JPS60261374A - Operating device in vacuum - Google Patents

Operating device in vacuum

Info

Publication number
JPS60261374A
JPS60261374A JP11653684A JP11653684A JPS60261374A JP S60261374 A JPS60261374 A JP S60261374A JP 11653684 A JP11653684 A JP 11653684A JP 11653684 A JP11653684 A JP 11653684A JP S60261374 A JPS60261374 A JP S60261374A
Authority
JP
Japan
Prior art keywords
spring
shape
vacuum
shaft
retainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11653684A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Mihashi
善之 三橋
Izumi Nakayama
泉 中山
Tetsuo Kodama
児玉 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP11653684A priority Critical patent/JPS60261374A/en
Publication of JPS60261374A publication Critical patent/JPS60261374A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N10/00Electric motors using thermal effects

Abstract

PURPOSE:To readily operate as desired by composing movable units of an alloy having shape memorizing effect, controlling the transfer of the shape from the exterior to drive the units. CONSTITUTION:A movable element of a linear motion is disposed with a coil spring 3 of shape memorizing alloy in housings 1, 2 made of insulator, and the other end is supported by a retainer 4a at one end of an output shaft 4. A bias spring 5 is mounted between the end wall of the housing 1 and the retainer 4a. The shaft 4 and the retainer 4a reciprocate axially in the housings 1, 2. Thus, currents are flowed from cables 6, 7 connected with a power source to the spring 3 to heat it to move upward the shaft 4 against the spring 5. When the currents are interrupted to shift the spring 3 to low temperature, the spring 3 is contracted to move the shaft 4 downward.

Description

【発明の詳細な説明】 本発明は、例えば真空プロセス装置のような真空中にお
いて作動されて種々の運動操作を行なうマニピュレータ
、ノ〜ンドリング機構、駆動機構等のような作動装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an actuating device such as a manipulator, a nodling mechanism, a drive mechanism, etc., which is operated in a vacuum such as a vacuum process device to perform various motion operations.

真空中の治具や機構等の作動装置への駆動の伝達は一般
に駆動軸をOリング、ウィルソンシール等の真空シール
を介して直接機械的にカップリングして行なっている。
Drive is generally transmitted to operating devices such as jigs and mechanisms in a vacuum by directly mechanically coupling a drive shaft via a vacuum seal such as an O-ring or a Wilson seal.

そのため各可動部または摺動部からダストが発生したシ
、また真空シール部は動的シールであるため潤滑の持続
\シール材の定期的な交換が必要であるだけでなく1真
空漏れの危険があり、さらには大気側の駆動部は真空シ
ール部の摺動抵抗を考慮した出力にする必要がある。ま
た構造的には動的シール部は複雑でしかも精密に構成さ
れるので作動装置が複雑かつかさばυコスト高となりし
かも自由度が小さい欠点があるO そこで本発明は、従来の機械的連動結合構造における動
的シールに伴なう上述のような欠点を・形状記憶効果を
もつ合金を利用することによって解決することにあり、
従って本発明の目的は、動的シールを実質的に使用する
必要がなくしかも大気側と真空側との間の密封手段とし
て静的シールを使用でき自由度を大きくできる真空中に
おける作動装置を提供することにある。
As a result, dust is generated from each moving or sliding part, and since the vacuum seal part is a dynamic seal, it not only requires continuous lubrication and periodic replacement of the sealing material, but also the risk of vacuum leakage. Furthermore, the output of the drive section on the atmospheric side must take into account the sliding resistance of the vacuum seal section. In addition, since the dynamic seal part is structurally complex and precisely configured, the actuating device is complicated and bulky, υ costs are high, and the degree of freedom is small. The aim is to solve the above-mentioned drawbacks associated with dynamic seals in structures by using alloys with shape memory effect.
Therefore, an object of the present invention is to provide an operating device in a vacuum that does not substantially require the use of a dynamic seal and can use a static seal as a sealing means between the atmosphere side and the vacuum side, increasing the degree of freedom. It's about doing.

上記目的を達成するために、本発明による真を中の作動
装置は1真空中で種々の動作を行なうようにされた各可
動St−形状記憶効果をもつ合金で構成し・合金の少な
くとも一方の形状から他方の形状への転移を外部から制
御して可動Sを駆動するように構成したことを特徴とし
ている。
In order to achieve the above object, the actuating device in the stem according to the present invention comprises movable St-alloys with shape memory effect adapted to perform various operations in a vacuum. It is characterized in that the movable S is driven by controlling the transition from one shape to the other shape from the outside.

