JPS60261672A - Manufacture of structural member through molding padding andstructural member manufactured through said method - Google Patents
Manufacture of structural member through molding padding andstructural member manufactured through said methodInfo
- Publication number
- JPS60261672A JPS60261672A JP8045385A JP8045385A JPS60261672A JP S60261672 A JPS60261672 A JP S60261672A JP 8045385 A JP8045385 A JP 8045385A JP 8045385 A JP8045385 A JP 8045385A JP S60261672 A JPS60261672 A JP S60261672A
- Authority
- JP
- Japan
- Prior art keywords
- depth
- welding
- grained
- fine
- weld
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、溶接材料が溶接ビード層を成して盛り上げら
れ、溶接ビード層の組織があとに続く層を盛り上げる際
に1回または複数回熱的に変換される、成形多層肉盛溶
接により溶接材料から構造部材を製造する方法に関する
。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is characterized in that a welding material is piled up to form a weld bead layer, and the structure of the weld bead layer is thermally heated one or more times when the structure of the weld bead layer piles up the following layer. The present invention relates to a method for manufacturing structural members from welding material by formed multilayer overlay welding.
従来の技術
成形溶接は、構造部材を全く溶接材料から製造する公知
の方法である0例えば核装置または化学装置製作用の通
路、底部、接続管片および曲り管のような低合金鋼およ
び高合金鋼製の製品を成形溶接製造方法により速やかに
かつ経済的に製造することができ、その際最高の材料品
質が満たされる。成形溶接は、特に等方性材料(4)
特性および可撓性成形可能性のため高い応力を受ける構
造部材の製造方法として適している。Conventional technology Form welding is a known method of manufacturing structural parts entirely from welded materials, such as passages, bottoms, connecting pipe pieces and bent pipes for nuclear or chemical device fabrication. Products made of steel can be manufactured quickly and economically using the form-welding manufacturing process, with the highest material quality being met. Form welding is particularly suitable as a manufacturing method for structural members subjected to high stresses due to its isotropic material (4) properties and flexible formability.
この場合、例えば装置製作において多方面にわたって確
証されたサブマージアーク溶接法のような、高生産的な
機械化された溶接法が用いられる。成形溶接による構造
部材の製造の本質的な利点は、製造時間が短く、製造費
用が比較的小さくかつ工場および工事現場における溶接
継手なしの一体形成が可能なことである。こうして製造
された部材にとって、応力除去焼なましの他は例えば焼
き戻しによる熱処理は必要でない。In this case, highly productive mechanized welding methods are used, such as, for example, submerged arc welding, which has been widely proven in device fabrication. The essential advantages of producing structural parts by form welding are short production times, relatively low production costs and the possibility of integral construction without welded joints in factories and on construction sites. For components produced in this way, no heat treatment other than stress relief annealing is necessary, for example by tempering.
単一電極または前後に配置された2つの電極(タンデム
法)を用いてサブマージアーク溶接法における通常の肉
盛溶接法により溶接ビードを層を成して盛り上げる際は
、溶接ビードの断面に、比較的偏平な上面およびしずく
状に下方へ延びるルートを持つきのこ駄の幾何学的面が
生ずる。この溶接ビード形状によって、下にある溶接ビ
ードのかなりの部分がエネルギーを消(5)
費しながら再び溶融される結果になる。さらに新たに盛
り上げられた溶接ビード層の熱影響区域の下の範囲にお
いて、下にある溶接ビード層の鋳造組織の一部は十分に
熱的に影響されず、したがって変換されていない、新た
に盛り上げられた層が境界層の範囲においてその前の層
を熱的に一部比較的粗い組織に変換することによって、
肉盛材料に層を成して鋳造組織残留部および粗粒状区域
が生ずる。When welding a weld bead in layers using a single electrode or two electrodes placed one behind the other (tandem method) in the normal overlay welding method in submerged arc welding, we This results in the geometric surface of a mushroom with a flattened upper surface and a root extending downward in a drip-like manner. This weld bead shape results in a significant portion of the underlying weld bead being remelted, consuming energy (5). Furthermore, in the area below the heat-affected zone of the newly raised weld bead layer, some of the cast structure of the underlying weld bead layer is not sufficiently thermally influenced and therefore not transformed into the newly raised weld bead layer. The layer thermally converts a part of the previous layer into a relatively coarse structure in the area of the boundary layer.
