JPS60259794A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS60259794A
JPS60259794A JP11323984A JP11323984A JPS60259794A JP S60259794 A JPS60259794 A JP S60259794A JP 11323984 A JP11323984 A JP 11323984A JP 11323984 A JP11323984 A JP 11323984A JP S60259794 A JPS60259794 A JP S60259794A
Authority
JP
Japan
Prior art keywords
pressure
heat pump
compression chamber
valve
boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11323984A
Other languages
Japanese (ja)
Inventor
Kazutaka Suefuji
和孝 末藤
Hiroshi Yasuda
弘 安田
Kyuhei Ishihane
久平 石羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11323984A priority Critical patent/JPS60259794A/en
Publication of JPS60259794A publication Critical patent/JPS60259794A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To make the overheat of a compressor and a supercompression phenomenon preventable from occurring, by installing a valve, which interconnects a discharge chamber in time of pressure in a displacement chamber being high but interconnects a liquid injection circuit in time of this pressure being low, in a minimum displacement chamber of a scroll compressor. CONSTITUTION:In a hole 20 to be interconnected to an actuating chamber 9, becoming minimum displacement volume, of a scroll compressor, there is provided with a selector valve 20 serving both as a liquid injection valve and a relief valve. The back of this selector valve 20 is interconnected to a liquid injection pipe 107, and it is so constituted as to make a valve body 23 move up and down with a pressure differential between injection pressure and pressure inside the actuating chamber. When the valve body moves up and down with the injection pressure, a liquid refrigerant is spouted to the inside of the actuating chamber via an orifice 27 but when the inside of the actuating chamber comes into a state of supercompressed, the valve body moves upward whereby the pressure inside the actuating chamber is relieved to a discharge chamber via a passage 26.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はスクロール圧縮機を用いたヒートポンプ式空調
機に係り、特に高温風や高温水を得る場合に好適なヒー
トポンプ式空調機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat pump type air conditioner using a scroll compressor, and particularly to a heat pump type air conditioner suitable for obtaining high temperature air or high temperature water.

〔発明の背景〕[Background of the invention]

スクロール圧縮機を用いた従来のヒートポンプ式空調機
について、第5図、第6図を参照して説明する。第5図
はヒートポンプ式空調機のサイクル系統図およびスクロ
ール圧縮機の縦断面図、第6図(alはスクロール圧縮
機の圧縮機部の縦断面図、同図(blはその横断面図を
示している。図において、100はスクロール圧縮機、
101は四方弁、102は’l&開昭Go−25979
4(2) 第1熱交換器、103は膨張弁、104は第2熱交換器
を示している。そして、これら各機器は図示の如く配管
接続され、四方弁101の実線位置または破線位置への
切換によシ冷媒を実線矢印または破線矢印の方向へ流す
ことでヒートポンプサイクルを構成している。
A conventional heat pump air conditioner using a scroll compressor will be explained with reference to FIGS. 5 and 6. Figure 5 is a cycle system diagram of a heat pump type air conditioner and a vertical cross-sectional view of a scroll compressor, Figure 6 (al is a vertical cross-sectional view of the compressor section of the scroll compressor, and Figure 6 (bl is a cross-sectional view thereof) In the figure, 100 is a scroll compressor;
101 is a four-way valve, 102 is 'l & Kaisho Go-25979
4(2) The first heat exchanger, 103 is an expansion valve, and 104 is a second heat exchanger. Each of these devices is connected to piping as shown in the figure, and a heat pump cycle is constructed by switching the four-way valve 101 to the solid line position or the broken line position to flow the refrigerant in the direction of the solid line arrow or the broken line arrow.

前記スクロール圧縮機100の構造について詳しく説明
すると、密閉容器l内には、圧縮機部2と電動機3が収
納されている。圧縮機部2には固定スクロール5と旋回
スクロール6とにより圧縮室9が形成され、旋回スクロ
ール6が電動機3に直結するクランク軸4により自転す
ることなく旋回駆動されることにより、圧縮室9は次第
に中心へ移動して容積が減少しガスを圧縮する。旋回ス
クロールの自転防止はオルダムリングとキーおよび旋回
スクロール背面に設けられたキーとからなるオルダム機
構13によってなされる。旋回スクロール背面には中間
圧室15が設けられており、旋回スクロール鏡板に設け
られた小孔(図示せず)によシ圧縮室に連通している。
To explain the structure of the scroll compressor 100 in detail, a compressor section 2 and an electric motor 3 are housed in a closed container l. A compression chamber 9 is formed in the compressor section 2 by a fixed scroll 5 and an orbiting scroll 6, and the compression chamber 9 is It gradually moves towards the center and its volume decreases, compressing the gas. The rotation of the orbiting scroll is prevented by an Oldham mechanism 13 consisting of an Oldham ring, a key, and a key provided on the back surface of the orbiting scroll. An intermediate pressure chamber 15 is provided on the back surface of the orbiting scroll, and communicates with the compression chamber through a small hole (not shown) provided in the orbiting scroll end plate.

