JPS60260703A - Oil pressure control system - Google Patents

Oil pressure control system

Info

Publication number
JPS60260703A
JPS60260703A JP59117789A JP11778984A JPS60260703A JP S60260703 A JPS60260703 A JP S60260703A JP 59117789 A JP59117789 A JP 59117789A JP 11778984 A JP11778984 A JP 11778984A JP S60260703 A JPS60260703 A JP S60260703A
Authority
JP
Japan
Prior art keywords
valve
actuator
pressure
main switching
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59117789A
Other languages
Japanese (ja)
Inventor
Satoru Matsumoto
哲 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP59117789A priority Critical patent/JPS60260703A/en
Publication of JPS60260703A publication Critical patent/JPS60260703A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • F15B11/0445Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out" with counterbalance valves, e.g. to prevent overrunning or for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40584Assemblies of multiple valves the flow control means arranged in parallel with a check valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/46Control of flow in the return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/47Flow control in one direction only
    • F15B2211/473Flow control in one direction only without restriction in the reverse direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50545Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using braking valves to maintain a back pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4061Control related to directional control valves, e.g. change-over valves, for crossing the feeding conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Control And Safety Of Cranes (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To prevent securely the overrun of load and cavitation by interposing reducing valves in which a prescribed pressure is decreased under a particular condition in the piping lines which connect a main changeover valve connected to the discharge side of an oil pressure with a pilot valve which controls the main changeover valve. CONSTITUTION:Oil pressure packs 24a and 24b at the both ends of a main changeover valve 14A which is interposed in the circuit connecting a variable capacity type oil pressure pump 10A with an actuator 12 are connected to the outlet side of a pilot valve 28 via piping lines 26a and 26b. And throttle valves 30a and 30b each having a one-way valve are interposed in two piping lines 19a and 19b which connect the actuator 12 with the ports A and B of the main changeover valve 14A. And futher, reducing valves 32a and 32b in which a prescribed pressure in decreased in response to the increase of oil pressure difference between the throttle valves 30a and 30b exceeding a certain value are interposed in the said piping lines 26a and 26b. Thus, counterbalancing function can be provided to the main changeover valve 14A itself, and miniaturization etc. of the device can be achieved.

Description

【発明の詳細な説明】 本発明は慣性負荷が大きい建設、荷投機械等の油圧制御
装置に関し、一層詳細には負荷の逸走とアクチュエータ
におけるキャビテーションの発生をより効果的に防止で
きるように構成した油圧制御装置に関する。
[Detailed Description of the Invention] The present invention relates to a hydraulic control device for construction machines, material dumping machines, etc. that have large inertial loads, and more specifically, the present invention is configured to more effectively prevent load runaway and cavitation in actuators. It relates to a hydraulic control device.

一般に、旋回可能な建設機械に見られるような比較的慣
性負荷の大きい油圧機器を制御する油圧制御装置におい
ては、主切換弁の他に当該主切換弁とアクチュエータと
を結ぶ回路途中にカウンタバランス弁を介装し、負荷の
逸走やアクチュエータに発生するキャビテーションを防
止している。
In general, in a hydraulic control device that controls hydraulic equipment with a relatively large inertial load, such as that found in swingable construction machinery, in addition to the main switching valve, a counterbalance valve is installed in the circuit connecting the main switching valve and the actuator. is installed to prevent load deviation and cavitation that occurs in the actuator.

従来からこの種の装置として、例えば、第1図に示すよ
うな油圧制御装置が採用されている。
Conventionally, a hydraulic control device as shown in FIG. 1, for example, has been employed as this type of device.

この油圧制御装置では、先ず、油圧源である油圧ポンプ
10と油圧モータからなるアクチュエータ12とを結ぶ
回路途中に主切換弁】4が介装され、この主切換弁14
は図外のパイロット弁の操作によるパイロット圧力で切
換動作する。
In this hydraulic control device, first, a main switching valve 4 is interposed in the circuit connecting a hydraulic pump 10, which is a hydraulic pressure source, and an actuator 12, which is a hydraulic motor.
Switching is performed using pilot pressure by operating a pilot valve (not shown).

一方、前記アクチュエータ12と主切換弁14とを結ぶ
回路途中に4方切換弁からなるカウンタバランス弁16
が介装され、このカウンタバランス弁16は前記主切換
弁14を介して導かれるポンプ圧力に応動して切換動作
する。
On the other hand, a counterbalance valve 16 consisting of a four-way switching valve is installed in the middle of the circuit connecting the actuator 12 and the main switching valve 14.
is interposed, and this counterbalance valve 16 switches in response to the pump pressure introduced via the main switching valve 14.

