JPS60261120A - Detector for voltage and current of three-phase integral type gas insulating electrical apparatus - Google Patents

Detector for voltage and current of three-phase integral type gas insulating electrical apparatus

Info

Publication number
JPS60261120A
JPS60261120A JP59117135A JP11713584A JPS60261120A JP S60261120 A JPS60261120 A JP S60261120A JP 59117135 A JP59117135 A JP 59117135A JP 11713584 A JP11713584 A JP 11713584A JP S60261120 A JPS60261120 A JP S60261120A
Authority
JP
Japan
Prior art keywords
phase
voltage
main circuit
detection device
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117135A
Other languages
Japanese (ja)
Inventor
Shoji Harada
昌治 原田
Satoshi Ooyama
大山 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59117135A priority Critical patent/JPS60261120A/en
Publication of JPS60261120A publication Critical patent/JPS60261120A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/38Instruments transformers for polyphase ac

Abstract

PURPOSE:To miniaturize an apparatus, and to measure voltage and currents precisely by equally dividing the inside of a tank by grounding grids and forming a voltage detector by mounting floating electrodes around conductors at each phase and a current detector by fitting Faraday elements around them. CONSTITUTION:Main circuit conductors u, v, w at three phase are arranged at the apices of an equilateral triangle in a tank vessel 11 filled with an insulating gas, and grounding grids 12a-12c are mounted at the contents of the main circuit conductors, and fitted to the tank vessel through fittings 12'. Cylindrical floating electrodes Fu, Fv, Fw are each mounted on the outer circumferences of the main circuit conductors u, v, w and connected to transformers Tu, Tv, Tw containing auxiliary capacitors on the outside of the tank vessel 11, thus constituting a voltage detector. Likewise, Faraday elements 17 for detecting currents are disposed, and optical fiber cables 18 are connected at projecting-and-emitting- beam terminals for said elements 17. The cables 18 are connected to beam- emitting-and-receiving sections 21 for optical CTs on the outside of the tank vessel 11 through sealing sections 20.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は主としてS Fsガスを絶縁媒体とするガス
絶縁電気機器の電圧電流検出装置に係り、特に、フロー
テングミ極を使用して充電部の電位をコンデンサ分圧し
て電圧の検出を行うと共に、光磁界センサを使用して電
流の検出を行う様にした3相−話形ガス絶縁電気機器の
電圧電流検出装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention mainly relates to a voltage and current detection device for gas-insulated electrical equipment using SFs gas as an insulating medium, and in particular, a device for detecting voltage and current of a live part using floating gummy electrodes. The present invention relates to a voltage/current detection device for a three-phase, circular gas-insulated electric appliance, which detects voltage by dividing the voltage of a capacitor and detects current by using an optical magnetic field sensor.

[発明の技術的背景とその問題点] 従来から3相一括型ガス絶縁電気機器の電圧及び電流を
検出する装置としては、電圧検出装置(以下PDと称す
。)と電流検出装置(以下CTと称す。ンがそれぞれ個
別に知られている。
[Technical background of the invention and its problems] Conventionally, as devices for detecting the voltage and current of three-phase integrated gas-insulated electrical equipment, there are a voltage detection device (hereinafter referred to as PD) and a current detection device (hereinafter referred to as CT). Each term is known individually.

以下、従来のPD及びCTのそれぞれの技術的背景と問
題点について個別に説明する。
The technical background and problems of conventional PD and CT will be individually explained below.

(PDに関する問題点) 従来、ガス絶縁電気機器(GIS)用PDとしては、■
コンデンサ形計器用変圧器、■増幅形計器用変圧器、■
増幅形のコンデンサ形計器用変圧器等が使用されている
。最近では、変電所用地の縮小化という観点から、ガス
絶縁電気機器の各構成機器の小型化が進展しており、P
Dとしても上記■よりは上記■、さらに上記■が適用さ
れるようになってきた。
(Problems with PD) Conventionally, PDs for gas insulated electrical equipment (GIS) are:
Capacitor-type instrument transformer, ■Amplification-type instrument transformer, ■
Amplifying type capacitor type instrument transformers are used. Recently, from the perspective of reducing the size of substation sites, the size of each component of gas-insulated electrical equipment has progressed, and P
As for D, the above-mentioned ■, and also the above-mentioned ■ have come to be applied rather than the above-mentioned ■.

ところで、増幅形のコンデンサ形計器用変圧器を3相一
括型ガス絶縁電気機器等の多相形機器に適用する場合の
最大の問題は、各相の電圧検出用電極が他相の導体の影
響を受tフずに、自相の導体の電圧をいかにして忠実に
検出するかということにある。
By the way, the biggest problem when applying an amplified capacitor type voltage transformer to multi-phase equipment such as three-phase gas-insulated electrical equipment is that the voltage detection electrodes of each phase are not affected by the conductors of other phases. The problem lies in how to faithfully detect the voltage of the conductor of the own phase without receiving any error.

