JPS6026006A - Coagulation of polymer latex - Google Patents

Coagulation of polymer latex

Info

Publication number
JPS6026006A
JPS6026006A JP13446483A JP13446483A JPS6026006A JP S6026006 A JPS6026006 A JP S6026006A JP 13446483 A JP13446483 A JP 13446483A JP 13446483 A JP13446483 A JP 13446483A JP S6026006 A JPS6026006 A JP S6026006A
Authority
JP
Japan
Prior art keywords
tank
solid
adjustment tank
liquid separation
fed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13446483A
Other languages
Japanese (ja)
Inventor
Teruhiko Sugimori
輝彦 杉森
Takayuki Tajiri
象運 田尻
Akio Hironaka
弘中 章夫
Hideaki Habara
英明 羽原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP13446483A priority Critical patent/JPS6026006A/en
Publication of JPS6026006A publication Critical patent/JPS6026006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To achieve energy preservation and upgrading of product properties by process rationalization, by recirculating a filtrate obtained form solid/liquid separation to a pH adjustment tank for reuse. CONSTITUTION:A polymer latex (e.g., a latex obtained by emulsion-polymerizing an ethylenic monomer) is fed to a coagulation tank 1, where it is treated with a coagulating agent (e.g., sulfuric acid). The formed slurry is fed to a pH adjustment tank 2, where its pH is adjusted with a pH adjusting agent (e.g., sodium hydroxide). This slurry is then fed to a solidification tank 3, where it is treated at a predetermined solidification temperature, and then fed to a solid/liquid separation tank 4. The filtrate obtained here is recirculated through a line 5 to the pH adjustment tank 2. At this time, an alkaline substance is supplied from an alkali reservoir 6. By the recirculation and reuse of the filtrate, the process can be rationalized and at the same time, energy necessary for solid/liquid separation or the like, can reduced. In addition, it is possible to obtain a product property which is better than that obtained when an alkaline substance is added directly to the pH adjustment tank.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は重合体ラテックスの凝固方法に関し、更に詳し
くは、乳化重合法における凝固工程を改良した重合体ラ
テックスの凝固方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 1] The present invention relates to a method for coagulating a polymer latex, and more particularly to a method for coagulating a polymer latex by improving the coagulating step in an emulsion polymerization method.

[発明の技術的背景とその問題点J 従来、乳化重合法によって製造される熱可塑性樹脂は、
重合・凝固・洗浄中脱水嗜乾燥等の一連の工程を経て乾
燥粉体としてtりていた。これらの工程については、表
面形状、色、艶等の製品物性の観点及び工程の合理化、
省エネルギー等の観点から数多くの研究が行われている
。一般に重合・凝固工程を改善することにより、その後
の洗浄・脱水・乾燥工程が大幅に改善されることがある
[Technical background of the invention and its problems J Conventionally, thermoplastic resins produced by emulsion polymerization method are
After going through a series of steps such as polymerization, coagulation, dehydration during washing, and drying, it was turned into a dry powder. Regarding these processes, we will focus on product properties such as surface shape, color, and gloss, as well as process rationalization.
Many studies are being conducted from the perspective of energy conservation, etc. Generally, by improving the polymerization/coagulation process, subsequent washing, dehydration, and drying processes can be significantly improved.

しかしながら、凝固工程において、工程の合理化、省エ
ネルギー等については、今だ満足すべき改良法が見い出
されていない。更に、製品物性の点については、凝析後
のp H調整処理段階においてアルカリ性物質を用いて
pHを調整する必要があるが、この際、重合体粒子の軟
凝集状態を帷持して該粒子の再乳化を防11−すること
は困難であり、またアルカリ性物質によって局所的に重
合体の耐熱性が低下する等の欠点があったため、良好な
製品物性を得ることが困難であった。
However, in the coagulation process, no satisfactory improvement method has yet been found for streamlining the process, saving energy, etc. Furthermore, regarding the physical properties of the product, it is necessary to adjust the pH using an alkaline substance in the pH adjustment treatment step after coagulation, but at this time, the soft aggregation state of the polymer particles is maintained and the particles are It is difficult to prevent re-emulsification of the polymer, and there are also drawbacks such as the heat resistance of the polymer being locally reduced by alkaline substances, making it difficult to obtain good product properties.

