JPS60259936A - Plasma torch part of inductively connected plasma emission analyzer - Google Patents

Plasma torch part of inductively connected plasma emission analyzer

Info

Publication number
JPS60259936A
JPS60259936A JP11530284A JP11530284A JPS60259936A JP S60259936 A JPS60259936 A JP S60259936A JP 11530284 A JP11530284 A JP 11530284A JP 11530284 A JP11530284 A JP 11530284A JP S60259936 A JPS60259936 A JP S60259936A
Authority
JP
Japan
Prior art keywords
gas
plasma
plasma torch
torch part
argon gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11530284A
Other languages
Japanese (ja)
Inventor
Nobuhiko Sasaki
順彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP11530284A priority Critical patent/JPS60259936A/en
Publication of JPS60259936A publication Critical patent/JPS60259936A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Abstract

PURPOSE:To cut down operation costs, by allowing plasma generating gas to circulate by connecting, beginning with the open side of a plasma torch part, followed by cold-wrapping vessel, compressor, gas holder, and gas admission part of the plasma torch part in a proper order. CONSTITUTION:At an opening of a plasma torch part, a system is mounted for circulation of Argon gas. Throughout this system, cold-wrapping vessels 10, 18 compressor 19, gas holder 20, and gas admission part of the plasma torch part are connected in a proper order for allowing the plasma generating gas to circulate. Thus, the plasma generating gas which has hitherto been discharged and consumed at a rate of approximately, 18l/min, when refilled once, can stand the analysis works, without consumption, by the ICP analyzer and consequently, operation costs of the ICP analyzer can be economized.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、プラズマ発生用ガスを封管内に循環させ、排
出消費を行わない誘導結合プラズマ発光(以下、ICP
と称す)分析装置のプラズマトーチ部に関する。
Detailed Description of the Invention (Technical Field of the Invention) The present invention relates to inductively coupled plasma emission (hereinafter referred to as ICP), which circulates plasma generation gas in a sealed tube and does not consume or emit gas.
related to the plasma torch section of the analyzer.

(発明の背景) ICP分析装置は、水溶液中の微量な金層、亜金屑元素
分析に有力であると知られ、広く応用されてから、6〜
7年経っている。この分析装置は、原子吸光分析装置等
に比べ感度、粘度が良く、また、操作性、迅速性にも優
れている。しかし、プラズマを発生、保持するアルゴン
ガスが毎分181消費される。従って、稼動経費が高価
となシ、この問題の解決が要求されていた。
(Background of the Invention) ICP analyzers are known to be effective in analyzing minute amounts of gold layers and sub-gold elements in aqueous solutions, and have been widely applied since 6~
It's been 7 years. This analyzer has better sensitivity and viscosity than atomic absorption spectrometers, etc., and is also excellent in operability and speed. However, 181 argon gases, which generate and maintain the plasma, are consumed per minute. Therefore, since operating costs are high, a solution to this problem has been required.

(従来技術と問題点) 従来のICP分析装箇のプラズマトーチ部の概略を@1
図に示す。従来のプラズマトーチ部は、石英製のクーラ
ントガス管(1)、プラズマガス管(2)。
(Prior art and problems) An outline of the plasma torch part of the conventional ICP analysis equipment @1
As shown in the figure. The conventional plasma torch part includes a coolant gas tube (1) and a plasma gas tube (2) made of quartz.

サンフルガス管(3)から成る同軸31管構造であシ、
各管(1) 、−(2) 、 (3)の下部に、それぞ
れアルゴンガス導入部(4)、 (51、(61があり
、クーラントガス管(1)の上部には、誘導コイル(力
が巻いである。クーラントガス憤(1)のガス導入部(
4)にクーラントアルゴンガスが約18−#/mi n
 、プラズマガス管(2)のガス導入部(5)にプラズ
マ発生用ガスカ約0.2−67m1n 。
It has a coaxial 31 tube structure consisting of Sunflu gas tube (3),
At the bottom of each pipe (1), -(2), and (3), there are argon gas introduction parts (4), (51, and (61), respectively. At the top of the coolant gas pipe (1), there is an induction coil (power is the winding.The gas inlet part of the coolant gas tube (1) (
4) coolant argon gas at approximately 18-#/min
, approximately 0.2-67 m1n of gas for plasma generation is placed in the gas introduction part (5) of the plasma gas pipe (2).