Cast structure remnants and coarse-grained areas form in layers in the overlay material.
特に溶接材料の十分なしん性を得るために組織はできる
だけ微粒でかつ均質でなければならないから、各溶接ビ
ードの下側縁範囲に形成された鋳物状および粗粒状組織
の層状区域は、特に溶接材料のしん性に関して品質低下
を生ぜしめる。In particular, the stratified areas of cast-like and coarse-grained structures formed in the lower edge area of each weld bead are particularly important for welding, since the structure must be as fine-grained and homogeneous as possible in order to obtain sufficient toughness of the welding material. This causes quality deterioration regarding the toughness of the material.
発明が解決しようとする問題点
本発明の基礎になっている課題は、最初に挙げた種類の
、成形多層肉盛溶接により溶接材料から構造部材を製造
する方法において、鋳造組織範囲および粗粒状組織部分
の残留範囲が回避(6)
され、微粒組織だけを持つ溶接材料が製造されるように
改良を行なうことである。成形溶接により構造部材を製
造する公知の方法は溶接用電気エネルギーの比較的大き
い消費を必要とするから、本発明では同時に、下側層の
再溶融の際失われるエネルギーを減少させることによっ
て方法の経済性を高めようと努めている。この目的の達
成と同時に、動作能力すなわち同じエネルギー供給に対
する単位時間に盛り上げられる溶接材料量ができるだけ
増大されなければならない。Problems to be Solved by the Invention The problem on which the invention is based is that, in a method of manufacturing a structural member from a welding material by forming multilayer welding of the first type, the casting structure range and the coarse-grained structure The objective is to make improvements so that residual areas (6) are avoided and a welding material with only a fine grain structure is produced. Since the known method of producing structural parts by form welding requires a relatively high consumption of electrical energy for welding, the invention simultaneously improves the method by reducing the energy lost during remelting of the underlying layer. We are trying to improve economic efficiency. Simultaneously with achieving this objective, the operating capacity, ie the amount of welding material that can be pumped up per unit time for the same energy supply, must be increased as much as possible.
問題点を解決するための手段
この課せられた課題の解決は、本発明によれば最初に挙
げた種類の成形肉盛溶接により溶接材料から構造部材を
製造する方法において、下にある組m層が完全に微粒状
組織の区域に変換されかつ構造部材が等方性特性を持つ
均質微粒状組織を有するように材料に関係する有利な溶
r) 接ビード層を盛り」=げることによって実現され
る。Means for Solving the Problem The solution to this task is, according to the invention, in a method for producing structural parts from welding material by form overlay welding of the first mentioned type, in which the underlying m-layers are Advantageous melting associated with the material is achieved by embellishing the bead layer so that the area is completely transformed into areas of fine-grained structure and the structural member has a homogeneous fine-grained structure with isotropic properties. be done.
(7)
はばレンズ状の断面を持つ偏平溶接ビードとしてのビー
ド形状を選ぶ場合は、熱影響区域の転向が前の組織層へ
の組織の完全な微粒状再転換を生ぜしめるように行なわ
れるのが有利である。(7) When choosing the bead geometry as a flat weld bead with a lenticular cross-section, the conversion of the heat-affected zone is carried out in such a way that it causes a complete granular reconversion of the structure into the previous structure layer. is advantageous.
別の構成によれば、溶接ビード層は溶融池深さが溶込み
深さと微粒状の熱影響区域の深さの和と等しいかまたは
より4人さいように寸法設定されているので、構造部材
は完全に均質な微粒状組織を持っている。According to another configuration, the weld bead layer is dimensioned such that the weld pool depth is equal to or less than the sum of the penetration depth and the depth of the granular heat-affected zone, so that the structural component has a completely homogeneous fine grain structure.
さらに別の構成によれば、溶接ビード層が、浅く延びる
ルート範囲を持つように構成され有利である。According to a further development, it is advantageous if the weld bead layer is configured with a shallowly extending root area.
所定のビード形状を有利に簡単に得るために、本発明に
より、きのこ状のビート形状の代わりにレンズ状の偏平
なビード形状を保証する電極配置が用いられることが提
案されている。In order to obtain a predetermined bead shape advantageously and simply, it is proposed according to the invention that an electrode arrangement is used which ensures a lenticular flat bead shape instead of a mushroom-like bead shape.
