JPS60260037A - X-ray resist material - Google Patents

X-ray resist material

Info

Publication number
JPS60260037A
JPS60260037A JP59116076A JP11607684A JPS60260037A JP S60260037 A JPS60260037 A JP S60260037A JP 59116076 A JP59116076 A JP 59116076A JP 11607684 A JP11607684 A JP 11607684A JP S60260037 A JPS60260037 A JP S60260037A
Authority
JP
Japan
Prior art keywords
ray
resist
sensitive resin
amines
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59116076A
Other languages
Japanese (ja)
Inventor
Koichi Okada
浩一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59116076A priority Critical patent/JPS60260037A/en
Publication of JPS60260037A publication Critical patent/JPS60260037A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To prevent reduction in the sensitivity due to the dependency on atmosphere by incorporating amines into sensitive resin. CONSTITUTION:The photon energy of soft X-rays radiated from an X-ray source is absorbed in the sensitive resin part of an X-ray resist by the photoelectric effect, and photoelectrons or Auger electrons having a certain extent of energy are released in the X-ray resist from atoms in the sensitive resin part. The secondary electrons produced in the sensitive resin part produce excited molecules, atoms or ions in the X-ray resist, and various free radicals are produced from the excited or ionized matter. A reaction such as cross-linking takes place in the X-ray resist by a reaction between the free radicals, and the patterning of the resist by the irradiation of X-rays is attained. When amines are incorporated into the X-ray sensitive resin, the effect of oxygen in exposure atmosphere can be absorbed by the amines as an antioxidant, so an X-ray resist material having fixed sensitivity independently of atmosphere is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、1μm以下の微細パターンの複写に威力を発
揮するX線リングラフィの分野におけるX線レジスト材
料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray resist material in the field of X-ray phosphorography, which is effective in copying fine patterns of 1 μm or less.

(従来技術とその問題点) X線露光技術は、サブミクロン幅パターンの確実な高解
像度性の故に、将来の極めて有望な複写技術として期待
され、現在、各所で精力的な研究、開発が行われている
。本発明者も、長ら<XS露光技術の研究に携わってき
たが、一つの重要な問題点を見出した。第1図に、問題
点と思われる実験事実を示す。
(Prior art and its problems) X-ray exposure technology is expected to be an extremely promising copying technology in the future due to its reliable high resolution of submicron width patterns, and is currently being actively researched and developed in various places. It is being said. The present inventor has also been involved in research on XS exposure technology, and discovered one important problem. Figure 1 shows experimental facts that seem to be problematic.

本図は、特性X線(この場合は波長5.41AのMoL
cl @)をネガレジストPGMIC1X線マスクを介
さないで直接照射した場合における、PGMA残存膜厚
の露光雰囲気空気圧力依存性を示している。MoLa線
のドース量は、低圧空気雰囲気において、〜60影の残
存膜厚を得る66 m ’ / eraに設定された。
This figure shows characteristic X-rays (in this case MoL with a wavelength of 5.41A).
cl@) is directly irradiated without passing through a negative resist PGMIC1 X-ray mask, the dependence of the remaining PGMA film thickness on the exposure atmosphere air pressure is shown. The MoLa wire dose was set at 66 m'/era to obtain a residual film thickness of ~60 mm in a low-pressure air atmosphere.