また、サンフルガス管(3)のガス導入部(6)にザン
ブルアルゴンガスが0.4−6/min 、それぞれ供
給される。誘導コイル(7)に27MHz、1.6KW
O高周波をかけることによシ、アルゴンガスのンラズマ
炎が誘明コイル(7)の内側に発生、保持される。試料
は、ネブライザーにより=の状態で、前記ガス導入部(
6)からプラズマ中に導入される。プラズマ中に尋人さ
れた試料中にある分析目的元素は、励起され固有周波数
の光を放出する。この光を分光器にかけて検出し、分析
する。プラズマ中を通過した試料とアルゴンガスは、プ
ラズマトーチ部の上部の開放部(8)から大気中に放出
される。従って、この方式では、アルゴンガスが約18
−67m1n 、排出、消費され稼動経費が高価とガる
問題がある。
In addition, Zamburu argon gas is supplied to the gas introduction portion (6) of the Sanflu gas pipe (3) at a rate of 0.4-6/min, respectively. 27MHz, 1.6KW for induction coil (7)
By applying high frequency, a lasma flame of argon gas is generated and maintained inside the induction coil (7). The sample was placed in the gas introduction section (
6) into the plasma. Elements of interest in the sample placed in the plasma are excited and emit light at a unique frequency. This light is detected and analyzed using a spectrometer. The sample and argon gas that have passed through the plasma are discharged into the atmosphere from an opening (8) at the top of the plasma torch section. Therefore, in this method, argon gas is about 18
There is a problem that -67m1n is discharged and consumed, and the operating cost is high.

(発明の目的) 本発明は、前記従来の問題点を解消するため、プラズマ
発生ガスを排出、消費せず、循環させて使用することに
より、稼動経費の安いプラズマトーチ部を開発すること
にある。
(Object of the Invention) In order to solve the above-mentioned conventional problems, the present invention is to develop a plasma torch section that has low operating costs by circulating and using the plasma generating gas without emitting or consuming it. .

(発明の構成) 本発明は、プラズマトーチ部の開放部側からコールドト
ラップ器、コンプレッサー、ガスホルダー、及び前記プ
ラズマトーチ部のガス導入部を順次接続し7、前記開放
部から放出したアルコンガスを前記プラズマトーチ部に
循環させたことを特徴とするICP分析装置のプラズマ
トーチ部を提供するものである。
(Structure of the Invention) The present invention sequentially connects a cold trap device, a compressor, a gas holder, and a gas introduction part of the plasma torch part from the open part side of the plasma torch part 7, and discharges the arcon gas released from the open part. The present invention provides a plasma torch section of an ICP analyzer, characterized in that plasma is circulated through the plasma torch section.

(発明の実施例) 本発明の1実施例を第2図に示す。その大まかftm造
は、第1図に示した従来のプラズマトーチ部の開放部に
アルコンガスを循環させる経路を取り付けたものであり
、その経路の途中には、アルゴンガスを洗浄するための
第1.第2のコールドトラ、ブ器(101、□□□)、
コンプレッサー(19+ 、ガスホルダー+20) 、
および、流量調節器CD、(林、(23iが備えである
。なお、各流量調節器(2υ、 +221 、 (23
1の出口CI!(イ)。
(Embodiment of the Invention) An embodiment of the present invention is shown in FIG. The rough ftm structure is that a path for circulating argon gas is attached to the open part of the conventional plasma torch shown in Figure 1, and a first argon gas cleaning path is installed along the path. .. 2nd cold tiger, buki (101, □□□),
Compressor (19+, gas holder +20),
And, the flow rate regulator CD, (Hayashi, (23i) is equipped.In addition, each flow rate regulator (2υ, +221, (23
Exit CI of 1! (stomach).

(25+ 、 (261は、プラズマトーチ部のアルゴ
ンガス導入部(41、(5) 、 (6)に接続しであ
る。次に、アルゴンガスの流れにそって各部の説明を行
う。プラズマを発生、保持するプラズマトーチ部は、前
記従来例と同一構成であシ、誘導コイル(7)の内側に
プラズマが保持され、そこを通過した試料とアルゴンガ
スが開放部(8)から放出される。この放出アルゴンガ
ス(は、プラズマトーチ部のクーラントガス管(1)の
開放部(81(1111に取シ伺けたパイレックスガラ
ス製ガス捕集管(9)を通過し、該ガス捕集管(9)の
端部に接続した第1のコールドトラ、ブ器00フに折入
される。この放出アルゴンガス中には、試料がアルコン
ガスマ中の反応でできた、種々の金属、亜金属化合物の
他、多回”の水分等の不純物を含んでおり、この不純物
1除去のためコールドトラップが心太でイ)る。第1の
コールドトラ、ブ器(10)は、大球形部([1)と2
個の小半球形部(12+ 、 (131とから力υ、大
球形部(11)の内部には、両手半球形部(12i 、
 (131間を傾斜させて枦、絡した4本の十着円憤0
4)が辿っている。
(25+, (261 is connected to the argon gas introduction part (41, (5), (6)) of the plasma torch part.Next, each part will be explained along the flow of argon gas.Plasma generation The holding plasma torch part has the same structure as the conventional example, and plasma is held inside the induction coil (7), and the sample and argon gas that have passed through it are released from the open part (8). This released argon gas (passes through the Pyrex glass gas collection pipe (9) which can be accessed at the open part (81 (1111) of the coolant gas pipe (1) of the plasma torch section, ) is inserted into the first cold tube connected to the end of the argon gas chamber.In this emitted argon gas, the sample contains various metals, submetallic compounds, and other compounds formed by reactions in the argon gas. The first cold trap (10) contains a large spherical part (1) and a large spherical part (1). 2
Small hemispherical parts (12+,
(131 yen sloped, 4 intertwined 100 yen anger 0
4) is being followed.