従って、今、連続回転するアクチュエータ12の作動を
停止させるために主切換弁14を図示しないパイロット
弁により中立位置に切り換えると、油圧ポンプ10から
の圧油は主切換弁14のバイパスポートおよびバイパス
管路18を通ってタンク17側にバイパスされるため、
カウンタバランス弁16に作用するポンプ圧力が低下し
て当該カウンタバランス弁16が中立位置に切り換えら
れる。
Therefore, if the main switching valve 14 is now switched to the neutral position by a pilot valve (not shown) in order to stop the operation of the continuously rotating actuator 12, the pressure oil from the hydraulic pump 10 will be transferred to the bypass port of the main switching valve 14 and the bypass pipe. Since it is bypassed to the tank 17 side through passage 18,
The pump pressure acting on the counterbalance valve 16 decreases and the counterbalance valve 16 is switched to the neutral position.

これにより、アクチュエータ12と主切換弁14のAポ
ートおよびBポートとを結ぶ二つの管路19aおよび1
9bが共に遮断される一方、前記アクチュエータ12と
このアクチュエータ12の近傍で前記両回路19a、1
9bを接続すると共にその途中にリリーフ弁20a、2
0bが介装された管路22a、22bとで閉回路が形成
される(第1図矢印参照)。
As a result, two pipe lines 19a and 1 are connected between the actuator 12 and the A port and the B port of the main switching valve 14.
9b are both cut off, while the actuator 12 and both the circuits 19a and 19 near the actuator 12 are cut off.
9b and also connect relief valves 20a, 2 in the middle.
A closed circuit is formed with the pipes 22a and 22b in which the 0b is inserted (see the arrow in FIG. 1).

この結果、アクチュエータ12が油圧機器の慣性負荷を
受けて後、回転したとしても、アクチュエータ12には
常に作動油が循環することになり、吸込側の一時的な圧
力低下が防止されて、負荷0逸走村ff7?+、x−外
0おけ41ヤ 5.1ビテーシヨンの発生等が未然に回
避される。
As a result, even if the actuator 12 rotates after receiving the inertial load of the hydraulic equipment, hydraulic oil will always circulate in the actuator 12, preventing a temporary pressure drop on the suction side, and reducing the load. Issomura FF7? +, x-outside 0 and 41 ya 5.1 The occurrence of bitation etc. is avoided.

ところが、このような従来の油圧制御装置にあっては、
前記カウンタバランス弁16がポンプ圧力に直接応動す
る所謂直動形の切換弁で構成されるため、カウンタバラ
ンス弁16がハンチングを起こしやすいという操作上の
問題点があり、さらには、カウンタバランス弁16を無
制限に小さくできないことからバルブコストが高騰し、
装置全体としても高価になるという問題点があった。
However, with such conventional hydraulic control devices,
Since the counterbalance valve 16 is constructed of a so-called direct-acting switching valve that responds directly to pump pressure, there is an operational problem in that the counterbalance valve 16 is prone to hunting. Since the valve cannot be made infinitely smaller, valve costs are rising.
There was a problem that the device as a whole was expensive.

また、従来技術においては、アクチュエータ12のキャ
ビテーションを防止する手段として、大容量のメータア
ンプチェックをアクチュエータ12に付加する方式のも
のがあるが、この場合には、低温時のキャビテーション
が完全に防止できず、アクチュエータ12自体の損傷等
を招くという虞れがあった。
Furthermore, in the prior art, there is a method of adding a large-capacity meter amplifier check to the actuator 12 as a means to prevent cavitation of the actuator 12, but in this case, cavitation at low temperatures cannot be completely prevented. First, there is a risk that the actuator 12 itself may be damaged.

本発明はこのような問題点に着目してなされたもので、
主切換弁の切換動作のみで負荷の逸走やアクチュエータ
のキャビテーションが効果的に防止できる油圧制御装置
を提供することを目的とする。
The present invention was made by focusing on these problems.
It is an object of the present invention to provide a hydraulic control device that can effectively prevent load runaway and actuator cavitation only by switching a main switching valve.

