an absorption liquid contact flow rate of 1 to 0.1 l/min/10 ml of the absorption liquid. 3. When continuously measuring the fluorine concentration in the atmosphere using the fluorine ion electrode method, two types of measurement systems are arranged in parallel, and one measurement system is placed 19 mm below the surface of the absorption liquid.
12 l/min/10 m when the gas to be detected is fed from a nozzle with a hole diameter of 0.2 to 0.4 mm located at
The gas to be detected is brought into contact with the absorbing liquid at a flow rate of the absorbing liquid at a rate equal to or higher than that of the absorbing liquid, and the fluorine concentration of other fluorine compounds other than fluorine gas is measured. Pore diameter 0.2-0 located 19mm below the liquid surface
.. When the gas to be detected is fed through a nozzle with a 4 mm hole, the gas to be detected is brought into contact with the absorption liquid at a flow rate of 1.5 l/min/10 ml or less. By measuring the fluorine concentration and subtracting the fluorine concentration of the other fluorine compound from the total fluorine concentration,
A method for measuring the concentration of fluorine in the atmosphere, which is characterized by determining the concentration of fluorine gas. 4 In the other measurement system, detect the gas to be detected from 1 to 0.
.. 4. A method according to claim 3, characterized in that the absorption liquid is brought into contact with the absorption liquid at an absorption liquid contacting flow rate of 1 l/min/10 ml. 5. To continuously measure the fluorine concentration in the atmosphere using the fluorine ion electrode method, two types of measurement systems are arranged in series, and the first measurement system is placed 19 meters below the surface of the absorption liquid.
12 l/min/10 when the gas to be detected is fed from a nozzle with a hole diameter of 0.2 to 0.4 mm located at
The gas to be detected is brought into contact with the absorption liquid at a rate of contact flow rate of the absorption liquid or higher, and the fluorine concentration of other fluorine compounds other than fluorine gas is measured, and then in the subsequent measurement system. The pore size located 19 mm below the surface of the absorption liquid is 0.
When the gas to be detected is introduced through a nozzle having a hole of 2 to 0.4 mm, the sample was passed through the measurement system at a rate of contact flow rate of the absorbent such that the gas was 1.5 l/min/10 ml or less. A method for measuring fluorine concentration in the atmosphere, which is characterized by bringing a gas to be detected into contact with an absorption liquid and measuring the fluorine gas concentration. 6. In the measurement system after the above, the gas to be detected is 1 to 0.
6. A method according to claim 5, characterized in that the absorption is brought into contact with the absorbent at an absorbent contacting flow rate of 1 l/min/10 ml of absorbent.
JP54039194A 1979-03-30 1979-03-30 Atmospheric fluorine concentration measurement method Expired JPS602618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54039194A JPS602618B2 (en) 1979-03-30 1979-03-30 Atmospheric fluorine concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54039194A JPS602618B2 (en) 1979-03-30 1979-03-30 Atmospheric fluorine concentration measurement method

Publications (2)

Publication Number Publication Date
JPS55131746A JPS55131746A (en) 1980-10-13
JPS602618B2 true JPS602618B2 (en) 1985-01-23

Family

ID=12546301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54039194A Expired JPS602618B2 (en) 1979-03-30 1979-03-30 Atmospheric fluorine concentration measurement method

Country Status (1)

Country Link
JP (1) JPS602618B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113357A (en) * 2017-12-21 2019-07-11 株式会社 イージーエス Analysis method and analysis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6117159B2 (en) * 2014-09-17 2017-04-19 三菱重工業株式会社 Gas sampling apparatus and gas analysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019113357A (en) * 2017-12-21 2019-07-11 株式会社 イージーエス Analysis method and analysis device

Also Published As

Publication number Publication date
JPS55131746A (en) 1980-10-13

Similar Documents

Publication Publication Date Title
Levaggi et al. Quantitative separation of nitric oxide from nitrogen dioxide at atmospheric concentration ranges
Saltzman Preparation and Analysis of Calibrated Low Concentrations of Sixteen Toxic Gases. Ammonia, arsine, bromine, carbon dioxide, carbon monoxide, chlorine, chlorine dioxide, ethylene oxide, hydrogen chloride, hydrogen cyanide, hydrogen fluoride, monoethanolamine, nitric oxide, nitrogen dioxide, phosgene, and stibine
CN108037115B (en) Sulfur dioxide detection system and detection method
Stephens et al. Spectrophotometric Determination of Sulfur Dioxide Suitable for Atmospheric Analysis.
JPS602618B2 (en) Atmospheric fluorine concentration measurement method
CN208705233U (en) A kind of nitrogen dioxide and ozone combine on-line measuring device
Spiller Determination of ammonia/air diffusion coefficient using nafion lined tube
CN110132949A (en) The method for measuring cement plant flue gas the escaping of ammonia
SE452510B (en) SET TO MEASURE A CONTENT OF A SUBSTANCE, EXCEPT A GAS, IN AIR, SOLID ADSORBENT FOR EXTENDING THE SET AND USING THE ADSORBENT
Tsuchiya et al. Separation of microamounts of fluoride coexisting with large amounts of aluminium and silica by improved trimethylsilylating distillation
US3467582A (en) Method for the determination of acid-base status in biological fluids
Licki et al. Monitoring and control systems for an EB flue gas treatment pilot plant—Part I. Analytical system and methods
Cee et al. Sampling of inorganic gases and vapours
Dimmock et al. The determination of hydrogen chloride in ambient air with diffusion/denuder tubes
Rohling et al. Application of the denuder technique in filter sampling of airborne chromates at ground level concentrations
Christensen et al. Determination of hydrogen peroxide in workplace air: Interferences and method validation
Taddia Anodic stripping determination of mercury in air with a glassy carbon electrode
JP2844229B2 (en) Method and apparatus for analyzing silane
Tanaka et al. Sampling method and pine analysis for atmospheric sulfur dioxide with alkali coated filters
BISHOP et al. Evaluation of a new ammonia sampling and analytical procedure
Bolton et al. Determination of ethylene oxide in air
CN116165191A (en) HCO in organic decarbonization solution 3- With CO 32- Method for detecting concentration component
Itai et al. Determination of submicrogram quantities of fluoride by a rapid and highly sensitive method
JPH0715468B2 (en) Halogen determination method
Harrold et al. Device and technique for rapid determination of effluent fluorides