[発明の目的1 本発明は、工程の合理化及び省エネルギーが達成でき、
しかも良好な製品物性を得ることができる重合体ラテッ
クスの凝固方法を提供することを[1的とする。
[Objective of the invention 1 The present invention can achieve process rationalization and energy saving,
[1] It is an object of the present invention to provide a method for coagulating a polymer latex which can also provide good physical properties of the product.

[発明の概要] 本発明は、重合体ラテックスの凝固工程において、固化
槽より吐出された重合体スラリーを固液分離した後、得
られたろ液をp H調整槽に循環せしめて再利用するこ
とを特徴とする。
[Summary of the Invention] The present invention provides a method for reusing a polymer slurry discharged from a solidification tank by separating solid and liquid in a coagulation process of polymer latex, and then circulating the obtained filtrate to a pH adjustment tank. It is characterized by

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明で用いられる重合体ラテックスきは、広義の意味
のエマルジョン・ラテックスのことであり、いかなる種
類のものであってもよい。
The polymer latex used in the present invention is an emulsion latex in a broad sense and may be of any type.

本発明の凝固工程をブロック図に基づき説明する。重合
反応により得られたラテックスは凝析槽1に供給され、
凝析剤で処理された後、生成したスラリーはPH調整槽
2に供給される。該槽2内にはp H調整剤が添加され
、pH調整が行われた後、固化槽3に供給されて所定の
固化温度にて処理された後、固液分離槽4に供給される
。固液分離により得られたろ液は、循環ライン5を通っ
て1呼びpH調整槽2に循環される。なお、ろ液循環の
際、循環ライン5にはアルカリ槽6からアルカリ性物質
が供給される。
The solidification process of the present invention will be explained based on a block diagram. The latex obtained by the polymerization reaction is supplied to a coagulation tank 1,
After being treated with a coagulant, the generated slurry is supplied to the pH adjustment tank 2. A pH adjuster is added to the tank 2 to adjust the pH, and then supplied to the solidification tank 3 where it is treated at a predetermined solidification temperature, and then supplied to the solid-liquid separation tank 4. The filtrate obtained by solid-liquid separation is circulated to the 1-nominal pH adjustment tank 2 through the circulation line 5. Note that during filtrate circulation, an alkaline substance is supplied to the circulation line 5 from the alkaline tank 6 .

凝析操作において用いる凝析剤としては、例えば、硫酸
、塩酸、(6酸、リン酪、亜硫酸等の酸類;硫酸マグネ
シウム、1j、l化マグネシウム、11化カルシウム、
硫酸アルミニウム、jス1化アルミニウム、カリ明y1
等の多価金属用類が挙げられる。
Coagulants used in the coagulation operation include, for example, sulfuric acid, hydrochloric acid, (acids such as 6-acid, phosphobutyric acid, sulfite, etc.; magnesium sulfate, 1j, magnesium chloride, calcium 11,
Aluminum sulfate, aluminum monoxide, potassium chloride
Examples include polyvalent metals such as

