JPS6026145A - Cylinder head for engine - Google Patents
Cylinder head for engineInfo
- Publication number
- JPS6026145A JPS6026145A JP13094883A JP13094883A JPS6026145A JP S6026145 A JPS6026145 A JP S6026145A JP 13094883 A JP13094883 A JP 13094883A JP 13094883 A JP13094883 A JP 13094883A JP S6026145 A JPS6026145 A JP S6026145A
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- intake
- water reservoir
- cylinder head
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/26—Cylinder heads having cooling means
- F02F1/36—Cylinder heads having cooling means for liquid cooling
- F02F1/40—Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F2001/244—Arrangement of valve stems in cylinder heads
- F02F2001/247—Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Description
【発明の詳細な説明】 本発明はエンジンのシリンダヘッドに関する。[Detailed description of the invention] The present invention relates to an engine cylinder head.
第1図は従来のエンジンの冷却水システム’x示す。ク
ランクケース11はライナー12f:支持しておシ、上
部にシリンダヘッド13ff:持っている。FIG. 1 shows a conventional engine cooling water system'x. The crankcase 11 has a liner 12f for supporting and a cylinder head 13ff at the top.
ライナ12の内面をピストン14が摺動する。シリンダ
ライナ12、シリンダライナ13、ピストン14で燃焼
室15を形成する。クランク軸で駆動される冷却水ポン
プP21から吐出される冷却水は、クランクケースll
とシリンダライナ12で形成する冷却水ジャケット22
の下部に入り、シリンダライナ12の外面を冷却して上
部にある連絡孔23からシリンダへラド13の冷却水溜
24に入る。A piston 14 slides on the inner surface of the liner 12. A combustion chamber 15 is formed by the cylinder liner 12, cylinder liner 13, and piston 14. The cooling water discharged from the cooling water pump P21 driven by the crankshaft is supplied to the crankcase II.
and a cooling water jacket 22 formed by the cylinder liner 12.
The water enters the lower part of the cylinder liner 12 to cool the outer surface of the cylinder liner 12, and enters the cooling water reservoir 24 of the rad 13 from the communication hole 23 in the upper part to the cylinder.
さらに冷却水はシリンダへラド13の上部に設けた冷却
水出口管25から配管26を通ってサーモスタッ)V2
7に至る。サーモスタッ)V27から一部はラジェータ
R28と管29を通り、残シはバイパス管3工を通って
直接冷却水ポンプP21の吸込口に至る。シリンダへラ
ド13の■−ロ断面を第2図に示す。シリンダヘッド1
3の燃焼室15に接する面には吸気弁31.排気弁32
および燃焼噴射弁33があシ、吸気弁31には吸気通路
34が、排気弁32には排気通路35がそれぞれ接続さ
れている。この吸気通路34および排気通路35は共通
の冷却水溜24の中に設けられている。Further, the cooling water is passed from the cooling water outlet pipe 25 provided at the upper part of the cylinder rad 13 to the piping 26 to the thermostat) V2.
It reaches 7. A portion of the water from thermostat V27 passes through radiator R28 and pipe 29, and the remainder passes through three bypass pipes and directly reaches the suction port of cooling water pump P21. FIG. 2 shows a cross section of the cylinder head 13 taken along the line 1-2. cylinder head 1
An intake valve 31.3 is provided on the surface in contact with the combustion chamber 15. Exhaust valve 32
The combustion injection valve 33 is connected to the intake valve 31, and the exhaust valve 32 is connected to an intake passage 34 and an exhaust passage 35, respectively. The intake passage 34 and the exhaust passage 35 are provided in a common cooling water reservoir 24.
次に前記従来例の作用について説明する。Next, the operation of the conventional example will be explained.
冷却水ポンプP21からの冷却水は、冷却水ジャケット
22でライナ12の外面を冷却して温度を高め、次にシ
リンダヘッド13内で燃焼室15に接する面を冷却して
湿度が高くなる。The cooling water from the cooling water pump P21 cools the outer surface of the liner 12 in the cooling water jacket 22 to raise its temperature, and then cools the surface in contact with the combustion chamber 15 within the cylinder head 13, increasing the humidity.