前記の目的を達成するために、本発明では油圧ポンプと
、この油圧ポンプの吐出側に接続してアクチュエータに
対し圧油を送給する主切換弁と、この主切換弁をパイロ
ット圧力で操作するパイロット弁とを備え、前記アクチ
ュエータの入口側および出口側管路の両方若しくはいず
れか一方に絞り弁を設ける一方、前記主切換弁とパイロ
ット弁とを結ぶ管路に前記絞り弁の上流側と下流側の管
路の圧力差がある値を越えると当該圧力差の増大に応じ
てその設定圧力が低下する減圧弁を介装することを特徴
とする。
In order to achieve the above object, the present invention includes a hydraulic pump, a main switching valve that is connected to the discharge side of the hydraulic pump to supply pressure oil to an actuator, and a main switching valve that is operated by pilot pressure. A pilot valve is provided, and a throttle valve is provided in both or one of the inlet side and outlet side conduits of the actuator, and a conduit connecting the main switching valve and the pilot valve is provided with a throttle valve upstream and downstream of the throttle valve. It is characterized by interposing a pressure reducing valve that reduces the set pressure as the pressure difference increases when the pressure difference between the side pipes exceeds a certain value.

以下、本発明に係る油圧制御装置について好適な実施例
を挙げ、添付の図面に基づいて詳細に説明する。なお、
この場合、第1図に示す構成要素と同一の構成要素につ
いては同一の参照符号を付し、その詳しい説明は省略す
る。
EMBODIMENT OF THE INVENTION Hereinafter, preferred embodiments of a hydraulic control device according to the present invention will be described in detail based on the accompanying drawings. In addition,
In this case, the same reference numerals are given to the same components as those shown in FIG. 1, and detailed explanation thereof will be omitted.

第2図に本発明に係る油圧制御装置の第1の実施例を示
す。図に示すように可変容量型の油圧ポンプIOAとア
クチュエータ12とを結ぶ油圧回路途中に主切換弁14
Aが設けられる。この主切換弁14Aではその両端部に
設けた油圧バック24a、24bが管路26a、26b
を介してパイロット弁28に各々接続している。そして
、前記アクチュエータ12と主切換弁14AのAボート
、Bボートとを結ぶ二つの管路19a、19bの途中に
は1方向弁付きの絞り弁30a、30bが夫々介設され
る。
FIG. 2 shows a first embodiment of a hydraulic control device according to the present invention. As shown in the figure, a main switching valve 14 is installed in the hydraulic circuit connecting the variable displacement hydraulic pump IOA and the actuator 12.
A is provided. In this main switching valve 14A, hydraulic bags 24a and 24b provided at both ends of the main switching valve 14A are connected to pipes 26a and 26b.
are respectively connected to the pilot valves 28 via. Throttle valves 30a and 30b with one-way valves are interposed in the middle of two pipe lines 19a and 19b connecting the actuator 12 and the A boat and B boat of the main switching valve 14A, respectively.

一方、前記主切換弁14Aとパイロット弁28とを結ぶ
管路26a、26bには夫々減圧弁32a、32bが介
装される。これらの減圧弁32a、32bは前記絞り弁
30a、30bにおける油圧の圧力差がある値を越える
と当該圧力差の増大に応じてその設定圧力を低下する機
能を営む。すなわち、前記減圧弁32a、32bは管路
26a、26bを開閉制御する弁体部34a、34bと
、この弁体部34a134bの設定圧を定めるばね36
a、36bと、このばね36a、36bに係合するピス
トン部42a、42bとを含む。前記ピストン部42a
はその両側の油室38a+、3Bら1に管路40a1.
40a2を介して作用する絞り弁30bの圧力差により
摺動し、一方、前記ピストン部42bはその両側の油室
38b+、38シ9に管路40b+、40b2を介して
作用する絞り弁30aの圧力差により摺動するように構
成されている。
On the other hand, pressure reducing valves 32a and 32b are interposed in pipes 26a and 26b connecting the main switching valve 14A and the pilot valve 28, respectively. These pressure reducing valves 32a and 32b function to reduce the set pressure in accordance with an increase in the pressure difference between the hydraulic pressures in the throttle valves 30a and 30b when the pressure difference exceeds a certain value. That is, the pressure reducing valves 32a and 32b have valve bodies 34a and 34b that control the opening and closing of the pipes 26a and 26b, and a spring 36 that determines the set pressure of the valve body parts 34a and 134b.
a, 36b, and piston portions 42a, 42b that engage with the springs 36a, 36b. The piston part 42a
is connected to the oil chambers 38a+, 3B, etc.1 on both sides of the oil chambers 40a1.
The piston part 42b slides due to the pressure difference of the throttle valve 30b acting through the piston 40a2, and the piston part 42b slides due to the pressure difference of the throttle valve 30b acting on the oil chambers 38b+ and 38shi9 on both sides thereof through the pipes 40b+ and 40b2. It is configured to slide due to the difference.