非常に有利に簡単な構成は、本発明のさらに別の構成に
よれば、電極として偏平な金属帯が使用されることによ
って得られる。According to a further development of the invention, a very advantageously simple construction is obtained in that flat metal strips are used as electrodes.
(8)
電極として、帯または動作方向に対して横向きに平行に
案内される複数の単−電極例えばワイヤ電極を使用する
ことができる。本発明の目的である、溶接材料における
均質微粒状組織の形成を有効な補助手段によって助長す
るために、本発明によりさらに、周知のやり方で構造部
材が肉盛溶接中、高められた温度に保たれることが提案
されており、この温度は高いしん性および強度特性を得
るために最も有利な組繊形成を可能にする。(8) As electrodes it is possible to use strips or a plurality of single electrodes, for example wire electrodes, which are guided transversely and parallel to the direction of motion. In order to facilitate the formation of a homogeneous fine-grained structure in the welding material, which is the object of the invention, the invention further provides that the structural component is kept at an elevated temperature during overlay welding in a known manner. It is proposed to let the fibers sag, and this temperature allows the most advantageous braiding to obtain high tenacity and strength properties.
成形多層溶接により溶接材料から製造され、その際溶接
材料が順次に続く溶接ビード層を成して構成される構造
部材は、前述の特許請求の範囲に対応した方法で製造さ
れかつ等方性特性を持つ均質微粒状組織を有する点で従
来技術により製造された同じような部材と異なっている
。Structural elements produced from welding material by shaped multilayer welding, in which the welding material is constructed in successive weld bead layers, are produced in a method according to the claims and have isotropic properties. It differs from similar parts manufactured by the prior art in that it has a homogeneous fine-grained structure with a .
この均質微粒状組織を持つ構造部材は、材料品質が鋼品
質10 MnMoN155と一致する溶接材料から製造
されることが特に適していることを特徴としている。This structural component with a homogeneous fine-grained structure is characterized in that it is particularly suitable to be manufactured from a welding material whose material quality corresponds to steel quality 10 MnMoN155.
(9)
実施例
本発明は従来技術と比較して概略的に図示した実施例に
示されており、図面から本発明の有利な詳細が分かる。(9) Embodiment The invention is shown in a schematically illustrated embodiment compared to the prior art, from which advantageous details of the invention can be seen.
第1図による従来技術の溶接ビードにおいて、溶融池深
さS1溶込み深さE1粗粒区域深さG1微粒区域深さF
および肉盛厚さAの規定されない寸法関係を持つ断面形
状が得られる。In the prior art weld bead according to FIG. 1, weld pool depth S1 penetration depth E1 coarse grain zone depth G1 fine grain zone depth F
A cross-sectional shape having an unspecified dimensional relationship between the build-up thickness and the build-up thickness A is obtained.
これによって、複数のビード層を重ねて溶接する際に規
定されない粒子変換状態が生じ、こうして生じた溶接材
料は層ごとに変化する組織範囲、すなわち変換されない
鋳造組織(斜線)、粗粒状に変換された組織(黒い範囲
)および微粒状に変換された組織(打点範囲)から成る
。This results in unspecified grain transformation conditions when welding multiple bead layers one on top of the other, and the resulting weld material has a range of textures that vary from layer to layer, i.e. unconverted cast texture (hatched), coarse-grained It consists of a structure that has been converted into fine grains (black area) and a structure that has been converted into fine grains (dot area).
本発明の溶接実施例として第3図は、S、E、G。As a welding example of the present invention, FIG. 3 shows S, E, and G.
FおよびAの規定された寸法関係を持つ個別ビードの変
化された断面形状を示しており、この断面形状が、第4
図および第5図に概略的に示されているように、複数の
溶接ビード層の重ね合わせの際下にある溶接材料におけ
る完全な微(10)
粒状組織変換を生せしめる。4 shows a modified cross-sectional shape of an individual bead with a defined dimensional relationship of F and A, which cross-sectional shape
As schematically illustrated in FIG. 5 and FIG. 5, the superposition of multiple weld bead layers results in a complete micro-(10) grain structure transformation in the underlying weld material.
第5図に示した条件を満たすためのS、E、F、Gおよ
びAの設定は材料に関係して溶接パラメータ最適化によ
って保証されなければならないから、本発明は簡単にか
つ簡単な手段を用いて最初に課せられた課題を最適に果
たす。Since the setting of S, E, F, G and A in order to satisfy the conditions shown in FIG. to optimally accomplish the task initially assigned.