中間圧室15内の圧力は前記小孔の通じる圧縮室の平均
圧力にほぼ等しくなシ、この圧力は旋回スクロールを固
定スクロールに密着するために必要な適切な圧力となる
よう前記小孔の位置を決めである。軸受や旋回スクロー
ル鏡板摺動面の潤滑は、油溜16の油を差圧または遠心
ポンプ作用により油通路17.18.19を経て給油す
ることにより行なわれる。ガスは吸入管7から吸入室8
へ入り、圧縮されて吐出ボート10から密閉容器1内へ
吐出され、吐出ガス通路11を通って吐出管12から圧
縮機外へ吐出される。
The pressure in the intermediate pressure chamber 15 is approximately equal to the average pressure of the compression chamber through which the small hole communicates, and the position of the small hole is adjusted so that this pressure is the appropriate pressure necessary for tightly contacting the orbiting scroll with the fixed scroll. is decided. The bearings and the sliding surfaces of the orbiting scroll head plate are lubricated by supplying oil from the oil reservoir 16 through oil passages 17, 18, and 19 by differential pressure or centrifugal pump action. Gas flows from suction pipe 7 to suction chamber 8
The gas is compressed and discharged from the discharge boat 10 into the closed container 1, passes through the discharge gas passage 11, and is discharged from the discharge pipe 12 to the outside of the compressor.

ところで、前記のスクロール圧縮機100においては、
ヒートポンプサイクルの利用温度が高温度の場合、吐出
圧力が上昇して、吐出ガス温度も上昇するため、モータ
巻線温度が限界値を越えて焼損したり、油温が上昇して
軸受の潤滑に悪影響を及ぼしたり、油自身が劣化する等
の問題がある。
By the way, in the scroll compressor 100,
When the operating temperature of the heat pump cycle is high, the discharge pressure rises and the discharge gas temperature also rises, which may cause the motor winding temperature to exceed the limit value and cause burnout, or the oil temperature to rise and lubricate the bearings. There are problems such as negative effects and deterioration of the oil itself.

また第6図に示すように、圧縮室9a、9bが旋回スク
ロール6の旋回運動に伴ない、吸入を完了して最大密閉
容積Vsを形成波、圧縮室は次第に中心へ移動しながら
容積が減少し、9c、9dで示され6頁 る最小密閉容積Viを形成するまでの間は、冷凍サイク
ルの運転状態で決まる吐出圧力と無関係に、吸入圧力P
sと圧縮室容積Vc及びポリトロープ指数nとから圧縮
室圧力Pcが次の様に決まる。
Further, as shown in FIG. 6, the compression chambers 9a and 9b complete suction and form the maximum sealed volume Vs as the orbiting scroll 6 moves, and the compression chamber gradually moves toward the center and decreases in volume. However, until the minimum sealed volume Vi shown in 9c and 9d on page 6 is formed, the suction pressure P is maintained regardless of the discharge pressure determined by the operating state of the refrigeration cycle.
The compression chamber pressure Pc is determined from s, the compression chamber volume Vc, and the polytropic index n as follows.

s n Pc = Ps () c また中心部の吐出ボート10に連通ずる直前の最小密閉
容積Viが形成された時の圧力Piも次のように決まる
s n Pc = Ps () c Furthermore, the pressure Pi when the minimum sealed volume Vi is formed immediately before communicating with the discharge boat 10 in the center is also determined as follows.

Pi = Ps (−M−L−)” ■1 この後圧縮室が吐出ボートlOに連通ずると圧力は吐出
圧力Pdになる。
Pi = Ps (-M-L-)'' ■1 After this, when the compression chamber communicates with the discharge boat IO, the pressure becomes the discharge pressure Pd.

PdがPiに一致している時は、圧力は第7図の圧力容
積線図において1→2→3→の線をたどり圧縮動力損失
は生じないが、PdがPiよシ低いと圧力は1→2→2
′→3′の線をたどり、過圧縮となって図の人のハツチ
ングで示す面積に相当する圧縮動力損失が生じる。逆に
PdがPiよシ高いと圧力は1→2→2′→3′の線を
たどシ、不足圧縮とな7頁 って図のBのハツチングで示す面積に相当する圧縮動力
損失が生じる。このように前記のスクロール圧縮機は設
計圧力比Pi/Ps以外の圧力比で運転すると効率が低
下するという欠点を持っている。
When Pd matches Pi, the pressure follows the line 1 → 2 → 3 → in the pressure-volume diagram in Figure 7, and no compression power loss occurs, but if Pd is lower than Pi, the pressure decreases to 1. →2→2
Following the line '→3', overcompression occurs and a compression power loss corresponding to the area shown by hatching in the figure occurs. On the other hand, if Pd is higher than Pi, the pressure will follow the line 1 → 2 → 2' → 3', resulting in insufficient compression and a compression power loss corresponding to the area shown by the hatching in Figure B on page 7. arise. As described above, the scroll compressor has the disadvantage that efficiency decreases when it is operated at a pressure ratio other than the design pressure ratio Pi/Ps.