従来、この種の増幅形のコンデンサ形計器用変圧器どし
ては、第1図及び第2図に示す様なものがあった。第1
図は機器の軸方向断面、第2図は横断面を示し、3相一
括収納容器1内にshガス等の絶縁性ガスを充填して絶
縁された3誘導体2a〜2Cの中心軸延長線上に、前記
導体の各々に対向する各相電圧検出用電極4a、4b、
4.c(図示せず)は球面形状とし、各相の導体と電圧
検出用電極との対向部近傍を他相導体からシールドする
為に、導体長手方向に延びる接地されたシールドパイプ
3a、3b、’3c(図示せず)を設けたものである。
Conventionally, there have been such amplification type capacitor type voltage transformers as shown in FIGS. 1 and 2. 1st
The figure shows an axial cross-section of the device, and FIG. 2 shows a cross-section of the device. , each phase voltage detection electrode 4a, 4b facing each of the conductors,
4. C (not shown) has a spherical shape, and is connected to grounded shield pipes 3a, 3b,' extending in the longitudinal direction of the conductor in order to shield the vicinity of the facing portion of each phase conductor and voltage detection electrode from other phase conductors. 3c (not shown).

しかるに上記の例では、例えばB相の電圧検出用電極4
bは自相の導体2b間の静電容量Cbbの他に、A相の
導体2aとの間の静電容ff1cba及び図示しないC
相の導体2Cとの間の静電容量Cbcの影響を受けてし
まう。従って他相からの影響を回避ずべくCbb>>C
ba、Cbb>>CbCを実現する為には、第1図のシ
ールドパイプ3bの端部より電圧検出用電極4bまでの
距離を長くする必要があり、機器全体の寸法が長くなる
ため、ガス絶縁電気機器縮小化の意図に反するという欠
点があった。
However, in the above example, for example, the B-phase voltage detection electrode 4
In addition to the capacitance Cbb between the conductors 2b of the own phase, b is the capacitance ff1cba with the conductor 2a of the A phase and C not shown.
It is affected by the capacitance Cbc between the phase conductor 2C. Therefore, in order to avoid the influence from other phases, Cbb>>C
In order to realize ba, Cbb>>CbC, it is necessary to increase the distance from the end of the shielded pipe 3b in Fig. 1 to the voltage detection electrode 4b, which increases the overall dimensions of the device, so gas insulation is required. This had the drawback of going against the intention of downsizing electrical equipment.

(CTに関する問題点) 一方、近年、我が国では電力需要の増大に伴い、既に実
現している500KV級から将来出現の期待される1 
000KV級へと送電組画の開発が進められ、送電電流
は8KA〜12KA、また短時間故障電流ち50KA〜
63KAと増大の一途をたどっている。しかるに、この
様な現状において変電所、間開所では、変流器とリレー
室とを連結する電線ケルプルに対する電磁障害の影響が
大きくなり問題となっていた。その為、最近では、電線
ケーブルに代って電気的雑音の影響を全く受(ブること
のない、光フアイバーケーブルが注目され、その使用が
考慮されている。
(Issues regarding CT) On the other hand, in recent years, with the increase in electricity demand in Japan, the 500KV class that has already been realized is expected to appear in the future.
The development of power transmission systems has progressed to 1,000KV class, and the transmission current has increased from 8KA to 12KA, and the short-time fault current has increased from 50KA.
It continues to grow at 63KA. However, under these circumstances, in substations and inter-stations, the influence of electromagnetic interference on the electric wires connecting current transformers and relay rooms has become significant, which has become a problem. Therefore, recently, optical fiber cables, which are completely unaffected by electrical noise, have attracted attention and their use is being considered in place of electric wire cables.

また、従来の巻線型CTは、導体電流により生じる磁路
を円周方向全周に亙って積分できる為、測定精度は良い
反面、巻線の組立作業にかなりの時間と労力を要する為
、製造コストは非常に高く、且つ重量が重く、大型であ
る等の欠点を持っている。そこで、CTにおいても、最
近巻線型のものに代って、ファラデー効果を利用した安
価で低重量、且つコンパクトな磁気光学素子が注目され
ており、同素子を母線導体周囲に配置して電流計測を行
うことによって、ガス絶縁電気機器におけるCTの小型
化及び電気所の監視システムのディジタル化を推進する
方法が検討されつつある。
In addition, conventional wire-wound CTs have good measurement accuracy because they can integrate the magnetic path caused by conductor current over the entire circumference, but they require considerable time and effort to assemble the windings. It has drawbacks such as very high manufacturing cost, heavy weight, and large size. Therefore, in CT, instead of the wire-wound type, inexpensive, low weight, and compact magneto-optical elements that utilize the Faraday effect have recently attracted attention, and these elements can be placed around the bus conductor to measure current. A method of promoting the miniaturization of CT in gas-insulated electrical equipment and the digitalization of monitoring systems at electrical stations is being studied.

(総合的な問題点) この様に、3相一括型のガス絶縁電気機器においては、
そのPD及びCTの双方について機器の小型化及び隣接
相の影響の低減による信頼性向上が要求されているが、
更に次の様な問題点もあった。
(Overall problems) In this way, in three-phase all-in-one gas insulated electrical equipment,
For both PD and CT, there is a need to improve reliability by downsizing the equipment and reducing the influence of adjacent phases.
Furthermore, there were the following problems.

即ち、従来の各検出装置は、各々別のコンポーネントと
して配設されており、前述の様にそれぞれ専用の取付は
空間を必要としていたが、それに加えてこれらを接続す
る為には別途接続母線を設ける必要があり、その為のス
ペースも用意しなければならなかった。例えば、第7図
は、主母線Bu s i ’tガスしゃ断器GOBS断
路器O8を備えたガス絶縁開閉装置であるが、このガス
絶縁開閉装置において、ケーブルヘッドCI−1d側に
設けられたCT及びPD自体が大型であるばかりか、そ
の間の接続母線BUS2がかなりのスペースを占めてい
た。
In other words, each conventional detection device is installed as a separate component, and as mentioned above, each dedicated installation requires space, but in addition, a separate connection bus bar is required to connect them. It was necessary to set one up, and we also had to prepare a space for it. For example, FIG. 7 shows a gas insulated switchgear equipped with a main bus Bus i't gas breaker GOBS disconnector O8. Not only are the PDs themselves large, but the connecting bus BUS2 between them occupies a considerable amount of space.