溶接パラメータを8料に関係して選択する際、第5図に
よる次の関係が満たされるように注意しなければならな
い。When selecting the welding parameters in relation to the 8 materials, care must be taken that the following relationships according to FIG. 5 are fulfilled:
S < E 十F F≧5−F FンA A>G Emin == S −F Emax = 5−GS < E 10F F≧5−F FnA A>G Emin == S -F Emax = 5-G
第1図は従来技術による溶接ビードの寸法を示す概略断
面図、第2図は従来技術による3つill の重なる溶
接ビードの概略断面図、第3図は本発明による溶接ビー
ドの寸法を示す概略断面図、第4図は本発明による3つ
の重なる溶接ビートの概略断面図、第5図は本発明によ
り例えば溶込み深さ決定を説明する概略図である。
シャフト
第1頁の続き
[株])発明者 ラタン・ダツク トイトラ
0発 明 者 ホルスト・ツインメル トイマン −セ
ソ連邦共和国オーベルハウゼン11・エルストネルシュ
ーセ26
ソ連邦共和国オーベルハウゼン14・ゲルチルシュトラ
11FIG. 1 is a schematic cross-sectional view showing the dimensions of a weld bead according to the prior art, FIG. 2 is a schematic cross-sectional view of three overlapping weld beads according to the prior art, and FIG. 3 is a schematic cross-sectional view showing the dimensions of a weld bead according to the present invention. 4 is a schematic cross-sectional view of three overlapping weld beads according to the invention, and FIG. 5 is a schematic view illustrating, for example, determination of penetration depth according to the invention. Continuing from page 1 of Shaft [Co., Ltd.] Inventor: Ratan Datsuk Toytra 0 Inventor: Horst Twinmel Toyman - Federal Republic of Seso Oberhausen 11, Elstnerschusse 26 Republic of the Soviet Union Oberhausen 14, Gertilstra 11
Claims (1)
g接ビード層の組織があとに続く層を盛り上げる際に1
回または複数回熱的に変換される、成形多層肉盛溶接に
より溶接材料から構造部材を製造する方法において、下
にある組職箒が完全に微粒状組織の区域に変換されかつ
構造部材が均質微粒状組織を持つように、材料に関係す
る有利な溶接と一ド形状、溶融池深さ、溶込み深さ、下
にある粗粒跋に変換された組織区域または微粒状に変換
された組織区域の深さが規定されることを特徴とする、
成形多層肉盛溶接により溶接材料から構造部材を製造す
る方法。 2 個々の溶接ビードが、溶融池深さが溶込み深さと微
粒区域深さの和と等しいかまたはよ(]) り小さいように寸法設定されることを特徴とする特許請
求の範囲第1項に記載の方法。 3 個々の溶接ビードの肉盛厚さが微粒区域深さと等し
くまたはより小さくかつ粗粒区域深さと等しくまたはよ
り大きく保たれることを特徴とする特許請求の範囲第1
項または第2項に記載の方法。 4 最小滲込み深さが溶融池深さと微粒区域深さとの差
と等しく、最大俗語み深さが溶融池深さと粗粒区域深さ
との差と等しいことを特徴とする特許請求の範囲第1項
ないし第3項のうち1つに記載の方法。 5 浴接ビード層が、浅く延びるルート範囲を持つよう
に構成されることを特徴とする特許請求の範囲第1項な
いし第4項のうち1つに記載の方法。 6 電極として偏平な金属帯が使用されることを特徴と
する特許請求の範囲第1項ないし第5項のうち1つに記
載の方法。 7 電極として、動作方向に対して横向きに平(2) 行に案内される複数の単一電極が使用されることを特徴
とする特許請求の範囲第1項ないし第6項のうち1つに
記載の方法。 8 構造部材が肉盛溶接中、高められた温度に保たれる
ことを特徴とする特許請求の範囲第1項ないし第7項の
うち1つに記載の方法。 9 成形多層溶接により溶接材料から製造され、その際
溶接材料が順次に続く溶接ビード層を成して構成される
構造部材において、下にある組織局が完全に微粒状組織
の区域に変換されかつ構造部材が均質微粒状組織を持つ
ように、材料に関係する有利な溶接ビード形状、溶融池
深さ、溶込み深さ、下にある粗粒駄に変換された組織区
域または微粒状に変換された組織区域の深さが規定され
、溶接材料が溶接ビード層を成して盛り上げられ、溶接
ビード層の組織があとに続く層を盛り上げる際に1回ま
たは複数回熱的に変換される、成形多層肉盛溶接により
溶接材料から構造部材を製1) 造する方法で構造部材が製造されかつ均質機(3) 粒状組織を持っていることを特徴とする構造部月。 10 材料品質が鋼品質10 MnMoNj 55と一
致する溶接材料から製造されることを特徴とする特許請
求の範囲第9項に記載の構造部材。[Claims] l The welding material is raised to form a weld bead layer, and the W
1 when the structure of the g-contact bead layer bulges the subsequent layer.