圧力が増加すると、その空気雰囲気での特性X線の吸収
が多くなるから、その場合は66m’/cdのドース量
がPGMAに与えられるように露光時間を多くして調整
された。第1図から分かるように、圧力が増加するき、
PGMA残存膜厚はかなり減少している。ネガレジスト
のこのような現象、すなわち空気圧力の増加による架橋
の減退反応は、詳細な機構については解明されていない
が、空気中の酸素による効果であることが実験的に認め
られている。例えば、1975年に発行された刊行物ジ
ャーナル・オブ拳バキュウム・サイエンス・テクノロジ
ー(J、Vac、8ci、Technol 、) 蝦り
株第2020〜2024頁に同様な効果が指摘されてい
る。第1図は、空気性力の増加とともにP GMAレジ
ストの感度が減少していくことを意味する。
As the pressure increases, the absorption of characteristic X-rays increases in the air atmosphere, so in that case the exposure time was adjusted to give a dose of 66 m'/cd to PGMA. As can be seen from Figure 1, as the pressure increases,
The remaining PGMA film thickness is considerably reduced. Although the detailed mechanism of such a phenomenon in negative resists, that is, the reduction reaction of crosslinking due to an increase in air pressure, has not been elucidated, it has been experimentally recognized that it is an effect of oxygen in the air. For example, a similar effect is pointed out in a publication published in 1975, Journal of Vacuum Science and Technology (J, Vac, 8ci, Technol, ), Erimikabu, pages 2020 to 2024. Figure 1 means that the sensitivity of the PGMA resist decreases with increasing aerodynamic forces.

図で最高圧力は2670Paであり、そうときの残存膜
厚は、低圧における約55%の値から約35%まで落ち
ている。第2図において、特性X線としてPdLa線(
波長4.37A)を用いた場合での同様の圧力依存性が
示されている。この場合も、第1図とほぼ同様の現麹が
みられており、圧力2670Paにおける残存膜厚は、
低圧における約55%の値から約34%まで落ちている
In the figure, the maximum pressure is 2670 Pa, and the residual film thickness at that time has dropped from about 55% at low pressure to about 35%. In Figure 2, the PdLa line (
A similar pressure dependence is shown using a wavelength of 4.37 A). In this case as well, the present koji is almost the same as in Figure 1, and the remaining film thickness at a pressure of 2670 Pa is
It has dropped from the value of about 55% at low pressure to about 34%.

以上述べたレジストの感度が露光雰囲気の空気圧力に対
して大きく変化することは、次のような観点からX線露
光技術において問題である。現状において、X線露光シ
ステムの露光雰囲気は、真空、Heガス、あるいは大気
(空気)においてそれぞれ可能であり、最適の雰囲気は
定まっていない。第1及び2図の空気圧力領域は6.7
〜267QPaであるが、残存膜厚が図のように大きく
変化することは、定められた残存膜厚を得る必要がある
デバイス作製において大きな支障となる。以上が第一の
観点である。第二の観点として大気中露光方式に関連し
た事項がある。大気中露光方式は、X線露光システムの
設計及び構成のしやすさにおいて優れており、将来にお
いて有望な露光方式と考えられる。特にステップ・アン
ド・リピート型のシステムにおいて一層そのメリットが
生かされやすい。ところが、第1.2図から分かるよう
に、大気中(〜105P’a)では、感度が大巾に低下
することが予想される。前述した酸素による架橋減退反
応が極めて大きくなるからである。レジストの感度の低
下は、X線露光におけるスループットに直接関係してく
るため、重大な問題点である。X線露光の将来に渡る大
きな課題は、高スループツト化である。その高スループ
ツト達成の一つの大きな手段は、高感度X線レジストの
開発である。
The above-described large change in the sensitivity of the resist with respect to the air pressure of the exposure atmosphere is a problem in X-ray exposure technology from the following viewpoints. At present, the exposure atmosphere of the X-ray exposure system can be vacuum, He gas, or atmosphere (air), and the optimal atmosphere has not been determined. The air pressure area in Figures 1 and 2 is 6.7
~267QPa, but the fact that the residual film thickness varies greatly as shown in the figure is a major hindrance in device fabrication where it is necessary to obtain a predetermined residual film thickness. The above is the first viewpoint. The second point is related to the atmospheric exposure method. The atmospheric exposure method is excellent in the ease of designing and configuring an X-ray exposure system, and is considered to be a promising exposure method in the future. This advantage is particularly easy to take advantage of in step-and-repeat systems. However, as can be seen from Figure 1.2, in the atmosphere (~105P'a), the sensitivity is expected to drop significantly. This is because the aforementioned crosslinking reduction reaction due to oxygen becomes extremely large. Decrease in resist sensitivity is a serious problem because it is directly related to throughput in X-ray exposure. A major challenge for the future of X-ray exposure is increasing throughput. One major means of achieving this high throughput is the development of a highly sensitive X-ray resist.