p H調整槽に供給されるp H調整剤としてはアルカ
リ性物質が使用され、該物質としては、例えば、水酸化
す)・リウム、水酸化カリウム等のアルカリ金属の水酸
化物;水酸化カルシウム、水酸化マグネシウム等のアル
カリ土類金属の水酸化物;アルカリ金属又はアルカリ土
類金属の酸化物;炭酸ナトリウム、炭酸カリウム、炭酸
水素ナトリウム、リン酸す:・リウム等の弱酸の塩類及
びアンモニア水;水溶性アミン類等が挙げられ、水溶液
のpHを7.0以上とすることができるものは全て使用
可能である。これらのアルカリ性物質の添加量は、pH
調整41!に供給される凝析スラリーのPH値より 0
.1以1−高く、かつアルカリ性物質を添加した後の凝
析スラリー全体のPH値が7.0以下になるような範囲
の量であることが好ましい。該範囲内で添加する場合に
は、アルカリ性物質が有効に作用し、また重合体粒子の
軟凝集状態を維持して該粒子の再乳化を有効に防止する
ことができる。更に、重合体の加水分解等を防止するこ
ともできる。
An alkaline substance is used as the pH adjusting agent supplied to the pH adjusting tank, and the substance includes, for example, alkali metal hydroxide such as hydroxide, potassium hydroxide, calcium hydroxide, Hydroxides of alkaline earth metals such as magnesium hydroxide; oxides of alkali metals or alkaline earth metals; salts of weak acids such as sodium carbonate, potassium carbonate, sodium bicarbonate, phosphoric acid, and aqueous ammonia; Examples include water-soluble amines, and all those that can make the pH of the aqueous solution 7.0 or higher can be used. The amount of these alkaline substances added depends on the pH
Adjustment 41! From the pH value of the coagulated slurry supplied to 0
.. It is preferable that the amount is in a range of 1 to 1-higher and that the pH value of the entire coagulated slurry after adding the alkaline substance is 7.0 or less. When added within this range, the alkaline substance acts effectively, maintains the soft agglomeration state of the polymer particles, and effectively prevents re-emulsification of the particles. Furthermore, it is also possible to prevent hydrolysis of the polymer.

本発明を実施するに際しては、用いるラテックスの種類
により凝析操作時の温度及びpH調整時の温度が若干異
なってくる。例えば、単量体成分としてアクリル酸エチ
ル及びアクリル酸ブチルのいずれか一方、又はこれらの
混合物が0を超え25重量%以下、メタクリル酸メチル
及びスチレンのいずれか一方、又はこれらの混合物が7
5重量%以」−100重量%未満から構成される共重合
体ラテックスの場合には、前記温度は0〜92℃の範囲
であることが好ましい。アクリル酸ブチルが35〜45
重柚%で、メタクリル酸メチル及びスチレンのいずれか
一方、又はこれらの混合物が65〜55重量%からなる
共重合体ラテックスの場合には、0〜83°Cの範囲で
あることが奸才しい。また、アクリル酸ブチルとスチレ
ンとからなる共重合体ラテックススジ0〜フ0重に%(
固形分)とメタクリル酸メチル50〜30重昂%を重合
反応せしめて得られる共重合体ラテックスの場合には、
 0〜82℃が好ましい。
When carrying out the present invention, the temperature during the coagulation operation and the temperature during pH adjustment will vary slightly depending on the type of latex used. For example, as a monomer component, either ethyl acrylate or butyl acrylate, or a mixture thereof is more than 0 and 25% by weight or less, and either methyl methacrylate and styrene, or a mixture thereof is 7% by weight.
In the case of a copolymer latex composed of 5% by weight or more and less than 100% by weight, the temperature is preferably in the range of 0 to 92°C. Butyl acrylate is 35-45
In the case of a copolymer latex consisting of 65 to 55% by weight of either methyl methacrylate or styrene, or a mixture thereof, the temperature range is preferably from 0 to 83 °C. . In addition, copolymer latex streaks consisting of butyl acrylate and styrene 0% to 0% by weight (
In the case of a copolymer latex obtained by polymerizing methyl methacrylate (solid content) and 50 to 30% methyl methacrylate,
0-82°C is preferred.

アクリル酸ブチル40〜60重14%、アクリロニトリ
ル10〜20重量%及びメチ1フフ30〜40重量%か
らなる共重合体ラテ・ンクスの場合には、0〜88°C
が好ましい。
In the case of copolymer latex consisting of 40-60% butyl acrylate, 14% by weight of acrylonitrile, 10-20% by weight of acrylonitrile, and 30-40% by weight of methi-1 fufu, the temperature is 0-88°C.
is preferred.