A method of manufacturing structural members from welded material by forming multilayer welding, which is thermally converted once or more times, in which the underlying texture is completely transformed into areas of fine-grained structure and the structural member is homogeneous. Advantageous welding and doping shapes related to the material, such as having a fine-grained structure, weld pool depth, penetration depth, underlying coarse-grained texture areas or fine-grained textures characterized in that the depth of the area is defined;
A method of manufacturing structural members from welded materials by forming multilayer overlay welding. 2. The individual weld beads are dimensioned such that the weld pool depth is less than or equal to the sum of the penetration depth and the fine grain zone depth. The method described in. 3. Claim 1, characterized in that the build-up thickness of the individual weld bead is kept equal to or less than the depth of the fine-grained zone and equal to or greater than the depth of the coarse-grained zone.
The method described in Section 1 or Section 2. 4. Claim 1, characterized in that the minimum seepage depth is equal to the difference between the weld pool depth and the fine grain zone depth, and the maximum slang depth is equal to the difference between the weld pool depth and the coarse grain zone depth. The method according to one of paragraphs 3 to 3. 5. Method according to one of claims 1 to 4, characterized in that the bath contact bead layer is constructed with a shallowly extending root area. 6. Method according to one of claims 1 to 5, characterized in that a flat metal strip is used as the electrode. 7. In accordance with one of the claims 1 to 6, characterized in that a plurality of single electrodes are used as electrodes, which are guided in two horizontal rows transversely to the direction of motion. Method described. 8. Method according to one of claims 1 to 7, characterized in that the structural component is kept at an elevated temperature during overlay welding. 9. In structural parts produced from welding material by formed multilayer welding, in which the welding material is constructed in successive weld bead layers, the underlying texture is completely converted into areas of fine-grained structure and In order for the structural member to have a homogeneous fine-grained structure, the advantageous weld bead shape, weld pool depth, and penetration depth related to the material, the underlying texture area converted to coarse-grained or fine-grained The welding material is built up in a weld bead layer, and the structure of the weld bead layer is thermally transformed one or more times during the buildup of subsequent layers. A structural member characterized in that the structural member is manufactured by a method of manufacturing a welding material from a welding material by multi-layer overlay welding, and has a homogeneous machine (3) grain structure. 10. Structural element according to claim 9, characterized in that it is produced from a welding material whose material quality corresponds to a steel quality of 10 MnMoNj 55.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3421031.8 | 1984-06-06 | ||
DE19843421031 DE3421031A1 (en) | 1984-06-06 | 1984-06-06 | METHOD FOR PRODUCING A CONSTRUCTION PART BY SHAPING ORDER WELDING, AND CONSTRUCTION PART PRODUCED BY THE PROCESS |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60261672A true JPS60261672A (en) | 1985-12-24 |
Family
ID=6237736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8045385A Pending JPS60261672A (en) | 1984-06-06 | 1985-04-17 | Manufacture of structural member through molding padding andstructural member manufactured through said method |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0163828A1 (en) |
JP (1) | JPS60261672A (en) |
BR (1) | BR8502558A (en) |
DE (1) | DE3421031A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016511150A (en) * | 2013-01-31 | 2016-04-14 | シーメンス エナジー インコーポレイテッド | Local repair of superalloy parts |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3700377A1 (en) * | 1986-12-16 | 1988-07-07 | Gutehoffnungshuette Man | METHOD AND DEVICE FOR PRODUCING THIN-WALLED HOLLOW BODIES FROM CONCENTRIC METAL LAYERS |
US4782206A (en) * | 1987-01-27 | 1988-11-01 | The Babcock & Wilcox Company | Method and apparatus for controlling weld bead shape to eliminate microfissure defects when shape melting austenitic materials |