高感度レジストは、例えばネガレジストにおいて得やす
い。ところが、その高感度ネガレジストにおいて第1,
2図のような雰囲気依存性による感度の低下現除がみら
れるとなると、重大な問題点である。
A highly sensitive resist is easily obtained, for example, as a negative resist. However, in this high-sensitivity negative resist, the first,
If a decrease in sensitivity due to atmosphere dependence is observed as shown in Figure 2, this is a serious problem.

(発明の目的) 本発明の目的は、このような従来の欠点を除去せしめて
、露光雰囲気の変化に拘わらす一定の感度を示すX線レ
ジスト材料を提供することにある。
(Objective of the Invention) An object of the present invention is to eliminate such conventional drawbacks and to provide an X-ray resist material that exhibits constant sensitivity regardless of changes in exposure atmosphere.

(発明の構成) 本発明によれば、基板上に形成されたX線感応性樹脂に
、X線を照射して露光するX線露光に用いられるX線レ
ジスト材料において、前記感応性樹脂にアミン類を含ま
せたことを特徴とするX線レジスト材料が得られる。
(Structure of the Invention) According to the present invention, in an X-ray resist material used for X-ray exposure in which an X-ray sensitive resin formed on a substrate is exposed by irradiating X-rays, the sensitive resin has amines. An X-ray resist material is obtained which is characterized by containing the following.

(構成の詳細な説明) 以下本発明の構成について説明する。(Detailed explanation of configuration) The configuration of the present invention will be explained below.

X線露光におけるX線レジストの感応機構の概略は次の
通りである。X線源から放射される波長数〜数十Aの軟
X線の有する光量子エネルギーはX線レジストの感応性
樹脂部に、光電効果によって吸収される。光量子エネル
ギーを吸収し7た前記感応性樹脂部の原子からある大き
さのエネルギーをもった光電子・オージェ電子がX線レ
ジスト内に放出される。これら二次電子のエネルギーの
大きさは、入射した軟X線の光量子エネルギー値から原
子内の束縛電子の結合エネルギー値を引いた値である。
An outline of the sensitivity mechanism of an X-ray resist during X-ray exposure is as follows. Photon energy of soft X-rays with a wavelength of several to several tens of amperes emitted from an X-ray source is absorbed by the sensitive resin portion of the X-ray resist due to the photoelectric effect. Photoelectrons or Auger electrons with a certain amount of energy are emitted into the X-ray resist from the atoms of the sensitive resin portion that have absorbed the photon energy. The magnitude of the energy of these secondary electrons is the value obtained by subtracting the binding energy value of bound electrons within the atom from the photon energy value of the incident soft X-ray.

このようにして、感応性樹脂部で生じた二次電子は、X
線レジスト内に励起分子、原子またはイオン等を生じさ
せる。これら励起物または電離したものから、種々の遊
離基が発生する。
In this way, the secondary electrons generated in the sensitive resin part are
Excited molecules, atoms, ions, etc. are generated within the line resist. Various free radicals are generated from these excited or ionized substances.

最終的に、これら遊線基間の反応によって、x#!レジ
スト内で架橋等の反応が起り、X線照射によるレジスト
のパターンニングが達成される。現状でXiレジストと
用いられているものは、ネ゛ガでは、cop(米国ベル
研究所で開発)、PGMA(日立で開発)、5EL−N
(ソマール工業で開発)、OFI C遠回で開発)等で
あり、ポジでは、1’BS(ベル研究所で開発)、FB
M及びFPM(遠回で開発)等である。どのレジストも
、X線に感応する感応性樹脂部を含んでいる。
Finally, the reaction between these free radicals results in x#! Reactions such as crosslinking occur within the resist, and patterning of the resist is achieved by X-ray irradiation. Currently, the negatives used as Xi resists include COP (developed by Bell Laboratories, USA), PGMA (developed by Hitachi), and 5EL-N.
(developed by Somar Industries), OFI C circuit), etc., and for positive, 1'BS (developed by Bell Laboratories), FB
M and FPM (developed in a round trip), etc. Each resist includes a sensitive resin portion that is sensitive to X-rays.