し発明の目的〕 本発明は、上記の如き従来技術の問題点を解消するため
に提案されたもので、その目的は、他相からの影響を受
りずに各相の導体の電流及び電圧を正確に検出でき、し
かもガス絶縁電気機器の小型縮小化に大いに貢献できる
3相一括型ガス絶縁電気機器の電圧電流検出装置を提供
することにある。
OBJECT OF THE INVENTION The present invention was proposed in order to solve the problems of the prior art as described above, and its purpose is to reduce the current and voltage of the conductors of each phase without being influenced by other phases. An object of the present invention is to provide a voltage and current detection device for a three-phase integrated gas-insulated electric device that can accurately detect the voltage and can greatly contribute to downsizing of the gas-insulated electric device.

[発明の概要1 本発明による3相−話形ガス絶縁電気機器の電圧電流検
出装置は、タンク容器内部をその半径方向に3枚以上の
接地グリッドにて等分割し、これらのグリッドを各相の
主回路導体がそれぞれ隣合うグリッドの中央に位置する
様に配置し、各相の主回路導体の周囲にはタンク容器か
ら絶縁状態で支持されたフローティング電極をそれぞれ
配置し、このフローティング電極によって主回路導体の
電位をコンデンサ分圧することでPDを構成し、他相か
らの電磁誘導の影響を受けずに各相の電圧を検出する様
にしたものである。
[Summary of the Invention 1 The voltage and current detection device for a three-phase, circular gas-insulated electrical equipment according to the present invention divides the inside of a tank container equally into three or more grounding grids in the radial direction, and connects these grids to each phase. The main circuit conductors of each phase are arranged in the center of the adjacent grids, and floating electrodes supported insulated from the tank container are arranged around the main circuit conductors of each phase. A PD is constructed by dividing the potential of a circuit conductor using a capacitor, and the voltage of each phase is detected without being affected by electromagnetic induction from other phases.

また、各相の導体のフローティング電極を設(プた箇所
には、各相の導体を取り巻く様にCT用のファラデー素
子を配置し、このファラデー素子を光フアイバーケーブ
ルを介してタンク容器外部に導出して光CTを構成する
ことにより、従来の巻線型CTに比較して大幅な縮小化
を達成すると共に、導体円周上を周回積分可能として高
精度の電流測定を行える様にしたものである。
In addition, a Faraday element for CT is placed so as to surround the conductor of each phase at the location where the floating electrode of the conductor of each phase is installed, and this Faraday element is led out to the outside of the tank container via an optical fiber cable. By configuring an optical CT, it is significantly smaller than a conventional wire-wound CT, and it is also possible to integrate around the circumference of a conductor, making it possible to measure current with high accuracy. .

[発明の実施例] 以上説明した様な本発明による3相−話形ガス絶縁電気
機器の電圧電流検出装置の実施例を、第3図乃至第6図
を用いて具体的に説明する。
[Embodiments of the Invention] An embodiment of the voltage/current detection device for a three-phase/talk type gas insulated electric appliance according to the present invention as described above will be specifically described with reference to FIGS. 3 to 6.

まず、本発明による3相−話形ガス絶縁電気機器の電圧
電流検出装置の単線結線図は、第3図に示す。
First, a single line diagram of a voltage/current detection device for a three-phase, linear gas-insulated electric appliance according to the present invention is shown in FIG.

そして、禾゛発廟を実施するに当たり、主回路導体の構
成は正三角形配置及び二等辺三角形配置が考えられるが
、ここでは正三角形配置の3相一括母線に本発明を適用
した一実施例について、第4図及び第5図に基づいて説
明する。
In carrying out the construction, the configuration of the main circuit conductor can be an equilateral triangular arrangement or an isosceles triangular arrangement.Here, we will discuss an example in which the present invention is applied to a three-phase collective busbar in an equilateral triangular arrangement. , will be explained based on FIGS. 4 and 5.

S F6ガス等の絶縁性ガスを充填したタンク容器11
内には、3相の主回路導体U、V、Wが正三角形の頂点
上に配置されている。主回路導体U。
Tank container 11 filled with insulating gas such as SF6 gas
Inside, three-phase main circuit conductors U, V, and W are arranged on the vertices of an equilateral triangle. Main circuit conductor U.