さらに、前記アクチュエータ12と主切換弁14AのA
ボートおよびBポートとを結ぶ二つの管路19a、19
bには、両側逆止弁付きの継手44を介して主切換弁1
4AのRポートとタンク17とを結ぶ戻り側管路46か
ら分岐した管路48を接続しておく。なお、前記戻り側
管路46には油圧ポンプIOAと主切換弁14AのPボ
ートとを結ぶ管路50から分岐したバイパス管路18が
主切換弁14Aのバイパスポートを介して接続される。
Furthermore, A of the actuator 12 and the main switching valve 14A
Two pipe lines 19a, 19 connecting the boat and B port
b is connected to the main switching valve 1 via a joint 44 with check valves on both sides.
A pipe line 48 branched from a return side pipe line 46 connecting the R port of 4A and the tank 17 is connected. A bypass pipe 18 branched from a pipe 50 connecting the hydraulic pump IOA and the P boat of the main switching valve 14A is connected to the return pipe 46 via the bypass port of the main switching valve 14A.

次に、前記油圧ポンプIOAにはその吐出圧力を制御す
るコントローラ52が接続し、当該コントローラ52の
圧力室は管路54を介してシャトル弁56に接続してい
る。前記管路26aと管路26bは夫々管路58を介し
て前記シャトル弁56の両側に接続されると共にパイロ
ット弁28も夫々管路を介してシャトル弁56の両側に
接続しておく。
Next, a controller 52 for controlling the discharge pressure of the hydraulic pump IOA is connected to the hydraulic pump IOA, and a pressure chamber of the controller 52 is connected to a shuttle valve 56 via a conduit 54. The pipe line 26a and the pipe line 26b are respectively connected to both sides of the shuttle valve 56 via a pipe line 58, and the pilot valve 28 is also connected to both sides of the shuttle valve 56 via a pipe line, respectively.

この場合、コントローラ52は前記圧力室に作用するパ
イロット圧力が上昇するとポンプ吐出量が増大するよう
に構成する。
In this case, the controller 52 is configured so that the pump discharge amount increases as the pilot pressure acting on the pressure chamber increases.

なお、図中、参照符号60は主切換弁14AのPボート
およびバイパスポートと油圧ポンプIOAとを結ぶ管路
50に介設されたメインリリーフ弁を示す。
In the figure, reference numeral 60 indicates a main relief valve interposed in the pipe line 50 connecting the P boat and bypass port of the main switching valve 14A to the hydraulic pump IOA.

本発明に係る油圧制御装置は基本的には以上のように構
成されるものでり、次にその作用並びに効果について説
明する。
The hydraulic control device according to the present invention is basically constructed as described above, and its operation and effects will be explained next.

今、バイロフト弁28の操作により主切換弁14Aが所
定方向に切り換えられ、油圧ポンプIOAからの圧油は
アクチュエータ12に供給されて当該アクチュエータ1
2が所定方向に回転しているものとする。
Now, the main switching valve 14A is switched in a predetermined direction by operating the viroft valve 28, and the pressure oil from the hydraulic pump IOA is supplied to the actuator 12.
2 is rotating in a predetermined direction.

この状態からアクチュエータ12の回転を停止する場合
には、パイロット弁28のレバーを中立位置に移動させ
ればよい。すなわち、これにより管路25a、26bを
介して主切換弁14Aの両油圧パック24a、24bに
作用するバイロフト圧の圧力差が徐々に縮まることから
、主切換弁14Aは中立位置に移動しはじめ、やがて前
記圧力差が全くなくなって主切換弁14Aが完全に中立
位置に切り換わる。
To stop the rotation of the actuator 12 from this state, the lever of the pilot valve 28 may be moved to the neutral position. That is, as a result, the pressure difference between the biloft pressures acting on both hydraulic packs 24a and 24b of the main switching valve 14A via the pipes 25a and 26b gradually decreases, so the main switching valve 14A begins to move to the neutral position. Eventually, the pressure difference disappears and the main switching valve 14A is completely switched to the neutral position.