ところが、先に問題点として述べたように、空気中の酸
素によって正常な反応が減退されるとなると、重大な障
害を生じる。この酸素の作用は、特にネガレジストにお
いて顕著な場合が多いが、ポジでも起り得る。これは、
X線レジストの架橋等の反応には、二次電子によって生
じた遊離基間の反応が支配的であることを上に説明した
が、この遊離基間の反応に酸素が何らかのかたちで係わ
る可能性が強いということだと思われる。
However, as mentioned above as a problem, if the normal reactions are reduced by oxygen in the air, serious problems occur. This effect of oxygen is often particularly noticeable in negative resists, but it can also occur in positive resists. this is,
As explained above, reactions such as crosslinking of X-ray resists are dominated by reactions between free radicals generated by secondary electrons, but it is possible that oxygen is involved in some form in the reactions between these free radicals. This seems to mean that it is strong.

あるいは、酸素がX線レジストの感応性樹脂部の主鎖を
切断するという考えもあり、ネガレジストの場合は、明
らかに架橋の減退を促進することになる。要するに詳細
な機構についてはいま一つ明確ではないが、酸素が正常
なX線によるX線レジストとし反応を阻止することは確
かのようである。
Alternatively, there is also the idea that oxygen cuts the main chain of the sensitive resin part of the X-ray resist, and in the case of a negative resist, this obviously promotes the reduction of crosslinking. In short, although the detailed mechanism is still not clear, it seems certain that oxygen serves as an X-ray resist to normal X-rays and blocks the reaction.

そこで、本発明では、X線に感応する感応性樹脂にアミ
ン類を含ませる。アミン類は、酸化防止剤の効果を有す
る。例えば、フェニル−β−ナフチルアミン、他の芳香
族アミン、アルデヒドアミン縮合物等は純化ゴムや合成
ゴムの酸化防止剤として使用できる。またフェニル−α
−ナフチルアミン、他の芳香族アミン類は潤滑油の酸化
防止剤として使用できる。アミン類は、アンモニアの水
素原子を炭化水素残基Rで置換した化合物であって、置
換された炭化水素残基の数によって第一アミンR−NH
,,第ニアミン几、>NH,第三アミてアルキル基(菫
たはその置換体)であるものを脂肪族アミンといい、R
の全部または一部が芳香族法化水素残基(フェニル基あ
るいはその置換体)であるものを芳香族アミンという。
Therefore, in the present invention, an amine is included in a sensitive resin that is sensitive to X-rays. Amines have the effect of antioxidants. For example, phenyl-β-naphthylamine, other aromatic amines, aldehyde amine condensates, etc. can be used as antioxidants for purified rubber and synthetic rubber. Also, phenyl-α
- Naphthylamine and other aromatic amines can be used as antioxidants in lubricating oils. Amines are compounds in which the hydrogen atom of ammonia is substituted with a hydrocarbon residue R, and the primary amine R-NH depends on the number of substituted hydrocarbon residues.
,, tertiary amine 几, >NH, tertiary alkyl group (violet or its substituted product) is called aliphatic amine, R
An aromatic amine is one in which all or part of the aromatic hydrogen residue (phenyl group or its substituted product) is an aromatic hydrogen residue (phenyl group or its substituted product).

メチルアミン0H3NH,、エチルアミンOH,OH,
NH,等は脂肪族第一アミンに属する。ジメチルアミン
(OH,)、NH。
Methylamine 0H3NH,, ethylamine OH, OH,
NH, etc. belong to aliphatic primary amines. Dimethylamine (OH, ), NH.