V、W同士の中央にはそれぞれタンク容器11軸心上に
中心を有し半径方向に直線的に延びる接地グリッド12
a〜12cが設()られ、支え金具12−を介してタン
ク容器11に取り付けられており、これら3枚の接地グ
リッド12a〜12cによってタンク容器内部11が半
径方向に3等分割されている。また、主回路導体U、V
、Wの外周には、これと同軸に円筒状の70−テイング
電極Fu、Fv、Fwがそれぞれ設けられ、これら各7
0−ティング電極は夫々の接地グリッド12a〜12c
のうち近接する2個の接地グリッドに夫々の絶縁物13
を介して固定されている。なお、各誘電のタンク容器1
1、主回路導体U、V、W、接地グリッド12a〜12
c及びフローティング電極Fu〜FWの相対的な位置関
係は一定としている。各フローティング電極Fu〜FW
は、それぞれタンク容器11の各70−ティング電極F
LJ〜Fwに最も近接する位置に取り付けられたチュー
リップ形コンタクト14、及び絶縁密封端子15を貫通
する導116を介してタンク容器11外部に配された補
助コンデンサを含む変成部TLI。
At the center of each of the V and W is a grounding grid 12 that is centered on the axis of the tank container 11 and extends linearly in the radial direction.
a to 12c are provided and attached to the tank container 11 via support fittings 12-, and the tank container interior 11 is divided into three equal parts in the radial direction by these three grounding grids 12a to 12c. In addition, the main circuit conductors U, V
, W are provided with cylindrical 70-teating electrodes Fu, Fv, and Fw coaxially with the outer periphery of each of these 70
0-ting electrodes are connected to respective ground grids 12a-12c.
Each insulator 13 is attached to two adjacent grounding grids.
has been fixed through. In addition, each dielectric tank container 1
1. Main circuit conductors U, V, W, grounding grids 12a to 12
The relative positional relationship between c and the floating electrodes Fu to FW is constant. Each floating electrode Fu~FW
are each 70-ring electrode F of tank container 11, respectively.
The transformation unit TLI includes a tulip-shaped contact 14 attached at a position closest to LJ to Fw, and an auxiliary capacitor disposed outside the tank vessel 11 via a conductor 116 passing through an insulated sealed terminal 15.

Tv、Twに接続されている。また、このフローティン
グ電極Fu〜Fwは、その軸方向については接地グリッ
ド12a〜12cの中央部に配置され、且つ接地グリッ
ド長さ斐1は、70−ティング電極の長さIL2の概略
2倍以上としている。
Connected to Tv and Tw. Further, the floating electrodes Fu to Fw are arranged at the center of the grounding grids 12a to 12c in the axial direction, and the length of the grounding grid 1 is approximately twice or more the length IL2 of the 70-ring electrode. There is.

一方、各相の主回路導体U〜Wの夫々のフローディング
電極Fu−Fwii装置と同一箇所の外側円周」−には
、主回路導体を取巻く様に電流検出用のファラデー素子
17が配設され、同素子17の入出光端子には光フアイ
バーケーブル18が接続されている。主回路導体U〜W
と前記フローティング電極F LJ −F Wとの間に
は、接地グリッド側の前記絶縁物13の延長上に絶縁筒
19が設けられ、この絶縁筒19の中空孔19aを貫通
して、光フアイバーケーブル18がフローティング電極
Fu〜FWの外側空間に導出されている。更に、タンク
容器11にはPD用の絶縁密封端子15に並べて光フア
イバー密封部20が設Cブられ、光フアイバーケーブル
18は、この密封部20を介し、タンク容器11外部に
同じく変成部Tu−Twと並べて数個けられた光CT用
の発受光部(出力部)21に接続されている。
On the other hand, on the outer circumference of the main circuit conductors U to W of each phase at the same location as the floating electrode Fu-Fwii device, a Faraday element 17 for current detection is arranged so as to surround the main circuit conductor. An optical fiber cable 18 is connected to the input/output terminal of the element 17. Main circuit conductor U~W
An insulating cylinder 19 is provided on the extension of the insulator 13 on the ground grid side between the floating electrode F LJ -F W, and an optical fiber cable is passed through the hollow hole 19a of the insulating cylinder 19. 18 are led out to the outer space of the floating electrodes Fu to FW. Furthermore, an optical fiber sealed part 20 is provided in the tank container 11 in line with the insulated sealed terminal 15 for PD, and the optical fiber cable 18 is connected to the outside of the tank container 11 via the sealed part 20 to the same transformation part Tu-. It is connected to a light emitting/receiving section (output section) 21 for optical CT, which is arranged in parallel with Tw.

また、各相の主回路導体U〜Wの軸方向両端部は、接地
グリッド12a〜12cの両端よりも外側にJゴいて接
触子22が形成された着脱自在の構造とされ、これに合
せてタンク容器11も両側に7タンク部11aを有し、
同箇所にて図示しない他のタンクの7タンク部に対して
着脱自在とされている。
In addition, both ends of the main circuit conductors U to W of each phase in the axial direction have a detachable structure in which contacts 22 are formed outside both ends of the grounding grids 12a to 12c. The tank container 11 also has seven tank parts 11a on both sides,
It is said that it can be attached to and detached from seven tank parts of other tanks (not shown) at the same location.

以上の構成を有する本実施例の作用は、次の通っである
The operation of this embodiment having the above configuration is as follows.

◆ 即ち、PDとしては、各相のフローティング電極Fu−
Fwにて分圧された電位は、チューリップ形コンタクト
14及び導線16によって、タンク容器11外部の変成
部Tu−TWに導出され、ここで検出電圧は電気出力と
なってガス絶縁電気機器と隔離された監視Mに導かれる
◆ That is, as a PD, the floating electrode Fu-
The potential divided at Fw is led out to the transformation unit Tu-TW outside the tank container 11 through the tulip-shaped contact 14 and the conductor 16, where the detected voltage becomes an electrical output and is isolated from the gas-insulated electrical equipment. He is guided by a guard M.