そして、一方の小半球形部Q2)の挿入口05)から冷
却水を流出させると、冷却水は、4本の楕円管0勺を3
7Q I)、仙の小半球形部(13Jの排出口06)か
ら流出する第1I′1造となっている。従って、第1の
コールドトラップ’d’r? (l Iliの大球形部
(1υに導入した放出アルゴンガスIti 、tilt
円管圓により冷却され、不純物が除去される。除去され
た液状不純物は、傾斜した円筒状不純物だめ(17)か
らとり出す。第1のコールドトラップ器(101を通過
したアルゴンガスは、さらに、ドライアイス−アセトン
系(−78°C)の冷却剤で冷却した第2のコールドト
ラップ器08)を辿り、不純物除去を完全にする。その
後、アルゴンガスは、コンフレ、サー(191てI K
2/dから5Ky/dに加圧され、10沼容量のガスホ
ルダー(20)にだくわえられる。ガスホルダー(20
)の流量調節器(211、(22) 、 (23+で調
節したアルゴンガスは、出口(24)からクーラントア
ルゴンガス、出口(25)からプラズマアルゴンガス、
また、出口(26)からサンプルアルゴンガストラて導
入する。
When the cooling water flows out from the insertion port 05) of one of the small hemispherical portions Q2), the cooling water flows through the four elliptical tubes 05).
7Q I), it is the 1st I'1 structure that flows out from the small hemispherical part (13J outlet 06) of the sacrum. Therefore, the first cold trap 'd'r? (l Large spherical part of Ili (1υ) released argon gas Iti, tilt
It is cooled by a circular tube and impurities are removed. The removed liquid impurities are taken out from an inclined cylindrical impurity reservoir (17). The argon gas that has passed through the first cold trap (101) is further routed to the second cold trap (08) cooled with a dry ice-acetone (-78°C) coolant to completely remove impurities. do. Afterwards, the argon gas was
It is pressurized from 2/d to 5Ky/d and held in a gas holder (20) with a capacity of 10 liters. Gas holder (20
The argon gas adjusted by the flow rate regulators (211, (22), (23+) of ) is coolant argon gas from the outlet (24), plasma argon gas from the outlet (25),
In addition, a sample argon gas straw is introduced from the outlet (26).

なお、アルゴンガスが循環する各器部は、ローリングC
゛0、才だ、すり合せ(28)等で接続しており、それ
ぞれ分解することができる。
In addition, each part where argon gas circulates is equipped with a rolling C
They are connected by ゛0, sashida, and sashimi (28), and each can be disassembled.