ところで第2図に示すように吸気通路;34およびν1
気通路;35←1、シリンダ・\7ド[;3内の共通の
冷却水溜24に設置さfl−ている。ここで排気通路3
5には排気弁、32を経由して燃焼室15から高温の排
ガスが流出する。このため排気通路35の壁面は高温に
なり冷却水溜24の冷却水金さらに加熱することになる
。By the way, as shown in FIG. 2, the intake passage; 34 and ν1
The air passageway; 35←1 is installed in the common cooling water reservoir 24 within the cylinder. Here exhaust passage 3
High temperature exhaust gas flows out from the combustion chamber 15 via an exhaust valve 5 and 32. Therefore, the wall surface of the exhaust passage 35 becomes high in temperature, and the cooling water in the cooling water reservoir 24 is further heated.
この結果、冷却水溜24内の冷却水温度がこの分さらに
上昇し、共通の冷却水溜24内にある吸気通路34はこ
の高温の冷却水で加熱されることになる。As a result, the temperature of the cooling water in the cooling water reservoir 24 further increases by this amount, and the intake passage 34 in the common cooling water reservoir 24 is heated by this high temperature cooling water.
吸気通路34内の吸気の温度は通常冷却水ポンプP21
の吐出する冷却水温度よりも低いため、吸気通路34内
の吸気は加熱されるが、従来のエンジンではライナ12
を冷却して得た熱量、シリンダヘッド13の燃焼室15
に接する面を冷却し′て得た熱量、さらにシリンダヘッ
ド13内の排気通路35の壁面が加熱した熱量の3つの
熱量に対応しただけの温度が上昇した冷却水で加熱され
ている。The temperature of the intake air in the intake passage 34 is normally determined by the cooling water pump P21.
Since the temperature of the coolant discharged from the liner 12 is lower than that of the liner 12, the intake air in the intake passage 34 is heated.
The amount of heat obtained by cooling the combustion chamber 15 of the cylinder head 13
The temperature of the cooling water is increased by the amount of heat obtained by cooling the surface in contact with the exhaust passage 35, and the amount of heat obtained by heating the wall surface of the exhaust passage 35 in the cylinder head 13.
この結果、吸気弁31全通して燃焼室15に吸入される
吸気の密度が低下し、体積効率が悪化して、煙濃度の増
大など燃焼悪化を生じる原因となる。As a result, the density of the intake air that is drawn into the combustion chamber 15 through the entire intake valve 31 decreases, and the volumetric efficiency deteriorates, causing combustion deterioration such as an increase in smoke concentration.
本発明の目的は、前記問題点を解消し、吸気効率の向」
二と、燃焼の改善をはかったエンノンのシリンダヘッド
を捉供するにある。The purpose of the present invention is to solve the above problems and improve intake efficiency.
Second, it is equipped with Ennon cylinder heads designed to improve combustion.
本発明に係るエンジンのシリンダヘッドハ、シリンダヘ
ッド内の冷却水溜を排気通路をとりがこむ冷却水溜と吸
気通路をとりがこむ冷却水溜に分割する隔・壁を設け、
さらにその隔壁に穴を穿設し、この穴を通って冷却水が
吸気通路をとりがこむ冷却水溜から411気通路をとり
がこむ冷却水溜へ流れるようにし、前記目的を達成する
よう構成したものでちる。The cylinder head of the engine according to the present invention is provided with a partition/wall that divides the cooling water reservoir in the cylinder head into a cooling water reservoir surrounding the exhaust passage and a cooling water reservoir surrounding the intake passage,
Further, a hole is formed in the partition wall, and through this hole, cooling water flows from the cooling water reservoir surrounding the intake passage to the cooling water reservoir surrounding the 411 air passage, so as to achieve the above object. Dechiru.
以下第3図乃至第5図を参照して、本発明に係るエンノ
ンのシリンダヘッドの実施例について説明する。Embodiments of the Ennon cylinder head according to the present invention will be described below with reference to FIGS. 3 to 5.
第3図に本発明のシリンダヘッド4oの断面図を示す。FIG. 3 shows a sectional view of the cylinder head 4o of the present invention.
第3図は従来例の第2図に対応する位置の断面図である
。冷却水溜43に隔壁4.1 、4−2を設けて、吸気
通路34をとりかこむ吸気側冷却水溜43と排気通路3
5をとりかこむ排気側冷却水溜44に分割する。さらに
11;1壁41. 、4.2には冷却水を流す穴4.5
.46を設ける。第3図の■−■断面によって本発明の
エンジンの冷却水システムを第4図に示す。FIG. 3 is a sectional view of the conventional example at a position corresponding to FIG. 2. Partition walls 4.1 and 4-2 are provided in the cooling water reservoir 43, and the intake side cooling water reservoir 43 surrounding the intake passage 34 and the exhaust passage 3 are connected to each other.