ここで、タンク容器11内部空間は接地グリッド12a
〜12cにて電気的に3分割されている為、各相は電気
的に独立しており、他相からの静電誘導の影響が効果的
に排除されている。
Here, the internal space of the tank container 11 is grounded by a grounding grid 12a.
Since it is electrically divided into three parts at ~12c, each phase is electrically independent, and the influence of electrostatic induction from other phases is effectively eliminated.

この場合、フローティング電極Fu〜Fwを各相の主回
路導体U−Wの回りに同軸円筒状に設け、また、フロー
ティング電極F LJ −F wと接地電位(タンク容
器及び接地グリッド)との距離関係も等しくされている
為、各相の主回路導体U−Wを囲むフローティング電極
Fu〜FW間のそれぞれ静電容量C+ u、C+ V、
C+ W、及び各70−ティング電極Fu−FWとタン
ク容器11間のそれぞれの静電容IC2u、C2V、C
2Wは、それぞれC+ LJ=C+ V=C+ W、0
2 U=C2V=C2Wが成立する。従って、各相の7
0−テイング電極F u−F Wの電位を容易に同電位
に分担でき、分圧電位を制御する為の容量調整はほとん
ど不要どなっている。
In this case, the floating electrodes Fu to Fw are provided in a coaxial cylindrical shape around the main circuit conductor U-W of each phase, and the distance relationship between the floating electrode F LJ -F w and the ground potential (tank container and ground grid) Since the capacitances between the floating electrodes Fu and FW surrounding the main circuit conductor U-W of each phase are made equal, respectively, the capacitances C+ u, C+ V,
C+W, and the respective capacitances IC2u, C2V, C between each 70-ring electrode Fu-FW and the tank container 11
2W are respectively C+ LJ=C+ V=C+ W, 0
2 U=C2V=C2W holds true. Therefore, 7 of each phase
The potentials of the 0-ting electrodes F u - F W can be easily shared at the same potential, and there is almost no need for capacitance adjustment to control the divided potential.

また、フローディング電極Fu〜Fwは、その軸方向に
おいて接地グリッド12a〜12cの中央部に配置され
、且つ接地グリッド長さ愛唱はフローディング電極の長
さfL2の概略2倍以上とされている為、フローティン
グ電極Fu−FWはその端部においても十分に電気的に
独立しており、ここにおいて他相からの影響を受ける恐
れはない。
In addition, the floating electrodes Fu to Fw are arranged at the center of the grounding grids 12a to 12c in the axial direction, and the length of the grounding grid is approximately twice or more the length fL2 of the floating electrode. , the floating electrode Fu-FW is sufficiently electrically independent even at its ends, and there is no fear of being influenced by other phases here.

また、CTとしては、主回路導体U−Wの電流計測を行
うファラデー素子17を主回路導体U〜Wの外側円周上
にこれを取巻く様に配置した為、導体円周上を周回積分
でき、従って従来の巻線型CTと同等の4測精度が期待
できる。しかも、ごく小サイズの構成が可能である為、
スペースが大幅に縮tJ\される。
In addition, as a CT, the Faraday element 17 that measures the current of the main circuit conductors U-W is arranged on the outer circumference of the main circuit conductors U-W so as to surround them, so it is possible to integrate the circuit around the conductor circumference. Therefore, it can be expected to have the same measurement accuracy as a conventional wire-wound CT. Moreover, since it is possible to configure a very small size,
The space is significantly reduced.

また、光フアイバーケーブル18に高電圧が印加された
場合、絶縁破壊が生じる恐れがあるが、本実施例におい
ては光フアイバーケーブル18を絶縁筒19内に設けた
中空孔19aを介してフローティング電極Fu−FW外
部に引出ず様にしたので、絶縁信頼性がより向上する。
Furthermore, when a high voltage is applied to the optical fiber cable 18, there is a risk that dielectric breakdown will occur. -Since the FW is not drawn out to the outside, insulation reliability is further improved.

特に本発明の最大の長所は、3相のPD及び0丁を同一
タンク容器11の軸方向に対」ノで同一箇所の主回路導
体U−Wまわりに一括して配設した為、ガス絶縁電気機
器の軸方向長さの大幅な縮小が実現されることである。
In particular, the greatest advantage of the present invention is that the 3-phase PD and 0 units are all arranged around the main circuit conductor U-W at the same location in the axial direction of the same tank container 11, so gas insulation is achieved. A significant reduction in the axial length of electrical equipment is achieved.

例えば、第8図に示すものは本発明を単母線のケーブル
引込みのガス絶縁電気機器に適用した場合の一実施例で
あるが、第7図の従来形に比べ、P’D、0丁が一括し
て同タンクBUSa内に収納されている為、各々のスペ
ースが縮小される上に余分な接続母線BUS2も不要と
なり、ガス絶縁電気機器全体の長さ及び高さが共に大幅
に縮小化されている。
For example, what is shown in FIG. 8 is an example in which the present invention is applied to gas-insulated electrical equipment with a single-bus cable lead-in, but compared to the conventional type shown in FIG. Since they are all housed in the same tank BUSa, the space for each is reduced, and the extra connection bus bar BUS2 is also no longer required, significantly reducing both the length and height of the entire gas-insulated electrical equipment. ing.