(発明の効果) 本発明は、プラズマトーチ部の開放部側からコールドト
ラ、プ器、コンプレ、サー、ガスホルダー、及びプラズ
マトーチ部のガス導入部を順次接続し、プラズマ発生ガ
スを循環させたので、従来、毎分約18形排出、消費し
ていたプラズマ発生ガスを、一度充填した後は、全く消
費しないでICP分析装置による分析ができる。従−・
て、■CP分析装置の稼動を安価に行える。
(Effects of the Invention) The present invention connects the cold trap, pump, compressor, gas holder, and gas inlet of the plasma torch in sequence from the open side of the plasma torch to circulate the plasma generation gas. Therefore, the plasma generating gas, which conventionally was discharged and consumed at about 18 g/min, can be analyzed by the ICP analyzer without being consumed at all once it is filled. Follow-・
(1) The CP analyzer can be operated at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のプラズマトーチ部の概略説明図、第2
図は、本発明のプラズマトーチ部の概略説明図である。 (41、t51 、 (6) プラズマトーチ部のガス
導入部(8)プラズマトーチ部の開放部 (101、(1〜 第1.第2のコールドトラ、プ器0
1 コンプレッサー (20)ガスホルダー (221、(23+ 、 (24) 流量調節器第 1
 図
Fig. 1 is a schematic explanatory diagram of a conventional plasma torch section;
The figure is a schematic explanatory diagram of a plasma torch section of the present invention. (41, t51, (6) Gas introduction part of plasma torch part (8) Opening part of plasma torch part (101, (1~ 1st. 2nd cold trap, puller 0
1 Compressor (20) Gas holder (221, (23+, (24) Flow regulator No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] プラズマトーチ部の開放部側からコールドトラップ器、
コンプレ、サー、ガスホルダー、及び前記プラズマトー
チ部のガス導入部を順次接続し、前記開放部から放出し
たプラズマ発生用ガスを前記プラズマトーチ部に循環さ
せたことを特徴とする誘導結合プラズマ発光分析装置の
プラズマガス〜 チ部。
Cold trap device from the open side of the plasma torch,
Inductively coupled plasma emission spectrometry, characterized in that a compressor, a gas holder, and a gas introduction section of the plasma torch section are connected in sequence, and the plasma generation gas discharged from the open section is circulated to the plasma torch section. Plasma gas section of the device.
JP11530284A 1984-06-05 1984-06-05 Plasma torch part of inductively connected plasma emission analyzer Pending JPS60259936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11530284A JPS60259936A (en) 1984-06-05 1984-06-05 Plasma torch part of inductively connected plasma emission analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11530284A JPS60259936A (en) 1984-06-05 1984-06-05 Plasma torch part of inductively connected plasma emission analyzer

Publications (1)

Publication Number Publication Date
JPS60259936A true JPS60259936A (en) 1985-12-23

Family

ID=14659265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11530284A Pending JPS60259936A (en) 1984-06-05 1984-06-05 Plasma torch part of inductively connected plasma emission analyzer

Country Status (1)

Country Link
JP (1) JPS60259936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166844A (en) * 2015-03-10 2016-09-15 株式会社日立ハイテクサイエンス Inductive coupling plasma generator and inductive coupling plasma analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016166844A (en) * 2015-03-10 2016-09-15 株式会社日立ハイテクサイエンス Inductive coupling plasma generator and inductive coupling plasma analyzer

Similar Documents

Publication Publication Date Title
Kallenbach et al. H mode discharges with feedback controlled radiative boundary in the ASDEX Upgrade tokamak
Amorim et al. Two‐photon laser induced fluorescence and amplified spontaneous emission atom concentration measurements in O2 and H2 discharges
US4653062A (en) Chemical oxygen-iodine laser
Hall et al. State‐to‐state vibrational excitation of I2 in collisions with He
US4833294A (en) Inductively coupled helium plasma torch
Haas et al. An internally tuned TM010 microwave resonant cavity for moderate power microwave-induced plasmas
Linnartz et al. The 2Π← X 2Π electronic spectra of C 8 H and C 10 H in the gas phase
Pohl et al. Five years of innovations in development of glow discharges generated in contact with liquids for spectrochemical elemental analysis by optical emission spectrometry
Bishenden et al. Two primary product channels in OClO photodissociation near 360 nm
US4150951A (en) Measurement of concentrations of gaseous phase elements
Knutsen et al. Laser double‐resonance study of the collisional removal of O2 (A 3Σ+ u, ν= 6, 7, and 9) with O2, N2, CO2, Ar, and He
JPS60259936A (en) Plasma torch part of inductively connected plasma emission analyzer
Rowe et al. Rate coefficients for interstellar gas-phase chemistry
US4906582A (en) Emission analysis method with inductively-coupled radio frequency plasma and apparatus for use in such method
Wiswall et al. Moderate‐power cw chemical oxygen‐iodine laser capable of long duration operation
Savage et al. Characteristics of the background emission spectrum from a miniature inductively-coupled plasma
Cuellar et al. Rotational laser emission by HF in the ClF–H2 chemical laser
Smith et al. Laser optogalvanic and jet spectroscopy of germylene (GeH 2): New spectroscopic data for an important semiconductor growth intermediate
Pellin et al. Emission, ground, and excited state absorption spectroscopy of Cr2 isolated in Ar and Kr matrices
Lotkova et al. Dissociation of carbon dioxide and inversion in CO 2 laser
Pouvesle et al. Atomic rare gas metastable monitoring through nitrogen emission in atmospheric pressure plasma jets
CN114509426A (en) Device and method for detecting heavy metal elements in liquid by LIBS-GD combination
Lawruszczuk et al. Selective excitation of the ion pair surface in the intracluster Ca–HCl* harpoon reaction
Cheatham et al. A computer-controlled apparatus for laser-induced fluorescence spectroscopy in a supersonic jet
Rennick et al. Measurement and modeling of a diamond deposition reactor: hydrogen atom and electron number densities in an Ar∕ H2 arc jet discharge