US4903888A (en) | 1988-05-05 | 1990-02-27 | Westinghouse Electric Corp. | Turbine system having more failure resistant rotors and repair welding of low alloy ferrous turbine components by controlled weld build-up |
GB9826728D0 (en) | 1998-12-04 | 1999-01-27 | Rolls Royce Plc | Method and apparatus for building up a workpiece by deposit welding |
CN112975073B (en) * | 2021-02-06 | 2022-06-21 | 西安热工研究院有限公司 | Method for controlling crystal grain morphology of alloy steel weld joint |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2122613B2 (en) * | 1971-05-07 | 1973-05-03 | Gutehoffnungshütte Sterkrade AG, 4200 Oberhausen | PROCESS FOR UNDERCLADING Crack-Free Deposition Welding |
DE2135149A1 (en) * | 1971-07-14 | 1973-02-01 | Demag Ag | Hard facing welding device - with several electrodes |
DE2143960A1 (en) * | 1971-09-02 | 1973-03-08 | Wahl Verschleiss Tech | Arc hard facing - with strip electrode and loose powder |
JPS52116752A (en) * | 1976-03-26 | 1977-09-30 | Sumitomo Metal Ind | Method of submerged arc welding |
-
1984
- 1984-06-06 DE DE19843421031 patent/DE3421031A1/en not_active Withdrawn
-
1985
- 1985-03-19 EP EP19850103188 patent/EP0163828A1/en not_active Withdrawn
- 1985-04-17 JP JP8045385A patent/JPS60261672A/en active Pending
- 1985-05-29 BR BR8502558A patent/BR8502558A/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016511150A (en) * | 2013-01-31 | 2016-04-14 | シーメンス エナジー インコーポレイテッド | Local repair of superalloy parts |
Also Published As
Publication number | Publication date |
---|---|
BR8502558A (en) | 1986-02-04 |
DE3421031A1 (en) | 1985-12-12 |
EP0163828A1 (en) | 1985-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110256416A1 (en) | Method of forming an article using a powder layer manufacturing process | |
CN109514067B (en) | Preparation method of high-strength TA18 titanium alloy component based on electron beam fuse material increase | |
CN109277675B (en) | Preparation method of high-strength TA18 titanium alloy component based on plasma fuse material increase | |
JPS60261672A (en) | Manufacture of structural member through molding padding andstructural member manufactured through said method | |
CN111055041B (en) | Composite brazing filler metal, preparation method and application thereof, and welding part | |
US3241228A (en) | Cutter bar construction and method of manufacture | |
JP2005281824A (en) | Clad plate of magnesium alloy and aluminum and its production method | |
CN112226711B (en) | Forging method for improving structural uniformity of Ti80 alloy bar for ocean engineering | |
CN106413960B (en) | Method for producing rough material, rough material and cutting tool | |
US4396442A (en) | Ductile cast iron roll and a manufacturing method thereof | |
JP2783896B2 (en) | Method for producing high-strength austenitic stainless steel with excellent seawater resistance and low weld softening | |
JP2783895B2 (en) | Manufacturing method of high strength austenitic stainless steel with low welding softening | |
KR910009869B1 (en) | Higher strength steel,especially,reinforcing steel or drawing shop feed stock with improved material properties and improved processability | |
JP3718365B2 (en) | High fatigue strength welded joint | |
CN110158078A (en) | A kind of laser cladding method for reducing the planar surface that crackle generates and preparing hard coat | |
US6348108B1 (en) | High toughness steel and a method for manufacturing the same | |
CN211052901U (en) | Plate for manufacturing upper hook of control rod driving mechanism | |
CN114346611A (en) | Manufacturing method of multidirectional rib-containing aluminum alloy plate | |
CN101705413A (en) | Preparation technology of tungsten carbide reinforced high manganese steel base composite material | |
CN112792433B (en) | Preparation method of high-toughness low-alloy steel member and high-toughness low-alloy steel member | |
CN104818441A (en) | Biaxial bending deformation device and processing method for processing welded joint | |
CN112453421B (en) | Reinforced material adding process based on arc fuse and mold reinforcing method | |
CN110860816A (en) | Plate for manufacturing hook claw on control rod driving mechanism and manufacturing method | |
JP2579537B2 (en) | Direct casting method of wire rod | |
JP2535285B2 (en) | Crushing machine |