更に、本実施例では各相のPD用密封端子15と光フア
イバー密封部20、及びPD用変成部と光CT用の発受
光部(出力部)21とを各々併設して設Gノだ為、構造
的に簡略・縮小化され、製造の効率化に繋がる。
Furthermore, in this embodiment, the sealed terminal 15 for PD of each phase, the optical fiber sealed part 20, the transformation part for PD, and the light emitting/receiving part (output part) 21 for optical CT are installed together. , the structure is simplified and downsized, leading to improved manufacturing efficiency.

その上、本実施例では、特にタンク容器11及び主回路
導体U−Wの軸方向両端を着脱自在構造とした為、他の
機器に影響を与えることなくユニット交換が用意に行え
、機器の試験及び損傷時の取り代え等の作業が極めて短
時間で1単にできる長所もある。
Furthermore, in this embodiment, the tank container 11 and both ends of the main circuit conductor U-W in the axial direction are designed to be detachable, so the unit can be easily replaced without affecting other equipment, and the equipment can be tested. Another advantage is that operations such as replacement in the event of damage can be done in a very short time and in a single step.

もちろん、本発明の3相−話形ガス絶縁電気機器の電圧
電流検出装置はこれに限ることなく、Pl)用の密封端
子や変成部とCT用の密封部や発受光部とを別の箇所に
設けたり、或いは一括して同一の箱に収納する構成どす
ることもできる。更に、必ずしもユニット構成としなく
とも、十分な効果が得られることはいうまでもない。
Of course, the voltage and current detection device for a three-phase, linear gas-insulated electric device of the present invention is not limited to this, and the sealed terminal and transformation section for PL and the sealed section and light emitting/receiving section for CT are located in different locations. It is also possible to have a configuration in which they are provided in a single box, or they can be stored all at once in the same box. Furthermore, it goes without saying that sufficient effects can be obtained without necessarily having a unit configuration.

なお、本発明の装置を主回路導体が二等辺三角形配置の
接続母線に適用する場合には、第6図に示すごとく、タ
ンク容器31を4枚の接地グリッド32a〜32dによ
って4等分割する。第5図において各相の主回路導体u
−7Wは、それぞれグリッド32a、32b間、グリッ
ド32b、320間、グリッド32c、32d間の中央
に設けられ、従ってグリッド32d、32a間は導体が
収納されない空間Sとなっている。他の構成については
、全実施例と全く同様であり、従ってその作用効果も同
じである。
In addition, when the device of the present invention is applied to a connection bus bar in which the main circuit conductors are arranged in an isosceles triangle, the tank container 31 is divided into four equal parts by four grounding grids 32a to 32d, as shown in FIG. In Figure 5, the main circuit conductor u of each phase
-7W is provided at the center between the grids 32a and 32b, between the grids 32b and 320, and between the grids 32c and 32d, respectively, and therefore the space S between the grids 32d and 32a is a space in which no conductor is accommodated. The other configurations are exactly the same as all the embodiments, and therefore the effects are also the same.

また、上記2つの実施例では、PDl、:おいてはいず
れも検出した電圧を変成部Tu〜Twにて電気出力とし
て取り出したが、本発明はこれに限らず、変成部を光変
換部に置き代え、CTと同様検出電圧を光出力として取
り出すものであっても良い。さらに、70−ティング電
極についても、円筒状のものに限らず板状のものでも良
い。
Furthermore, in the above two embodiments, the voltage detected in PDl, : is extracted as an electrical output at the transformers Tu to Tw, but the present invention is not limited to this, and the transformer is connected to the light converter. Alternatively, the detection voltage may be extracted as optical output like a CT. Furthermore, the 70-ring electrode is not limited to a cylindrical one, but may be a plate-shaped one.

更に、CTにおいても、光フアイバーケーブルをフロー
ティング電極の外側へ導出する位置は自由に選択でき、
例えば、密封端子側から導出する場合等が考えられる。
Furthermore, in CT, the position where the optical fiber cable is led out to the outside of the floating electrode can be freely selected.
For example, a case may be considered in which it is led out from the sealed terminal side.

[発明の効果] 以上説明した様に本発明によれば、タンク内を接地グリ
ッドにて等分割し、各相の導体の周囲に70=テイング
電極を設けてPDを構成し、且つ、各相の主回路導体の
70−ティング電極を設けた箇所に主回路導体を取巻く
様にファラデー素子を設け、これを光ファイバーに接続
してCTを構成することにより、PD及びCTを一括し
た構造どしてガス絶縁電気機器全体を縮小させながら、
しかも信相からの影響を受けずに各相の導体の電圧及び
電流を正確に計測できる3相−話形ガス絶縁電気機器の
電圧電流検出装置を提供できる。
[Effects of the Invention] As explained above, according to the present invention, the inside of the tank is equally divided by a grounding grid, and 70=teating electrodes are provided around the conductor of each phase to constitute a PD. A Faraday element is provided so as to surround the main circuit conductor at the location where the 70-ring electrode is provided on the main circuit conductor, and this is connected to an optical fiber to form a CT, thereby creating a structure that combines PD and CT. While reducing the overall size of gas-insulated electrical equipment,
Moreover, it is possible to provide a voltage and current detection device for three-phase, wire-type gas-insulated electrical equipment that can accurately measure the voltage and current of the conductor of each phase without being influenced by the signal phase.