この時、主切換弁14AのAポート、Bポートは共に閉
ざされて当該Aポート、Bボートとアクチュエータ12
とを結ぶ管路19a並びに19bは共にロックされる。
At this time, the A port and B port of the main switching valve 14A are both closed, and the A port, B boat, and actuator 12 are closed.
Pipe lines 19a and 19b connecting the two are locked together.

従って、前記アクチュエータ12と当該アクチュエータ
12に接続する管路19a、19b1途上にリリーフ弁
20a、20bを介装した管路22a、22bとにより
閉回路が形成されることになる(第2図の矢印参照)。
Therefore, a closed circuit is formed by the actuator 12 and the pipes 22a and 22b, in which relief valves 20a and 20b are interposed in the pipes 19a and 19b1 connected to the actuator 12 (arrows in FIG. 2). reference).

この結果、アクチュエータ12には常に作動油が循環す
ることになり、前述したようにアクチュエータ12の停
止時における負荷の逸走およびアクチュエータ自体にキ
ャビテーションを発生することが未然に回避される。ま
た、この際、アクチュエータ12のドレン分の作動油は
管路48および継手44とを介してタンク17側より導
入される。さらにまた、この状態では油圧ポンプIOA
のコンI・ローラ52の圧力室に作用するパイロット圧
力が低下することから油圧ポンプIOAのポンプ吐出量
が減少し、ポンプ負荷が軽減されるに至る。
As a result, hydraulic oil is constantly circulated through the actuator 12, and as described above, load escape when the actuator 12 is stopped and cavitation occurring in the actuator itself can be avoided. Further, at this time, the hydraulic oil for the drain of the actuator 12 is introduced from the tank 17 side via the pipe line 48 and the joint 44. Furthermore, in this state, the hydraulic pump IOA
Since the pilot pressure acting on the pressure chamber of the controller I roller 52 is reduced, the pump discharge amount of the hydraulic pump IOA is reduced, and the pump load is reduced.

次いで、前記アクチュエータ12の回転作動中にアクチ
ュエータ12が慣性負荷により必要以上に回転させられ
て油圧ポンプIOAの吐出量が前記アクチュエータ12
の必要とする流量より不足した場合について説明する。
Then, during the rotation operation of the actuator 12, the actuator 12 is rotated more than necessary due to the inertial load, and the discharge amount of the hydraulic pump IOA is reduced by the amount of the actuator 12.
The case where the flow rate is less than the required flow rate will be explained.

すなわち、前記のような状態では、前記アクチュエータ
12と主切換弁14AのAポートおよびBボートとを結
ぶ管路19a、19bに介装した絞り弁3Qa、30b
ではその一次側と二次側における圧油の圧力差がある値
以上になる。従って、この圧力差に応動する減圧弁32
a、32bでは油室38a2.38ラクの圧力の増大に
よりピストン部42a、42bがばね36a、36bの
荷重を小さくする方向に移動してその設定圧力が低下す
る。
That is, in the above state, the throttle valves 3Qa, 30b installed in the pipes 19a, 19b connecting the actuator 12 and the A port and B boat of the main switching valve 14A
In this case, the pressure difference between the pressure oil on the primary and secondary sides exceeds a certain value. Therefore, the pressure reducing valve 32 responds to this pressure difference.
In a and 32b, due to an increase in the pressure in the oil chamber 38a, the piston portions 42a and 42b move in a direction that reduces the load on the springs 36a and 36b, and the set pressure thereof decreases.

これにより、前記減圧弁32a、32bが介装された管
路26a、26bを介して主切換弁14Aに作用するパ
イロット圧力も低下し主切換弁14Aは所定の切換位置
から中立位置側へと移動しその開度を減少する。すなわ
ち、主切換弁のRボートの開口面積を絞ることになる。
As a result, the pilot pressure acting on the main switching valve 14A via the pipes 26a and 26b in which the pressure reducing valves 32a and 32b are installed also decreases, and the main switching valve 14A moves from the predetermined switching position to the neutral position side. Decrease the opening of the shiso. In other words, the opening area of the R boat of the main switching valve is reduced.

この結果、アクチュエータ12の速度が所定値以下に抑
制され、当該状態時のアクチュエータ12の吸込側にお
りる一時的な圧力低下が防止されてアクチュエータ12
のキャビテーションの発生や負荷の逸走が未然に回避さ
れる。
As a result, the speed of the actuator 12 is suppressed to a predetermined value or less, and a temporary pressure drop on the suction side of the actuator 12 in this state is prevented.
The occurrence of cavitation and load escape are avoided.