本発明においては、外部からの合金形状の変態の制御は
好ましくは電気的エネルギおよび(または)熱的エネル
ギの供給によって行なわれ得る・また本発明において可
動St構成する合金の形状変化の速度を速めるため必要
ならばばね手段を組み込むことができる・ 作 用 このように構成することによって、作動装置は外部から
機械的運動を導入せずに作動装置t駆動させることがで
き、また構成部材自体が形状変化することによって所望
の動作が行なわれ・シール部の摺動抵抗を伴なうことが
なく、各可動変形部を種々組合せることで大きな自由度
を得ることができる。
In the present invention, controlling the transformation of the alloy shape from the outside can preferably be carried out by supplying electrical energy and/or thermal energy. Also, in the present invention, the speed of shape change of the alloy constituting the movable St is increased. Therefore, if necessary, spring means can be incorporated. By this construction, the actuating device can be driven without introducing mechanical movements from the outside, and the component itself can be shaped. By changing the shape, the desired operation is performed without any sliding resistance of the seal portion, and by combining the movable deformation portions in various ways, a large degree of freedom can be obtained.

実 施 例 以下添附図面を参照して本発明の幾つかの実施例につい
て説明するが、これは単に例示のためのものであり、本
発明はこれら実施例に限定されるものではない。
Embodiments Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings, but these are merely for illustrative purposes and the present invention is not limited to these embodiments.

第1.2図には)直線運動用の可動要素を示し、1\2
は絶縁物から成るハウジングでその中に形状記憶合金製
のコイルばね6が配置されており、その一端は−・ウジ
ング2の端壁で受け他端は絶縁物から成る出力軸4の一
端に設けられた受け部材4aで受けられている。またノ
ーウジング1の端壁と上記受は部材4aとの間にはバイ
アスばね5が装着されている。上記出力軸4およびそれ
の受け部材4aは−ウジングト2内で軸線方向に往復動
できるようにされておシ為そして出力軸4の他端4bは
ケーシング1から外力へのびている。コイルばね6の両
端は適当な電源(図示してない)に接続された電流導入
ケーブル6.7に接続されている。また図面において8
はケーブル6を案内する絶縁チューブである。 − このように構成した可動要素の動作においてコイルばね
3に電流を流して加熱した高温時には第1図に示すよう
にコイルばね3はバイアスばね5に抗して出力軸4を上
方へ動かす。そしてコイルばね3への電流をしゃ断して
コイルばね3が低温に変移すると、コイルばね6は収縮
し、出力軸4を下刃へ動かす。この場合バイアスはね5
は応動速度を高めるためコイルばね6の収縮を促進する
ように働く。従ってこのようなバイアスばね5の代りに
コイルばね3に対して冷媒を供給して高温状態から低温
状態への転移時間を短縮させることによっても同様の作
用が得られ得る。このようにして出力軸4の直線往復運
動が得られる。
Figure 1.2) shows movable elements for linear motion, 1\2
is a housing made of an insulator, in which a coil spring 6 made of a shape memory alloy is arranged, one end of which is supported by the end wall of the housing 2, and the other end is provided at one end of the output shaft 4 made of an insulator. It is received by the receiving member 4a. Further, a bias spring 5 is installed between the end wall of the nousing 1 and the receiver member 4a. The output shaft 4 and its receiving member 4a are capable of reciprocating in the axial direction within the housing 2, and the other end 4b of the output shaft 4 extends from the casing 1 to an external force. Both ends of the coil spring 6 are connected to a current introduction cable 6.7 which is connected to a suitable power source (not shown). Also in the drawing 8
is an insulating tube that guides the cable 6. - In the operation of the movable element constructed in this manner, when the coil spring 3 is heated to a high temperature by passing a current through it, the coil spring 3 moves the output shaft 4 upward against the bias spring 5, as shown in FIG. Then, when the current to the coil spring 3 is cut off and the coil spring 3 changes to a low temperature, the coil spring 6 contracts and moves the output shaft 4 toward the lower blade. In this case, the bias is 5
acts to promote contraction of the coil spring 6 in order to increase the response speed. Therefore, the same effect can be obtained by supplying a refrigerant to the coil spring 3 instead of the bias spring 5 to shorten the transition time from a high temperature state to a low temperature state. In this way, linear reciprocating motion of the output shaft 4 is obtained.