特に、本発明は、CTにおいて導体に直接ファラデー素
子を巻付けているので、高い計測精度を得ることが可能
となり、巻付ける素子も少量で済むので、経済性も高い
。そして、製作工程においても、導体に素子を巻付ける
作業が従来の巻線型CTに比較して容易になり、■数の
大幅な削減ができる効果がある。
In particular, in the present invention, since the Faraday element is directly wound around the conductor in CT, it is possible to obtain high measurement accuracy, and the number of elements to be wound can also be small, making it highly economical. Also, in the manufacturing process, the work of winding elements around conductors is easier than in conventional wire-wound CTs, and the number of parts can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ従来の増幅形のコンデ゛ン
サ形計器用変成器を示す軸方向断面図及び横断面図、第
3図は本発明の装置を示す単線結線図、第4図及び第5
図はそれぞれ本発明による3相−話形ガス絶縁電気機器
の電圧電流検出装置の一実施例を示す軸方向断面図及び
横断面図、第6図は本発明による3相−話形ガス絶縁電
気機器のPDの他の実施例を示す横断面図、第7図は従
来型PD、CTを用いて構成したガス絶縁電気機器の一
例を示す概略図、第8図は本発明による3相−話形ガス
絶縁電気機器の電圧電流検出装置を用いて構成したガス
絶縁電気機器の一実施例を示す概略図である。 11.31・・・タンク容器、12a〜12G、32a
〜32d・・・接地グリッド、13・・・絶縁物、14
・・・チューリップ形コンタクト、15・・・絶縁密封
端子、16・・・導線、17・・・ファラデー素子、1
8・・・光フアイバーケーブル、19・・・絶縁筒、2
0・・・光フアイバー密封部、21・・・発受光部(出
力部)、22・・・接触子、U−W・・・主回路導体、
Fu−Fw・・・70−ディング電極、T u −T 
w・・・変成部。 出願人 株式会社 東芝 代理人 弁理士 木内光葬、5、− 第1図 第2図 第3図 第 41!I 第 51!1 11a 第6図
1 and 2 are an axial sectional view and a transverse sectional view, respectively, showing a conventional amplification type capacitor type instrument transformer, FIG. 3 is a single line diagram showing the device of the present invention, and FIG. 4 and fifth
The figures are an axial sectional view and a cross-sectional view, respectively, showing an embodiment of a voltage and current detection device for a three-phase, circular gas-insulated electric appliance according to the present invention, and FIG. FIG. 7 is a schematic diagram showing an example of gas-insulated electric equipment constructed using conventional PD and CT, and FIG. 8 is a cross-sectional view showing another embodiment of the PD of the device. 1 is a schematic diagram showing an embodiment of a gas insulated electrical device configured using a voltage/current detection device for a gas insulated electrical device. 11.31...Tank container, 12a to 12G, 32a
~32d...Grounding grid, 13...Insulator, 14
...Tulip-shaped contact, 15...Insulated sealed terminal, 16...Conductor wire, 17...Faraday element, 1
8... Optical fiber cable, 19... Insulating tube, 2
0... Optical fiber sealed part, 21... Light emitting/receiving part (output part), 22... Contact, U-W... Main circuit conductor,
Fu-Fw...70-ding electrode, T u -T
w... Metamorphosis part. Applicant Toshiba Corporation Agent Patent Attorney Mitsuo Kiuchi, 5, - Figure 1 Figure 2 Figure 3 Figure 41! I No. 51!1 11a Figure 6

Claims (7)