固化槽に供給されたスラリーは、所定の固化温度範囲内
で処理することが好ましい。凝析スラリー中の重合体粒
子を固くして、機械的に安定化せしめるためである。該
温度範囲は、凝析スラリー中の重合体粒子が軟凝集状態
であることから、凝析操作時の温度及びpH調整時の温
度よりも高くなければならない。仮に、固化温度が凝析
時の温度及びP I(調整時の温度よりも低ければ、凝
析粒子は完全に固化し、重合体粒子は融着し合って機械
的、化学的に安定化されてしまうため、アルカリ性物質
の添加効果が得られず、また本発明効果も発現しない。
The slurry supplied to the solidification tank is preferably treated within a predetermined solidification temperature range. This is to harden the polymer particles in the coagulated slurry and mechanically stabilize them. This temperature range must be higher than the temperature during the coagulation operation and the temperature during pH adjustment since the polymer particles in the coagulation slurry are in a soft agglomerated state. If the solidification temperature is lower than the temperature during coagulation and the temperature during adjustment, the coagulated particles will be completely solidified and the polymer particles will be fused together and stabilized mechanically and chemically. Therefore, the effect of adding an alkaline substance cannot be obtained, and the effect of the present invention cannot be achieved.

1−!1液分―法としては、例えば、重力を利用する重
力ろ過性、i!I!続操作に適した真空ろ適法、比重差
を利用した遠心分動法及びろ過速度の速い加圧ろ過V、
等が挙げられ、常法に従い固液分離される。111られ
たろ液は固液分離装置に接続された循環ラインを介して
再びpH調整槽に循環されるが、この際、前記アルカリ
性物質がアルカリ槽から循環ラインに供給される。該物
質の添加量は、前述と同様に、pH調整槽に供給される
凝析スラリーのp H値より 0.1以上高く、かつア
ルカリ性物質を添加した後の凝析スラリー全体のpH値
が7.0以下になるような範囲の量であることが好まし
い。一方、固液分離により得られた固形分は、乾燥後、
例えば、安定剤等を添加し、スクリュー押出機によりペ
レット化した後、射出成形機等で成形品とされる。
1-! As a one-liquid method, for example, gravity filtration using gravity, i! I! Vacuum filtration method suitable for continuous operation, centrifugal separation method using specific gravity difference, and pressure filtration V with high filtration speed.
etc., and solid-liquid separation is performed according to conventional methods. The filtrate 111 is again circulated to the pH adjustment tank via the circulation line connected to the solid-liquid separator, and at this time, the alkaline substance is supplied from the alkali tank to the circulation line. As described above, the amount of the substance added is 0.1 or more higher than the pH value of the coagulated slurry supplied to the pH adjustment tank, and the pH value of the entire coagulated slurry after adding the alkaline substance is 7. The amount is preferably within a range of .0 or less. On the other hand, the solid content obtained by solid-liquid separation is
For example, after adding a stabilizer and the like, pelletizing with a screw extruder, it is made into a molded product using an injection molding machine or the like.

[発明の効果1 本発明によれば、固液分離により得られたろ液を循環再
利用することができるため、工程の合理化が図れ、しか
も固液分離等に必要なエネルギーを極めて節減すること
が11丁能となる。また、アルカリ性物質を循環ライン
に供給することにより、該物質をp H調整槽に直接添
加する場合よりも、良好な製品物性を1+jることがi
t7能となる。更に、アルカリ性物質を前記所定範囲量
で添加することにより、重合体粒子の#、、a集状態を
維持して該粒子の再乳化を防11−することができ、ま
た重合体の削熱性低下防11−を図ることが可能となる
[Effect of the invention 1 According to the present invention, the filtrate obtained by solid-liquid separation can be recycled and reused, so the process can be rationalized and the energy required for solid-liquid separation etc. can be significantly reduced. There will be 11 Noh plays. In addition, by supplying an alkaline substance to the circulation line, it is possible to improve product physical properties by 1+j compared to when the substance is directly added to the pH adjustment tank.
It becomes t7 Noh. Furthermore, by adding an alkaline substance in an amount within the predetermined range, it is possible to maintain the agglomerated state of the polymer particles and prevent re-emulsification of the particles, and also to reduce the heat-reducing properties of the polymer. It becomes possible to achieve defense 11-.