ジエチルアミン(Ox Hs )鵞NH等は、脂肪族第
二アミンに属する。トリメチルアミン(OHs )s 
N。
Diethylamine (Ox Hs), NH, etc. belong to aliphatic secondary amines. Trimethylamine (OHs)
N.

トリエチルアミン(Os H5)s N等は脂肪第三ア
ミンに属し、アリルアミンOH,=OHOH,NH,等
は脂肪族不飽和アミンに属し、シクロプロピルアミン0
. H,NH,等は脂環式アミンに属し、アニリン0、
 HIINH,、、メチルアニリン06H5NHOH,
等は芳香族アミンに属する。
Triethylamine (Os H5)s N etc. belong to fatty tertiary amines, allylamine OH,=OHOH,NH, etc. belong to aliphatic unsaturated amines, cyclopropylamine 0
.. H, NH, etc. belong to alicyclic amines, and aniline 0,
HIINH, , Methylaniline 06H5NHOH,
etc. belong to aromatic amines.

アミン類には、いずれも、酸化防止機能があり、本発明
ではこの点を有効に利用する。すなわち、アミン類を含
んだ感応性樹脂部を有するX線レジスト材料を用いれば
、露光雰囲気中の酸素の効果を、酸化防止剤であるアミ
ン類で吸収でき、雰囲気によらず一定の感度を有するX
線レジスト材料が得られ、本発明の目的は達成される。
All amines have an antioxidant function, and this point is effectively utilized in the present invention. In other words, if an X-ray resist material having a sensitive resin part containing amines is used, the effect of oxygen in the exposure atmosphere can be absorbed by the amines, which are antioxidants, and the resist has constant sensitivity regardless of the atmosphere. X
A line resist material is obtained and the object of the invention is achieved.

ベースとなるレジスト材料としてはX線に感応するもの
であれば何でも使用することができる、アミン類の含有
率があまり低いと酸化防止の機能が不十分になるし、あ
まり商いとレジストとしての感度が低下するなどの不都
合が生するのでベースのX線感応性樹脂に対して重量比
で数%〜数十%、なるべくは数%〜20%の範囲が好ま
しい。
As the base resist material, any material that is sensitive to X-rays can be used; if the content of amines is too low, the oxidation prevention function will be insufficient, and if the content is too low, the sensitivity of the resist will decrease. Therefore, it is preferable that the weight ratio is in the range of several percent to several tens of percent, preferably several percent to 20 percent, based on the base X-ray sensitive resin.

アミン類を含有したX線レジストを得るには、基本的に
は通常のX線レジストに単にアミンを混合させるだけで
よい。
To obtain an X-ray resist containing amines, basically, it is sufficient to simply mix the amine with a normal X-ray resist.

また、本発明のX線ルジストの使用方法は通常のものと
同じく溶媒に溶かした状態で基板上に塗布すればよいが
、アミンを基板と接触させたくない場合(接着性や汚染
等の問題がある場合など)には、アミン類を金談ないレ
ジストを才すうすく塗布し、次にアミン類を含ませたレ
ジストをその上に塗布する等の方法もある。
In addition, the method of using the X-ray lugist of the present invention is to apply it on the substrate in the same way as usual, in a state in which it is dissolved in a solvent. In some cases, for example, a resist containing amines may be thinly applied, and then a resist containing amines may be applied thereon.

(発明の効果) 以上説明したように本発明によれば、第1に露光雰囲気
によらず高感度X線レジストを用いた高 ゛スループッ
トX線露光がより確実になり、第2に高感度X線レジス
トを開発する際により大きな許容度(すなわち酸素との
反応による低感度化は考慮する必要がない)を与えるこ
とが出来、第3にXIi!i!露光における露光雰囲気
等のシステム設計に自由度を与えることが出来る。
(Effects of the Invention) As explained above, according to the present invention, firstly, high-throughput X-ray exposure using a high-sensitivity X-ray resist becomes more reliable regardless of the exposure atmosphere, and secondly, high-throughput X-ray exposure using a high-sensitivity It provides greater latitude when developing line resists (i.e., sensitivity reduction due to reaction with oxygen does not need to be considered), and thirdly, XIi! i! A degree of freedom can be given to system design such as exposure atmosphere during exposure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、従来技術の問題点であるレジストの
残存膜厚(すなわち感度)の露光雰囲気空気圧力依存性
を示した図である。 第1 図 圧力 (PO) 72図 圧力 (PO)
FIGS. 1 and 2 are diagrams showing the dependence of the residual film thickness of the resist (ie, sensitivity) on the exposure atmosphere air pressure, which is a problem in the prior art. Figure 1 Pressure (PO) Figure 72 Pressure (PO)