【特許請求の範囲】[Claims] (1)タンク容器内にS F6ガス等の絶縁ガスを封入
し、3相の主回路導体を一括して収納し、タンク容器内
部をその半径方向に3枚以上の接地グリッドにて等分割
し、これらの接地グリッドを各相の前記主回路導体がそ
れぞれ隣合う前記接地グリッド間の中央に位置する様に
配置し、各相の前記主回路導体の周囲には前記タンク容
器から絶縁状態で前記接地グリッドに支持されたフロー
ディング電極をそれぞれ配置し、このフローティング電
極にて分圧された電位を前記タンク容器より引き出し、
変成器又は光変換部に接続して電圧検出装置を構成し、 各相の前記主回路導体の前記フローティング電極を設け
た箇所には、導体を取巻く様に電流検出用のファラデー
素子を配置し、このファラデー素子の入出光端子には光
フアイバーケーブルを接続し、この光フアイバーケーブ
ルを前記タンク容器外部に導出し、発受光部に接続して
光電流検出装置を構成したことを特徴とする3相−話形
ガス絶縁電気機器の電圧電流検出装置。
(1) Fill the tank container with insulating gas such as SF6 gas, store the three-phase main circuit conductors all together, and divide the inside of the tank container equally in the radial direction with three or more grounding grids. , these ground grids are arranged so that the main circuit conductors of each phase are located in the center between the adjacent ground grids, and the main circuit conductors of each phase are surrounded by the ground grids insulated from the tank container. Floating electrodes supported by a grounding grid are arranged respectively, and the voltage divided by the floating electrodes is drawn out from the tank container,
A voltage detection device is configured by connecting to a transformer or an optical conversion unit, and a Faraday element for current detection is arranged so as to surround the conductor at a location where the floating electrode is provided on the main circuit conductor of each phase, An optical fiber cable is connected to the light input/output terminal of the Faraday element, and the optical fiber cable is led out to the outside of the tank container and connected to the light emitting/receiving section to constitute a photocurrent detection device. - Voltage and current detection devices for spoken gas insulated electrical equipment.
(2)光フアイバーケーブルが主回路導体とフローティ
ング電極との間に設けられた絶縁筒を介して70一テン
グ電極外部に引出されている特許請求の範囲第1項記載
の3相一括ガス絶縁電器機器の電圧電流検出装置。
(2) The three-phase bulk gas insulated electrical appliance according to claim 1, wherein the optical fiber cable is drawn out to the outside of the 70-prong electrode via an insulating tube provided between the main circuit conductor and the floating electrode. Equipment voltage and current detection device.
(3)主回路導体が正三角形配置であり、接地グリッド
が3枚である特許請求の範囲第1項記載の3相−話形ガ
ス絶縁電気機器の電圧電流検出装置。
(3) The voltage and current detection device for a three-phase, linear gas-insulated electric appliance according to claim 1, wherein the main circuit conductors are arranged in an equilateral triangle and the number of grounding grids is three.
(4)主回路導体が二等辺三角形配置であり、接地グリ
ッドが4枚である特許請求の範囲第1項記載の3相−話
形ガス絶縁電気機器の電圧電流検出装置。
(4) A voltage/current detection device for a three-phase, linear gas-insulated electric appliance according to claim 1, wherein the main circuit conductors are arranged in an isosceles triangle arrangement and the number of grounding grids is four.
(5)電圧検出装置用の絶縁密封端子と光フアイバー密
封部とが、各誘電にタンク容器上に併設されるか又は一
体に設置ノられでいる特許請求の範囲第1項記載の3相
−話形ガス絶縁電気機器の電圧電流検出装置。
(5) The three-phase system according to claim 1, wherein the insulating sealed terminal and the optical fiber sealed part for the voltage detection device are installed together or integrally on the tank container for each dielectric. Voltage and current detection device for spoken gas insulated electrical equipment.
(6)電圧検出装置用の変成部又は光変換部と光電流検
出装置用の発受光部とが、各相導にタンク容器外部空間
にて併設されるか又は一体に設けられている特許請求の
範囲第1項記載の3相−話形ガス絶縁電気機器の電圧電
流検出装置。
(6) A patent claim in which a transformation section or a light conversion section for a voltage detection device and a light emission/reception section for a photocurrent detection device are installed together or integrally in each phase conductor in the external space of the tank container. A voltage and current detection device for a three-phase, linear gas-insulated electric appliance according to item 1.
(7)タンク容器がその軸方向両端部に接続用のフラン
ジ部を具え、且つ、各相の主回路導体がその軸方向両端
部に接触子を形成したものである特許請求の範囲第1項
記載の3相−話形ガス絶縁電気機器の電圧電流検出装置
(7) Claim 1, wherein the tank container is provided with connection flanges at both ends in the axial direction, and the main circuit conductor of each phase has contacts formed at both ends in the axial direction. The voltage and current detection device for the three-phase, linear gas-insulated electrical equipment described above.
JP59117135A 1984-06-07 1984-06-07 Detector for voltage and current of three-phase integral type gas insulating electrical apparatus Pending JPS60261120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117135A JPS60261120A (en) 1984-06-07 1984-06-07 Detector for voltage and current of three-phase integral type gas insulating electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117135A JPS60261120A (en) 1984-06-07 1984-06-07 Detector for voltage and current of three-phase integral type gas insulating electrical apparatus

Publications (1)

Publication Number Publication Date
JPS60261120A true JPS60261120A (en) 1985-12-24

Family

ID=14704315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117135A Pending JPS60261120A (en) 1984-06-07 1984-06-07 Detector for voltage and current of three-phase integral type gas insulating electrical apparatus

Country Status (1)

Country Link
JP (1) JPS60261120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006736A (en) * 2014-06-16 2014-08-27 重庆大学 Grounding grid branch buried depth detecting method based on differential method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006736A (en) * 2014-06-16 2014-08-27 重庆大学 Grounding grid branch buried depth detecting method based on differential method

Similar Documents

Publication Publication Date Title
US7064267B2 (en) Gas insulating apparatus and method for locating fault point thereof
US7027280B2 (en) Gas insulating apparatus and method for locating fault point thereof
EP2909641B1 (en) Current and/or voltage sensing device for integrative use
JP3774604B2 (en) Gas insulated switchgear
EP2805344B1 (en) A sensing device for low-, medium- or high voltage switching devices
US6717499B2 (en) Transformer for gas insulated electric apparatus
JPS60261120A (en) Detector for voltage and current of three-phase integral type gas insulating electrical apparatus
JPS60260863A (en) Voltage and current detecting device of three phase batch type gas insulating electric apparatus
KR20030076180A (en) Gas insulation switch
CN217061742U (en) Tubular bus bin with voltage and current transformer
US11626244B2 (en) Assembly for connecting to a high-voltage grid
JP2004357376A (en) Measuring device for switchgear
CN111869025B (en) Device with a measuring transformer and a surge arrester
JPS6111522B2 (en)
JPS60261119A (en) Detector for voltage of three-phase integral type gas insulating electrical apparatus
US20240072521A1 (en) Arrangement of a current transformer core at an interface with a conical connector
WO2024006615A1 (en) Low power instrument transformer (lpit) in conical connector
JP2023119252A (en) Instrument transformer for power supply and demand and gas insulated switchgear
JPH0622420A (en) Switchgear
JPH0724885Y2 (en) Gas insulated electrical equipment
JP2000125425A (en) Gas-insulated switchgear
JPS6341789Y2 (en)
CN114300241A (en) Tubular bus bin with voltage current transformer
JP2022188802A (en) gas insulated switchgear
JPS59221671A (en) Optical voltage transformer device