第3.4図には回転式の可動要素の一例を示す。Figure 3.4 shows an example of a rotary movable element.

この可動要素はブラケット9の一端に絶縁物の座10を
固定し・他端に出力軸11を回転可能に取付け、座10
と出力軸11との間に形状記憶合金製の板ばね12を装
着して構成されている@板ばね12の両端近くには電流
導入ケーブル13.14がそれぞれ接続されており、ま
たこの板ばね12は例えば低温時には平板状の形状を呈
し、高温時にツイストした形状を呈す。従って電流がし
ゃ断されているときは第3図の状態にあり、板はね12
が電流の導入によって加熱されると第4図に示すように
ツイストして出力軸11を矢印で示すように回転させる
。この場合も取ばね12の応答速度を高めるため冷却手
段やバイアス手段を組合 ゛せることかでき、或いは板
ばね121C予じめ応力を加えておいてもよい。
This movable element has an insulating seat 10 fixed to one end of the bracket 9, an output shaft 11 rotatably attached to the other end, and the seat 10
A plate spring 12 made of a shape memory alloy is installed between the output shaft 11 and the output shaft 11.Current introducing cables 13 and 14 are connected near both ends of the plate spring 12, and this plate spring For example, 12 takes on a flat plate shape when the temperature is low, and takes on a twisted shape when the temperature is high. Therefore, when the current is cut off, it is in the state shown in Figure 3, and the plate 12
When heated by the introduction of electric current, it twists as shown in FIG. 4 and rotates the output shaft 11 as shown by the arrow. In this case as well, cooling means and biasing means may be combined to increase the response speed of the spring 12, or stress may be applied to the leaf spring 121C in advance.

第5図には第1.2図に示す可動要素を利用した作動装
置を基板クランノ臂−として実施した例を示し、各可動
要素15の出力軸16には爪17が取付けられ、基板1
8に対して押え位it(実線で示す)と解放位置(一点
鎖線で示す)との間で動くようにされて匹る。各可動要
素15の電流導入ケーブル(図示してない)は真空容器
の壁に設けた一一一メチックシール等の電流導入真空継
手を通って外部へ導かれる。
FIG. 5 shows an example in which the actuating device using the movable elements shown in FIG.
8, the presser foot is moved between the presser foot position (indicated by a solid line) and the release position (indicated by a dashed line). The current-feeding cable (not shown) of each movable element 15 is led to the outside through a current-feeding vacuum joint, such as a one-to-one metric seal, provided in the wall of the vacuum vessel.

第6図には、第3.4図に示す回転型可動要素を用いて
モニタシャッタの作動装置に応用した例を示し、作動装
置19はその出力軸20に装着されたシャッタ21をモ
ニタ22に対して開閉位置に動かすように構成されてい
る。
FIG. 6 shows an example in which the rotary movable element shown in FIG. 3.4 is applied to a monitor shutter actuating device. It is configured to be moved to the open/closed position.

効果 以上説明してきたように本発明による作動装置は外部か
ら機械的伝動機構を用いずに真空クール部から電流や熱
エネルギ等の導入だけで駆動させることができ、シール
部の摺動抵抗無く、シール材の寿命が長くすることがで
き・また可動部を種々に設計することによって所望の操
作を容易に行なわせることができ、真空中における負荷
の移動や操作に広く応用することができる。
Effects As explained above, the actuating device according to the present invention can be driven by simply introducing electric current, thermal energy, etc. from the vacuum cooling part without using an external mechanical transmission mechanism, and there is no sliding resistance of the seal part. The life of the sealing material can be extended, and desired operations can be easily performed by designing the movable parts in various ways, making it widely applicable to moving and operating loads in vacuum.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は本発明の作動装置の要部の一実施斜視図、
第5.6図は異なる使用例を示す斜視図である。 図中、3.12:形状記憶合金製の可動部材、6.7.
16.14:電流導入グープル。
FIG. 1.2 is a perspective view of the main part of the actuating device of the present invention;
Figure 5.6 is a perspective view showing a different usage example. In the figure, 3.12: Movable member made of shape memory alloy, 6.7.
16.14: Current introduction group.