5 is divided into an exhaust side cooling water reservoir 44 surrounding the exhaust side cooling water reservoir 5. Furthermore, 11; 1 wall 41. , 4.2 has a hole 4.5 for cooling water to flow through.
.. 46 is provided. The engine cooling water system of the present invention is shown in FIG. 4 by a cross section taken along the line ■--■ in FIG.
冷却水シャケ、ト22からの冷却水は連絡孔23を通シ
、まずシリンダー\ッド40の吸気側冷却水溜43に入
る。次に第3図に示した隔壁4]、、42に設けた穴4
5 =46を通って冷却水は制気側冷゛却水溜44に流
入し、排気側冷却水溜44の」二部に取り付けた冷却水
出口管25から配管26へ流出する。その先の冷却水の
流れは第1図の従来エンノンのものと同じである。The cooling water from the cooling water reservoir 22 passes through the communication hole 23 and first enters the intake side cooling water reservoir 43 of the cylinder head 40. Next, the holes 4 made in the partition walls 4], 42 shown in FIG.
The cooling water flows into the air control side cooling water reservoir 44 through 5 = 46, and flows out to the piping 26 from the cooling water outlet pipe 25 attached to the second part of the exhaust side cooling water reservoir 44. The flow of cooling water beyond that point is the same as that of the conventional Ennon shown in Fig. 1.
次に前記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.
第3図に示すように冷却水連絡孔23から先づ吸気側冷
却水溜43に流入し、それから穴45946を通って排
気側の冷却水溜44に入る。この排気側冷却水溜44で
冷却水は高温の排気通路35の壁面により加熱され水温
は」1昇するが、そのま呼吸気通路34の壁面にふれる
ことなく、第4図の冷却水出口管25を通ってシリンダ
ヘッド40から流出する。As shown in FIG. 3, the cooling water first flows from the cooling water communication hole 23 into the intake side cooling water reservoir 43, and then passes through the hole 45946 and enters the exhaust side cooling water reservoir 44. In this exhaust side cooling water reservoir 44, the cooling water is heated by the high temperature wall surface of the exhaust passage 35, and the water temperature rises by 1. It flows out of the cylinder head 40 through.
またシリンダヘッド40の燃焼室15に接する面は、吸
気側冷却水溜43と排気側水溜44にほぼ等分されるの
で、吸気側冷却水溜43の冷却水がシリンダヘッド40
の燃焼室■5に接する面を冷却してイ(する熱量は約゛
1′−分になる。Further, since the surface of the cylinder head 40 in contact with the combustion chamber 15 is almost equally divided into an intake side cooling water reservoir 43 and an exhaust side water reservoir 44, the cooling water in the intake side cooling water reservoir 43 is transferred to the cylinder head 40.
The amount of heat generated by cooling the surface in contact with the combustion chamber 5 is approximately 1'.
従って吸気側冷却水溜43の冷却水は、シリンダライナ
12を冷却して得た熱量と約崖分に減ったシリンダヘッ
ド40の燃焼室15に接する面を冷却して得た熱量に対
応するだけ温度が」ニガするので、従来のエンジンに較
べて温度の上昇が小さくなる。この結果吸気通路34内
の吸気の温度」1昇が小さくなり、体積効率がよくなり
、出力増大などのエンジン性能の向上が得られる。Therefore, the cooling water in the intake side cooling water reservoir 43 has a temperature corresponding to the amount of heat obtained by cooling the cylinder liner 12 and the amount of heat obtained by cooling the surface of the cylinder head 40 that is in contact with the combustion chamber 15, which has been reduced by approximately the cliff. , so the temperature rise is smaller than in conventional engines. As a result, the increase in the temperature of the intake air in the intake passage 34 is reduced, the volumetric efficiency is improved, and engine performance such as increased output is achieved.