さらに、第2図の状態からアクチュエータ12を所定方
向に回転させたい時は、パイロット弁28のレバーをそ
の切換方向に対応する位置に切り換えればよい。これに
より、管路25a、26bを介して主切換弁14Aの両
油圧パンク24aおよび24bに作用するパイロット圧
に圧力差が生じ、主切換弁14Aは所定方向に徐々に切
り換えられる。この際、前記パイロット圧の増大に応じ
て油圧ポンプIOAのコントローラ52も所定方向に移
動するため、結局、主切換弁14Aはポンプ圧力の増大
に応じて徐々に切り換わる。つまり、 、 、(1 第1図のカウンタバランス弁16を有した装置と同様の
作用がなされるのである。□ 次に、第3図に本発明に係る油圧制御装置の第2の実施
例を示す。この実施例において、第1図並びに第2図に
示す参照符号と同一の参照符号は同一の構成要素を示す
ものとする。
Furthermore, when it is desired to rotate the actuator 12 in a predetermined direction from the state shown in FIG. 2, the lever of the pilot valve 28 can be switched to a position corresponding to the switching direction. As a result, a pressure difference is created between the pilot pressures acting on both the hydraulic blowouts 24a and 24b of the main switching valve 14A via the pipes 25a and 26b, and the main switching valve 14A is gradually switched in a predetermined direction. At this time, since the controller 52 of the hydraulic pump IOA also moves in a predetermined direction in accordance with the increase in the pilot pressure, the main switching valve 14A is eventually switched gradually in accordance with the increase in pump pressure. In other words, , , (1) The same effect as that of the device having the counterbalance valve 16 shown in FIG. 1 is performed. Next, FIG. 3 shows a second embodiment of the hydraulic control device according to the present invention. In this embodiment, the same reference numerals as those shown in FIGS. 1 and 2 indicate the same components.

この実施例は第2図の装置における絞り弁30a 、3
0bに相当する絞り弁30cを主切換弁14aのRボー
トに接続する戻り側管路46に介設し、その上流側と下
流側の管路内圧力を管路40a1.40a2並びに管路
40b+、40ら2を介して第2図の装置と同様の減圧
弁32a、32bの油室38aI、38a2並びに38
b+、38b2に夫々印加するようにしている。
This embodiment uses the throttle valves 30a, 3 in the device shown in FIG.
A throttle valve 30c corresponding to 0b is interposed in the return pipe 46 connecting to the R boat of the main switching valve 14a, and the pressure inside the pipe on the upstream and downstream sides is adjusted to the pipes 40a1, 40a2, 40b+, 40 and 2 to the oil chambers 38aI, 38a2 and 38 of the pressure reducing valves 32a, 32b similar to the device shown in FIG.
b+ and 38b2, respectively.

これによれば、アクチュエータ12の回転作動中に当該
アクチュエータ12が慣性負荷により必要以上に回転さ
せられた場合、前記戻り側管路46に介設した絞り弁3
0cの上流側と下流側の圧力差がある値を越すことにな
り、これによって当該圧力差に応動する減圧弁32a、
32bにより2 主切換弁14Aが所定の切換位置から中立位置側に移動
し、その開度を減少することになる。このため、第2図
と同様に当該状態時の負荷の逸走およびキャビテーショ
ンの発生が未然に回避される。また、本実施例では絞り
弁30cが1個ですむため配管等が簡略化されるという
利点も有している。
According to this, when the actuator 12 is rotated more than necessary due to inertial load during the rotation operation of the actuator 12, the throttle valve 3 interposed in the return side pipe 46
The pressure difference between the upstream side and the downstream side of 0c exceeds a certain value, and the pressure reducing valve 32a responds to the pressure difference.
32b causes the two main switching valves 14A to move from the predetermined switching position to the neutral position and reduce their opening degree. Therefore, as in FIG. 2, load escape and cavitation in this state are prevented. Furthermore, this embodiment has the advantage that only one throttle valve 30c is required, so piping and the like can be simplified.