一方、空調機は冷房時、暖房時弁室内外の温度の変化に
よって吸入圧力や吐出圧力が変動し、圧力も変化する。
On the other hand, when an air conditioner is cooling or heating, the suction pressure and discharge pressure fluctuate due to changes in temperature inside and outside the valve chamber, and the pressure also changes.

また特に、高温風や高温水を得る設計になる高温ヒート
ポンプ式空調機の場合は、冷房時の圧力比P d/P 
sが3〜35であるのに対して、暖房時および高温水給
湯時の圧力比は55〜10と広い圧力比範囲で運転され
る。このように広い圧力比範囲が要求される空調機に前
述のスクロール圧縮機を使用すると、年間を通じたエネ
ルギ効率比(SEER)は最適圧力比運転時のエネルギ
効率比(EER)に比べてかなり低下するという問題が
ある。
In particular, in the case of high-temperature heat pump air conditioners designed to obtain high-temperature air or high-temperature water, the pressure ratio P d / P during cooling is
While s is 3 to 35, the pressure ratio during heating and hot water supply is 55 to 10, which is a wide range of pressure ratios. If the aforementioned scroll compressor is used in an air conditioner that requires such a wide pressure ratio range, the energy efficiency ratio (SEER) throughout the year will be considerably lower than the energy efficiency ratio (EER) during optimum pressure ratio operation. There is a problem with doing so.

以上述べた如く、従来のヒートポンプ式空調機において
は、スクロール圧縮機を高圧力比設計した場合、高温風
暖房時や高温水給湯時など圧力比の高い運転時には効率
は良いが、吐出ガス温度の′1%開昭GO−25979
4(3) 過度の上昇が問題と々す、また冷房時など圧力比の低い
運転時には、吐出ガス温度が低く問題ないが、効率が低
下するという問題が生じる。
As mentioned above, in conventional heat pump air conditioners, when the scroll compressor is designed with a high pressure ratio, efficiency is good during operation with a high pressure ratio such as during high-temperature wind heating or high-temperature water supply, but the discharge gas temperature '1% Kaisho GO-25979
4(3) Excessive rise is a problem, and during operation at a low pressure ratio such as during cooling, the temperature of the discharged gas is low and there is no problem, but the problem arises that the efficiency decreases.

また、起動時には吸入圧力が高く、高圧力比設計のスク
ロール圧縮機では非常に大きな過圧縮現象が生じ起動ト
ルクが非常に大きくなって、モータのトルク不足を招い
たり、過大な起動電流が流れて電源容量不足を招いたり
する等の問題もある。
In addition, the suction pressure is high at startup, and in scroll compressors with a high pressure ratio design, a very large overcompression phenomenon occurs and the startup torque becomes extremely large, leading to insufficient motor torque and excessive startup current flowing. There are also problems such as a shortage of power supply capacity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高圧力比運転時には吐出ガス温度の過
度の上昇を防ぎ、低圧力比運転時および起動時には過圧
縮現象を防止して、信頼性が高く、しかも広範囲な条件
で効率の良い運転を行えるヒートポンプ式空調機を提供
することにある。
The purpose of the present invention is to prevent excessive rise in discharge gas temperature during high pressure ratio operation, prevent overcompression phenomenon during low pressure ratio operation and startup, and achieve high reliability and efficiency under a wide range of conditions. An object of the present invention is to provide a heat pump type air conditioner that can be operated.

〔発明の概要〕[Summary of the invention]