第5図に示すものは第2実施例で、シリンダヘッド40
の隔壁41,42および穴45 、 ’46の構造は第
3図に示す第1実施V/11と同じであるが、第2実施
例では冷却水ノヤク゛、l−22とり1気側冷却水溜4
4を連絡孔23でつなぐとともに、ボン・プP21から
吐出される冷却水が冷却水ノヤケット22の下部に流入
する前に一部を分岐し、管5Iでシリンダヘッド・10
の吸気側冷却水溜43の下部の冷却水人口52に流入す
る。このとき冷却水ノヤケノト22と吸気(Illj冷
却水溜4;3をつなぐ連絡孔は廃止する。What is shown in FIG. 5 is a second embodiment, in which a cylinder head 40
The structures of the partition walls 41, 42 and the holes 45, '46 are the same as those of the first embodiment V/11 shown in FIG.
At the same time, a part of the cooling water discharged from the pump P21 is branched before flowing into the lower part of the cooling water jacket 22, and a pipe 5I connects the cylinder head 10 with the connecting hole 23.
The cooling water flows into the cooling water population 52 at the lower part of the intake side cooling water reservoir 43. At this time, the communication hole connecting the cooling water outlet 22 and the intake cooling water reservoir 4; 3 is abolished.
次に第2実施例の作用について説明する。Next, the operation of the second embodiment will be explained.
冷却水ノヤケット22でライナ12の外面全冷却した冷
却水は連絡孔2;)からill気側7’ニア却水溜44
に流入する。さらに冷却水、I?ンプP21から分岐し
た約半分の冷却水は冷却7J(人口52から直接吸気側
冷却水溜・1:3に流入し、穴/I 5 、4 G f
通って排気側冷却水溜44に入り、連絡孔23からの冷
却水と合流した後、冷却水出Iコ管25から流出する。The cooling water that completely cooled the outer surface of the liner 12 with the cooling water jacket 22 flows from the communication hole 2;) to the illumination side 7' near cooling water reservoir 44.
flows into. More cooling water, I? Approximately half of the cooling water branched from the pump P21 flows directly into the cooling water reservoir 1:3 on the intake side from the cooling 7J (population 52, hole/I 5 , 4 G f
The cooling water flows through the cooling water reservoir 44 on the exhaust side, merges with the cooling water from the communication hole 23 , and then flows out from the cooling water outlet pipe 25 .
第2実施例でも排気側冷却水溜44で加熱された冷却水
が吸気通路;34の壁面にふれることはない。また吸気
側冷却水溜43の冷却水がシリングヘッド40の燃す3
1L室15に接する面を冷却して得る熱量は約半分にな
る。In the second embodiment as well, the cooling water heated in the exhaust side cooling water reservoir 44 does not come into contact with the wall surface of the intake passage 34. In addition, the cooling water in the intake side cooling water reservoir 43 is heated by the shilling head 40.
The amount of heat obtained by cooling the surface in contact with the 1L chamber 15 is approximately halved.
吸気側冷却水溜43のと1′i′却水が得る熱量は約半
分になったシリングへ、ド40の燃焼室15に接する面
金冷却してイ))た熱量だけになるので流量が半分にな
ってもシリングライナl 2 r′13 ’r)より吸
収する熱量がなくなるだけ従来エンノンにくらべ温度の
」二Ji−が少なくなる。The amount of heat obtained by the cooling water in the intake side cooling water reservoir 43 and 1'i' is reduced to about half, and only the amount of heat obtained by cooling the surface metal in contact with the combustion chamber 15 of the do 40 is reduced by a)), so the flow rate is halved. Even if the temperature becomes smaller than that of the conventional ennon, the amount of heat absorbed by the Schilling liner l2r'13'r) decreases.
この結果吸気通路34内の吸気の温度上昇が小さくなり
、体積効率が改善されエンジン性能が向上する。As a result, the temperature rise of the intake air in the intake passage 34 is reduced, volumetric efficiency is improved, and engine performance is improved.
第1図Q」、従来のエンノンの冷却水システム図、第2
図は第1図のlI −I+断面図、第3図乃至第5図は
本発明の実施例で第3図(d第2図に相等する断面図、
第4図は第1実施例で第3図のIV−IV断面図を各む
本発明のエンノンの、′/、7却水システム図、第5図
は第2実施例で第31][V−IV断面図を含む本発明
のエンジンの冷却水システム図である。
34・・・吸気通路、35・・・排気通路、41,42
・・・隔壁、11:3・・・吸気側1″l)却氷室、−
i 、i・・・1気側冷却水室、ll 5 、4 G・
・・i1’r+孔。
271
FJ1図
43 33 4(J 31
第4図
第5図Figure 1 Q'', Conventional Ennon cooling water system diagram, Figure 2
The figure is an lI-I+ sectional view of FIG. 1, and FIGS. 3 to 5 are cross-sectional views equivalent to FIG.