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成されたX線感応性樹脂に、X線を照射して
露光するX線露光に用いられるX線レジスト材料におい
て、前記感応性樹脂にアミン類を金談せたことを特徴と
するX線レジスト材料。
An X-ray resist material used for X-ray exposure in which an X-ray sensitive resin formed on a substrate is irradiated with X-rays, characterized in that the sensitive resin is injected with amines. X-ray resist material.
JP59116076A 1984-06-06 1984-06-06 X-ray resist material Pending JPS60260037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116076A JPS60260037A (en) 1984-06-06 1984-06-06 X-ray resist material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116076A JPS60260037A (en) 1984-06-06 1984-06-06 X-ray resist material

Publications (1)

Publication Number Publication Date
JPS60260037A true JPS60260037A (en) 1985-12-23

Family

ID=14678113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116076A Pending JPS60260037A (en) 1984-06-06 1984-06-06 X-ray resist material

Country Status (1)

Country Link
JP (1) JPS60260037A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182587A2 (en) * 1984-11-16 1986-05-28 International Business Machines Corporation A photo resist and a process for manufacturing an integrated circuit
US4800151A (en) * 1986-03-26 1989-01-24 Toray Industries, Inc. Radiation-sensitive positive resist comprising a fluorine-containing alpha-chloroacetate copolymer in the specification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0182587A2 (en) * 1984-11-16 1986-05-28 International Business Machines Corporation A photo resist and a process for manufacturing an integrated circuit
US4800151A (en) * 1986-03-26 1989-01-24 Toray Industries, Inc. Radiation-sensitive positive resist comprising a fluorine-containing alpha-chloroacetate copolymer in the specification

Similar Documents

Publication Publication Date Title
US7005227B2 (en) One component EUV photoresist
US8852849B2 (en) Electron beam lithography system and method for improving throughput
US4504574A (en) Method of forming a resist mask resistant to plasma etching
US7459260B2 (en) Method of reducing sensitivity of EUV photoresists to out-of-band radiation and EUV photoresists formed according to the method
EP0935172A1 (en) Photosensitive resin, resist based on the photosensitive resin, exposure method using the resist, and semiconductor device obtained by the exposure method
TW201044115A (en) Method and system for forming a pattern in a semiconductor device, and semiconductor device
US7781150B2 (en) Method of photolithographic exposure
JP4790970B2 (en) Reduction of radiation-induced surface contamination
JPS60260037A (en) X-ray resist material
EP0021719A2 (en) Method for producing negative resist images, and resist images
JP2005303315A (en) Method of manufacturing device
Tai et al. Inorganic resist systems for VLSI microlithography
JPH0551169B2 (en)
Watanabe et al. Resist Outgassing by EUV Irradiation
JPS60260040A (en) X-ray resist material
JP3387740B2 (en) Pattern formation method
JPS60260036A (en) X-ray resist material
Broyde Device photolithography: Electron-sensitive materials
US20030128802A1 (en) Resist material and exposure method
JPS60222849A (en) X-ray exposure method
JPH06105677B2 (en) Pattern formation method
Omatsu et al. Application of higher absorption materials to the underlayer of EUV lithography
US20050069818A1 (en) Absorptive resists in an extreme ultraviolet (EUV) imaging layer
KR100442968B1 (en) Method for forming photoresist layer of semiconductor device using tdur-n9 photoresist layer
JPS61281526A (en) X-ray exposure