以上説明したように、本発明によれば油圧アクチュエー
タの入口側および出口側管路の両方若しくはいずれか一
方の管路に絞り弁を設ける一方、主切換弁とパイロット
弁とを結ぶ管路に前記絞り弁の上流側と下流側の管路の
圧力差がある値を越えると当該圧力差の増大に応じてそ
の設定圧力が低下する減圧弁を設け、主切換弁自体にカ
ウンタバランス機能をもたせるようにしている。従って
、装置自体が一層小型となり、しかも簡単な構成で安価
ですむ。さらに、負荷の逸走やキャビテーションが確実
に防止できるという効果も得られる。また、ポンプ圧力
に応動するカウンタバランス弁を用いないため、弁のハ
ンチング等の問題点もなくなる。
As explained above, according to the present invention, a throttle valve is provided in both or one of the inlet side and outlet side pipelines of a hydraulic actuator, and the throttle valve is provided in the pipeline connecting the main switching valve and the pilot valve. When the pressure difference between the upstream and downstream pipe lines of the throttle valve exceeds a certain value, a pressure reducing valve is provided that reduces the set pressure as the pressure difference increases, and the main switching valve itself has a counterbalance function. I have to. Therefore, the device itself becomes smaller, has a simple structure, and is inexpensive. Furthermore, it is possible to reliably prevent load runaway and cavitation. Furthermore, since a counterbalance valve that responds to pump pressure is not used, problems such as valve hunting are also eliminated.

以上、本発明について好適な実施例を挙げて説明したが
、本発明はこの実施例に限定されるものではなく、本発
明の要旨を逸脱しない範囲において種々の改良並びに設
計の変更が可能なことは勿論である。
Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited to these embodiments, and various improvements and changes in design can be made without departing from the gist of the present invention. Of course.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の油圧制御装置の油圧回路図、第2図は本
発明に係る油圧制御装置の第1の実施例を示す油圧回路
図、第3図は本発明の油圧制御装置の第2の実施例を示
す油圧回路図である。 10、 IOA・・油圧ポンプ 12・・アクチュエータ 14.14A・・主切換弁 16・・カウンタバランス弁 17・・タンク 18・・バイパス管路19a、 19
b ・・管路 20a120b・・リリーフ弁 22a122b・・管路 24a、24b・・油圧パンク 26a、26b・・管路 2日・・パイロット弁30a
〜30c・・絞り弁 32a 、32b ・、減圧弁3
4a、34b・・弁体部 36a 、 36b ・・ば
ね38a1.38a2.38b+、381)2・・油室
40a+、40a2.40151.4oら2・・管路4
2a、42b・・ピストン部 44・・継手 46・・戻り側管路 48・・管路 5o・・管路 52・・コントローラ 54・・管路 56・・シャトル弁 58・・管路 60・・メインリリーフ弁
Fig. 1 is a hydraulic circuit diagram of a conventional hydraulic control device, Fig. 2 is a hydraulic circuit diagram showing a first embodiment of a hydraulic control device according to the present invention, and Fig. 3 is a hydraulic circuit diagram showing a second embodiment of a hydraulic control device of the present invention. FIG. 2 is a hydraulic circuit diagram showing an embodiment of the present invention. 10, IOA...Hydraulic pump 12...Actuator 14.14A...Main switching valve 16...Counter balance valve 17...Tank 18...Bypass pipe line 19a, 19
b...Pipe line 20a120b...Relief valve 22a122b...Pipe line 24a, 24b...Hydraulic puncture 26a, 26b...Pipe line 2nd...Pilot valve 30a
~30c... Throttle valve 32a, 32b... Pressure reducing valve 3
4a, 34b... Valve body portion 36a, 36b... Spring 38a1.38a2.38b+, 381) 2... Oil chamber 40a+, 40a2.40151.4o etc. 2... Pipe line 4
2a, 42b...Piston portion 44...Joint 46...Return side pipe 48...Pipe line 5o...Pipe line 52...Controller 54...Pipe line 56...Shuttle valve 58...Pipe line 60... main relief valve

Claims (1)