[発明の実施例1 実施例1 ポリブタジェン45重品部に、メチシン35重縫部及び
アクリロニトリル20重醍部をグラフト重合させた固形
分42重jd%の水系ラテックスを、5.5 El /
minの流速で凝析槽に供給した。また、同時に、 5
%硫酸及び水を各々1.41 /ff1in及び41/
ll1inの流速で凝析槽に供給し、P H1,5,温
度40°Cに維持した。核種でi!IX続的に凝析した
固形分濃度lO%のスラリーを固液分離し、固形分をp
H調整槽に供給した。供給時の固形分濃度は約35重量
%であった。なお、pH調整槽には、循環ラインを介し
て再供給されたろ液が含まれており、またアルカリ槽か
ら循環ラインを通じて供給された水酸化すトリウムによ
り、核種はp H2,0,70°Cに維持されている。
[Example 1 of the Invention Example 1 A water-based latex with a solid content of 42 wt.
It was supplied to the coagulation tank at a flow rate of min. Also, at the same time, 5
% sulfuric acid and water at 1.41/ff1in and 41/in, respectively.
It was supplied to the coagulation tank at a flow rate of 11 in., and the pH was maintained at 1.5 and the temperature at 40°C. i in nuclide! IX Continuously coagulated slurry with a solid content concentration of 10% is subjected to solid-liquid separation, and the solid content is
It was supplied to the H adjustment tank. The solids concentration at the time of feeding was approximately 35% by weight. The pH adjustment tank contains the filtrate that was resupplied via the circulation line, and the nuclide was adjusted to pH 2, 0, and 70°C by the thorium hydroxide supplied from the alkaline tank through the circulation line. is maintained.

次いで、pH調整槽から吐出されたスラリーを固化槽に
供給し、82°Cに加熱した後、固液分#機に供給した
。固液分離後、ろ液を循環ラインを介してpH調整槽に
再供給し、一方、固形分は回収した。得られた固形分を
乾燥後、これに少量の安定剤を加え、スクリュー押出機
を用いてペレット状に成形し、射出成形機で試験片を作
成した。この試験片について外観観察を行ったところ、
外観及び色調は共に極めて良好であった。
Next, the slurry discharged from the pH adjustment tank was supplied to a solidification tank, heated to 82°C, and then supplied to a solid-liquid separator. After solid-liquid separation, the filtrate was re-supplied to the pH adjustment tank via the circulation line, while the solid content was recovered. After drying the obtained solid content, a small amount of stabilizer was added thereto, and it was molded into pellets using a screw extruder, and test pieces were created using an injection molding machine. When we observed the appearance of this test piece, we found that
Both appearance and color tone were extremely good.

また、循環ラインを使用せずに、凝析槽から固形分10
%のスラリーを直接p)(調整槽に供給して得られた試
験片と上記試験片とを比較したところ、ろ液を循環した
場合は、熱量的に約60%の省エネルギーを図ることが
できた。
Also, without using a circulation line, solid content of 10
A comparison of the test piece obtained by supplying the slurry directly to the adjustment tank and the test piece above showed that if the filtrate was circulated, energy savings of approximately 60% could be achieved in terms of calorific value. Ta.

一方、循環ラインを使用せずに、水酸化ナトリウムを直
接pH調整槽に供給して上記と同様に試験片を作成した
ところ、該試験片は一部が黄変しており、色調及び外観
が極めて悪かった。これは水酸化ナトリウムが局部的に
重合体に吸収されたため変質したものと推定される。
On the other hand, when a test piece was prepared in the same manner as above by supplying sodium hydroxide directly to the pH adjustment tank without using a circulation line, a portion of the test piece turned yellow and the color tone and appearance changed. It was extremely bad. This is presumed to be because sodium hydroxide was locally absorbed into the polymer, resulting in deterioration.