Fig. 4 is a diagram of the water cooling system of the Ennon of the present invention including the IV-IV sectional view of Fig. 3 in the first embodiment, and Fig. 5 is the FIG. 3 is a diagram of the cooling water system of the engine of the present invention, including a sectional view taken along the line IV. 34... Intake passage, 35... Exhaust passage, 41, 42
...Bulkhead, 11:3...Intake side 1"l) Cooling chamber, -
i, i...1 air side cooling water chamber, ll 5, 4 G.
...i1'r+hole. 271 FJ1 Figure 43 33 4 (J 31 Figure 4 Figure 5
Claims (1)
通路を囲む排気側冷却水室とを区画する隔壁を設け、さ
らにこの隔壁に前記両冷却水室を連通ずる通孔を設けた
ことを特徴とするエンジンのシリンダヘッド。A partition wall is provided to partition an intake side cooling water chamber surrounding the intake passage of the cylinder head and an exhaust side cooling water chamber surrounding the exhaust passage, and a through hole is further provided in the partition wall to communicate the two cooling water chambers. cylinder head of an engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13094883A JPS6026145A (en) | 1983-07-20 | 1983-07-20 | Cylinder head for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13094883A JPS6026145A (en) | 1983-07-20 | 1983-07-20 | Cylinder head for engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6026145A true JPS6026145A (en) | 1985-02-09 |
JPH0158337B2 JPH0158337B2 (en) | 1989-12-11 |
Family
ID=15046396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13094883A Granted JPS6026145A (en) | 1983-07-20 | 1983-07-20 | Cylinder head for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6026145A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226747U (en) * | 1988-08-09 | 1990-02-21 | ||
JPH02256820A (en) * | 1989-03-29 | 1990-10-17 | H K S:Kk | Water-cooling apparatus of engine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56138444A (en) * | 1980-03-29 | 1981-10-29 | Yamaha Motor Co Ltd | Cylinder head for water-cooled internal combustion engine |
-
1983
- 1983-07-20 JP JP13094883A patent/JPS6026145A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56138444A (en) * | 1980-03-29 | 1981-10-29 | Yamaha Motor Co Ltd | Cylinder head for water-cooled internal combustion engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226747U (en) * | 1988-08-09 | 1990-02-21 | ||
JPH02256820A (en) * | 1989-03-29 | 1990-10-17 | H K S:Kk | Water-cooling apparatus of engine |
Also Published As
Publication number | Publication date |
---|---|
JPH0158337B2 (en) | 1989-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2687140B2 (en) | Marine engine cooling system | |
JPS6115263B2 (en) | ||
JPS6257825B2 (en) | ||
US4688383A (en) | Supercharger system for use with heat engines | |
US1848987A (en) | Water pump by-pass | |
JPH02140413A (en) | Cooling device for v type engine | |
JPS6026145A (en) | Cylinder head for engine | |
JP2019138282A (en) | engine | |
JPH0124333Y2 (en) | ||
JPH0375732B2 (en) | ||
JP2993214B2 (en) | Engine cooling system | |
JP3885260B2 (en) | Engine cooling system | |
JPH08218865A (en) | Exhaust manifold for engine | |
JP4411969B2 (en) | Engine cooling system | |
JPS58106122A (en) | Cooling device of internal-combustion engine | |
JP3056518B2 (en) | Cooling system for two-cycle V-type engine | |
JP2917608B2 (en) | Internal combustion engine cooling system | |
JPS59224444A (en) | Cooling device of v-engine | |
JPH0571416A (en) | Cooling water passage structure for multiple cylinder internal combustion engine | |
JPH0566219U (en) | Cooling device for cylinder block in engine | |
JPH022894Y2 (en) | ||
JPS6170120A (en) | Cooling system of internal-combustion engine | |
JPH0144736Y2 (en) | ||
JP2019138283A (en) | engine | |
JPS6034741Y2 (en) | Coolant circulation system for liquid-cooled internal combustion engines |