【特許請求の範囲】 (1) 油圧ポンプと、この油圧ポンプの吐出側に接続
してアクチュエータに対し圧油を送給する主切換弁と、
この主切換弁をパイロット圧力で操作するパイロット弁
とを備え、前記アクチュエータの入口側および出口側管
路の両方若しくはいずれか一方に絞り弁を設ける一方、
前記主切換弁とパイロット弁とを結ぶ管路に前記絞り弁
の上流側と下流側の管路の圧力差がある値を越えると当
該圧力差の増大に応じてその設定圧力が低下する減圧弁
を介装することを特徴とする油圧制御装置。 (2、特許請求の範囲第1項記載の装置において、減圧
弁は管路を開閉制御する弁体部とこの弁体部の設定圧を
定めるばねとこのばねに係合すると共にその両側の油室
に絞り弁の上流側と下流側の管路の圧力が夫々印加され
るピストン部とから構成されてなる油圧制御装置。 (3)特許請求の範囲第1項または第2項記載の装置に
おいて、絞り弁はアクチュエータと主切換弁のAポート
およびBボートとを結ぶ二つの管路に夫々設けるよう構
成してなる油圧制御装置。 (4) 特許請求の範囲第1項または第2項記載の装置
において、絞り弁は主切換弁のRボートに接続する管路
に設けるよう構成してなる油圧制御装置。
[Claims] (1) A hydraulic pump; a main switching valve connected to the discharge side of the hydraulic pump to supply pressure oil to an actuator;
a pilot valve for operating this main switching valve with pilot pressure, and a throttle valve is provided on both or either one of the inlet side and outlet side pipes of the actuator;
A pressure reducing valve in which the pressure difference between the upstream and downstream pipes of the throttle valve in a pipe connecting the main switching valve and the pilot valve exceeds a certain value, and the set pressure decreases as the pressure difference increases. A hydraulic control device characterized by intervening. (2. In the device set forth in claim 1, the pressure reducing valve includes a valve body for controlling the opening and closing of the pipe, a spring that determines the set pressure of this valve body, and a spring that engages with the spring and has oil on both sides of the valve body. A hydraulic control device comprising a piston portion to which the pressures of the pipes on the upstream side and the downstream side of the throttle valve are respectively applied to a chamber. (3) In the device according to claim 1 or 2. , a hydraulic control device configured such that the throttle valve is provided in two pipes connecting the actuator and the A port and B boat of the main switching valve, respectively. (4) A hydraulic control device according to claim 1 or 2. In this hydraulic control device, the throttle valve is installed in a conduit connected to the R boat of the main switching valve.
JP59117789A 1984-06-08 1984-06-08 Oil pressure control system Pending JPS60260703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117789A JPS60260703A (en) 1984-06-08 1984-06-08 Oil pressure control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117789A JPS60260703A (en) 1984-06-08 1984-06-08 Oil pressure control system

Publications (1)

Publication Number Publication Date
JPS60260703A true JPS60260703A (en) 1985-12-23

Family

ID=14720342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117789A Pending JPS60260703A (en) 1984-06-08 1984-06-08 Oil pressure control system

Country Status (1)

Country Link
JP (1) JPS60260703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030651A1 (en) * 1995-03-24 1996-10-03 Komatsu Ltd. Driving device for a hydraulic motor
JP2010202084A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Electric hydraulic pressure type power steering system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030651A1 (en) * 1995-03-24 1996-10-03 Komatsu Ltd. Driving device for a hydraulic motor
US5930997A (en) * 1995-03-24 1999-08-03 Komatsu Ltd. Driving device for a hydraulic motor
JP2010202084A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Electric hydraulic pressure type power steering system

Similar Documents

Publication Publication Date Title
US3878864A (en) Bypass valve
US4383412A (en) Multiple pump load sensing system
JPS5852082B2 (en) Ekiriyokushikiseigiyosouchi
US4531369A (en) Flushing valve system in closed circuit hydrostatic power transmission
US5699665A (en) Control system with induced load isolation and relief
US3550505A (en) Hydraulic system including two work circuits
JPH0369861A (en) Hydraulic closed circuit
JPS60260703A (en) Oil pressure control system
CN116771741A (en) Hydraulic system
US4022023A (en) Hydraulic circuit for controlling actuators in a construction vehicle
JPS60260704A (en) Oil pressure control system
US5291821A (en) Hydraulic circuit for swivel working machine
JPH07158607A (en) Valve device for regenerative circuit
KR100594851B1 (en) Hydraulic breaking circuit
JPS60249707A (en) Hydraulic control device
JPH1037905A (en) Actuator operating circuit
JPS5919122Y2 (en) hydraulic drive circuit
JPS5830152Y2 (en) How to use the pump
CN112343881A (en) Balanced pressure self preservation protects hydraulic system
JPS6316601B2 (en)
WO2024111381A1 (en) Hydraulic pressure circuit
JPH0768963B2 (en) Hydraulic 3-port continuous valve and hydraulic control device using the same
JPH08100805A (en) Pressure control valve
JPH0147642B2 (en)
JPH03290532A (en) Hydraulic drive unit for civil engineering and building equipment