実施例2 ポリブタジェン50平綴部に、メチルメタクリレート2
0重置部及びスチレン30重量部をグラフト重合させた
固形分38重星形の水系ラテックスを、3.51 /m
inの流速で凝析槽に供給した。また、同時に、10%
硫酸及び水を各々1.51 /win及び51重win
の流速で凝析槽に供給し、P H1,0,温度40°C
に維持した。核種で連続的に凝析した固形分濃度10%
のスラリーを固液分離し、固形分をpH調整槽に供給し
た。供給時の固形分濃度は約35重量%であった。なお
、p H調整槽には、循環ラインを介して再供給された
ろ液が含まれており、またアルカリ槽から循環ラインを
通じて供給された水酸化ナトリウムにより、核種はp 
H2,5,65°0に維持されている。次いで、P H
調整槽から吐出されたスラリーを固化槽に供給し、83
°0に加熱した後、固液分離機に供給した。固液分離後
、ろ液を循環ラインを介してpH調整槽に再供給し、一
方、固形分は回収した。
Example 2 Methyl methacrylate 2 on polybutadiene 50 binding part
A water-based latex with a solid content of 38 double star shape obtained by graft polymerizing 0 parts by weight and 30 parts by weight of styrene was mixed at 3.51/m
was fed to the coagulation tank at a flow rate of in. Also, at the same time, 10%
Sulfuric acid and water at 1.51/win and 51/win respectively
It is supplied to the coagulation tank at a flow rate of
maintained. Solid content concentration 10% continuously coagulated with nuclides
The slurry was subjected to solid-liquid separation, and the solid content was supplied to a pH adjustment tank. The solids concentration at the time of feeding was approximately 35% by weight. Note that the pH adjustment tank contains the filtrate that was resupplied via the circulation line, and the nuclide was
H2, 5, 65° maintained at 0. Then P H
The slurry discharged from the adjustment tank is supplied to the solidification tank, and 83
After heating to 0°, it was fed to a solid-liquid separator. After solid-liquid separation, the filtrate was re-supplied to the pH adjustment tank via the circulation line, while the solid content was recovered.

得られた固形分から実施例1と同様にして試験片を作成
し、この試験片について外観観察を行ったところ、外観
及び色調は共に極めて良好であった。
A test piece was prepared from the obtained solid fraction in the same manner as in Example 1, and the appearance of this test piece was observed, and the appearance and color tone were both extremely good.

また、循環ラインを使用せずに、凝析槽から固形分lO
%のスラリーを直接pH調整槽に供給して得られた試験
片と上記試験片とを比較したところ、ろ液を循環した場
合は、熱量的に約60%の省エネルギーを図ることがで
きた。
Also, without using a circulation line, solid content lO can be removed from the coagulation tank.
A comparison of the above test piece with a test piece obtained by directly supplying % slurry to the pH adjustment tank revealed that when the filtrate was circulated, energy savings of about 60% could be achieved in terms of calorific value.

一方、循環ラインを使用せずに、水酩化ナトリウムを直
接pH調整槽に供給して上記と同様に試験片を作成した
ところ、該試験片は一部が黄変しており、色調及び外観
が極めて悪かった。
On the other hand, when a test piece was prepared in the same manner as above by supplying sodium hydroxide directly to the pH adjustment tank without using a circulation line, a part of the test piece turned yellow, and the color tone and appearance was extremely bad.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の凝固工程のブロック図を示したものであ
る。 ■・・・凝析槽 2・・・pH調整槽 1 3・・・固化槽 4・・・固液分離槽 5・・・循環ライン 6・・・アルカリ槽2
The drawing shows a block diagram of the solidification process of the present invention. ■... Coagulation tank 2... pH adjustment tank 1 3... Solidification tank 4... Solid-liquid separation tank 5... Circulation line 6... Alkali tank 2

Claims (2)