Claims (1)

【特許請求の範囲】[Claims] 真蛮中で種々の動作を行なう各可動部を形状記憶効果を
もつ合金で構成し、合金の少なくとも一方の形状から他
力の形状への転#を外部から制御して可動部を駆動する
ように構成したことを特徴とする真空中における作動装
置・
Each movable part that performs various movements in the center is made of an alloy that has a shape memory effect, and the movable parts are driven by externally controlling the transformation from at least one shape of the alloy to the shape of another force. An actuating device in a vacuum characterized by having the following configuration:
JP11653684A 1984-06-08 1984-06-08 Operating device in vacuum Pending JPS60261374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11653684A JPS60261374A (en) 1984-06-08 1984-06-08 Operating device in vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11653684A JPS60261374A (en) 1984-06-08 1984-06-08 Operating device in vacuum

Publications (1)

Publication Number Publication Date
JPS60261374A true JPS60261374A (en) 1985-12-24

Family

ID=14689552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11653684A Pending JPS60261374A (en) 1984-06-08 1984-06-08 Operating device in vacuum

Country Status (1)

Country Link
JP (1) JPS60261374A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128202A (en) * 1985-11-28 1987-06-10 Mitsubishi Electric Corp Sub reflection mirror drive mechanism
JPS6322486A (en) * 1986-02-17 1988-01-29 清水建設株式会社 Hanging jig and hanger
WO2010069508A1 (en) * 2008-12-18 2010-06-24 Otto Egelhof Gmbh & Co. Kg Arrangement for adjusting a valve
CN103758718A (en) * 2013-12-31 2014-04-30 浙江工业大学 Power generation device utilizing trunk expansion energy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128202A (en) * 1985-11-28 1987-06-10 Mitsubishi Electric Corp Sub reflection mirror drive mechanism
JPS6322486A (en) * 1986-02-17 1988-01-29 清水建設株式会社 Hanging jig and hanger
WO2010069508A1 (en) * 2008-12-18 2010-06-24 Otto Egelhof Gmbh & Co. Kg Arrangement for adjusting a valve
JP2012512369A (en) * 2008-12-18 2012-05-31 オットー・エゲルホフ・ゲーエムベーハー・ウント・コンパニ・カーゲー Structure for shifting the valve
US9581144B2 (en) 2008-12-18 2017-02-28 Otto Egelhof Gmbh & Co. Kg Arrangement for adjusting a valve
CN103758718A (en) * 2013-12-31 2014-04-30 浙江工业大学 Power generation device utilizing trunk expansion energy

Similar Documents

Publication Publication Date Title
EP0137502B1 (en) Actuator
US4736587A (en) Shape-memory electromechanical drive
JP4598855B2 (en) Superconducting device
US7115831B2 (en) Vacuum interrupter with a switch contact piece
US7511905B2 (en) Magnetic coupled actuator
US20080017816A1 (en) Thermal isolator for actuator and valve assembly
JPS60261374A (en) Operating device in vacuum
US10233969B2 (en) Heat resistant structure for shaft retainer, and actuator
US5243160A (en) Operating mechanism for an inert gas filled circuit breaker
EP0663633A3 (en) Bistable actuator device
CN110911246B (en) Remote control miniature circuit breaker
EP0108607A2 (en) Actuator
CA1178634A (en) High voltage circuit breaker
JPH07237599A (en) Shape memory alloy actuator for space equipment
FR2568405B1 (en) GAS BREAKER UNDER PRESSURE THAT CAN BE ASSEMBLED AND DISASSEMBLED WITHOUT LOSS OF GAS
US4013988A (en) Hermetically sealed motor protector
AU2002349034A1 (en) Assembly for actuating the weaving mechanism for weaving looms
JP2716922B2 (en) Stirling cooler compressor
WO2002059515A1 (en) Actuator and valve device with the actuator
RU2161835C1 (en) Electrothermal power element
ATE116763T1 (en) HIGH POWER DC PROTECTION.
JPS6145168A (en) Direct-acting actuator
JPH0713151Y2 (en) Switchgear
JPS60262437A (en) Handling device for substrate in vacuum
JPH06249130A (en) Thermoactuator device