【特許請求の範囲】[Claims] (1)重合体ラテックスの凝固工程において、固化槽よ
り吐出された重合体スラリーを固液分離した後、fjJ
られたろ液をpH調整槽に循環せしめて再利用すること
を特徴とする重合体ラテックスの凝固方法。
(1) In the polymer latex coagulation process, after solid-liquid separation of the polymer slurry discharged from the solidification tank, fjJ
A method for coagulating polymer latex, characterized in that the collected filtrate is recycled by circulating it in a pH adjustment tank.
(2)循環経路にアルカリ性物質を供給することを特徴
とする特許請求の範囲第1項記載の重合体ラテックスの
凝固方法。
(2) The method for coagulating a polymer latex according to claim 1, characterized in that an alkaline substance is supplied to the circulation path.
JP13446483A 1983-07-25 1983-07-25 Coagulation of polymer latex Pending JPS6026006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13446483A JPS6026006A (en) 1983-07-25 1983-07-25 Coagulation of polymer latex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13446483A JPS6026006A (en) 1983-07-25 1983-07-25 Coagulation of polymer latex

Publications (1)

Publication Number Publication Date
JPS6026006A true JPS6026006A (en) 1985-02-08

Family

ID=15128935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13446483A Pending JPS6026006A (en) 1983-07-25 1983-07-25 Coagulation of polymer latex

Country Status (1)

Country Link
JP (1) JPS6026006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022891A1 (en) * 2001-09-13 2003-03-20 Lg Chem, Ltd. Process for preparing polymer latex resin powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331786A (en) * 1976-09-06 1978-03-25 Nippon Zeon Co Ltd Production of emulsion polymerized rubber
JPS5521403A (en) * 1978-07-31 1980-02-15 Japan Synthetic Rubber Co Ltd Preparation of terpolymer rubber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331786A (en) * 1976-09-06 1978-03-25 Nippon Zeon Co Ltd Production of emulsion polymerized rubber
JPS5521403A (en) * 1978-07-31 1980-02-15 Japan Synthetic Rubber Co Ltd Preparation of terpolymer rubber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022891A1 (en) * 2001-09-13 2003-03-20 Lg Chem, Ltd. Process for preparing polymer latex resin powder
US7064149B2 (en) 2001-09-13 2006-06-20 Lc Chem, Ltd. Process for preparing polymer latex resin powder

Similar Documents

Publication Publication Date Title
EP1673406B1 (en) Graft copolymer latex and method for preparing dried powder thereof
JPS6026006A (en) Coagulation of polymer latex
JPS63156830A (en) Production of polymer powder by spray drying
JP2890387B2 (en) Method for producing granular polymer
JPH0465852B2 (en)
JP5064701B2 (en) (Rubber-reinforced) Styrenic resin composition recovery method and apparatus
JP2874890B2 (en) Thermoplastic polymer powder mixture
JPH01198609A (en) Cooh-group-containing polymer, mixture of cooh-group-containing polymer and filler and use thereof
JPS5927776B2 (en) Molding resin composition
JPH07278238A (en) Preparation of graft copolymer powder
JPS621703A (en) Method of recovering polymer
JPH09286815A (en) Method for recovering polymer from latex
JPS6121151A (en) Transparent forming composition
JP3703124B2 (en) Method for recovering rubber-containing polymer
JPS5817528B2 (en) Method for producing graft copolymer
JPH0324487B2 (en)
JP3457044B2 (en) Method for producing thermoplastic resin
JPH0324486B2 (en)
GB1139268A (en) Process for the manufacture of uniform solid rubber blends
JP2888937B2 (en) Method for producing a powdery mixture of thermoplastic polymers
JPH0423646B2 (en)
JP2000026526A (en) Production of polymer latex
KR100694460B1 (en) Method for Manufacturing Rubber Grafted Copolymer Powder
EP0072405B1 (en) Process for the preparation of free-flowing, non adhesive vinyl chloride graft polymers
JPH07278239A (en) Production of graft copolymer powder