この目的を達成するために、本発明は、ヒートポンプサ
イクルに、第1、第2熱交換器が凝縮器として作用する
場合の当該凝縮器の出口側にそれぞれ接続する液冷媒イ
ンジェクション回路を設け、スクロール圧縮機内の最小
容積となる圧縮室部分9 百 に、その圧縮室の圧力とヒートポンプサイクルの高圧回
路圧力との差圧で作動する弁装置を設け、前記圧縮室内
の圧力がヒートポンプサイクルの高圧回路圧力よシ低い
時には前記弁装置を介して前記圧縮室と前記液冷媒イン
ジェクション回路とを連通させ、前記圧縮室内の圧力が
ヒートポンプサイクルの高圧回路圧力より高い時には前
記弁装置を介して圧縮室と吐出ポート側とを連通させる
ように構成したことを特徴とする。
In order to achieve this object, the present invention provides a heat pump cycle with a liquid refrigerant injection circuit connected to the outlet side of the first and second heat exchangers, respectively, when the first and second heat exchangers act as condensers, and The compression chamber portion 9, which has the smallest volume in the compressor, is provided with a valve device that operates based on the differential pressure between the pressure of the compression chamber and the high pressure circuit pressure of the heat pump cycle, so that the pressure inside the compression chamber is equal to the high pressure circuit pressure of the heat pump cycle. When the pressure is low, the compression chamber and the liquid refrigerant injection circuit are communicated via the valve device, and when the pressure inside the compression chamber is higher than the high pressure circuit pressure of the heat pump cycle, the compression chamber and the discharge port are communicated via the valve device. It is characterized by being configured so that it communicates with the side.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図ないし第4図により説
明する。第1図は本発明によるヒートポンプ式空調機の
サイクル系統図およびスクロール圧縮機の縦断面図、第
2図はスクロール圧縮機の圧縮機部の横断面図、第3図
は同圧縮機部および弁装置の断面斜視図、第4図は弁装
置の作動状態を示す断面斜視図を示している。第1図に
おいて、スクロール圧縮機100 、四方弁101、第
1熱交換器102 、膨張弁103、第2熱交換器10
4を、図示の如く配管接続することによりヒートポンプ
サイ10 ?丁 クルが構成されている。尚、実線の矢印は四方弁101
が実線位置へ切換えられたときの冷媒の流れ方向を示し
、破線の矢印は四方弁101が破線位置へ切換えられた
ときの冷媒の流れ方向を示している。また前記スクロー
ル圧縮機の基本的構成は、第5図と同様であるので、同
一部分もしくは相当する部分に同じ符号を付しており、
その説明を省略する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. Fig. 1 is a cycle system diagram of a heat pump air conditioner according to the present invention and a vertical cross-sectional view of a scroll compressor, Fig. 2 is a cross-sectional view of a compressor section of the scroll compressor, and Fig. 3 is a diagram showing the compressor section and valves of the scroll compressor. FIG. 4 is a cross-sectional perspective view of the device, and FIG. 4 is a cross-sectional perspective view showing the operating state of the valve device. In FIG. 1, a scroll compressor 100, a four-way valve 101, a first heat exchanger 102, an expansion valve 103, and a second heat exchanger 10 are shown.
By connecting 4 with piping as shown in the figure, the heat pump size 10? Dingkuru is composed. Furthermore, the solid arrow indicates the four-way valve 101.
indicates the flow direction of the refrigerant when the four-way valve 101 is switched to the solid line position, and the broken line arrow indicates the flow direction of the refrigerant when the four-way valve 101 is switched to the broken line position. Furthermore, since the basic configuration of the scroll compressor is the same as that shown in FIG. 5, the same or corresponding parts are given the same reference numerals.
The explanation will be omitted.

前記ヒートポンプサイクルには、第1熱交換器102と
膨張103との間および第2熱交換器104と膨張弁1
03との間にそれぞれ逆止弁105.106を介して接
続する液冷媒インジェクション回路107が設けられて
いる。前記逆止弁105および106は冷媒を矢印の方
向にのみ流すようになっている。
The heat pump cycle includes a connection between the first heat exchanger 102 and the expansion valve 103, and between the second heat exchanger 104 and the expansion valve 1.
03 through check valves 105 and 106, respectively, are provided with liquid refrigerant injection circuits 107. The check valves 105 and 106 allow the refrigerant to flow only in the direction of the arrow.

前記スクロール圧縮機100内の最小容積となる圧縮室
9部分には、その圧縮室9の圧力とヒートポンプサイク
ルの高圧回路圧力との差圧で作動する弁装置20.20
が装設されている。前記の弁装置20は、第3図に示す
如く、固定スクロール5の鏡板に装着される弁本体21
と、その弁本体21内の弁ll 頁 室22に収納される弁体23とを備えている。前記弁室
22の下方は前記鏡板に穿った第1ボート24を介して
前記圧縮室9内に連通し、かつ上方は弁本体21の弁シ
ート部に穿った第2ボート25を介して前記液冷媒イン
ジェクション回路107に連通していると共に、途中は
弁本体21および前記鏡板に亘って穿った第3ボート2
6を介して吐出ボート10に連通している。前記弁体2
3は、その上下面に受圧面を形成し、かつ内部に両受圧
面に開口する流路nを設けている。前記流路27の下開
口端は弁体23の中心に位置し、上開口端は弁体23の
中心よシ前記第2ボート25の半径以上の距離だけずれ
て位置している。
In the compression chamber 9 portion having the minimum volume in the scroll compressor 100, there is a valve device 20.20 that operates based on the differential pressure between the pressure of the compression chamber 9 and the high pressure circuit pressure of the heat pump cycle.
is installed. As shown in FIG. 3, the valve device 20 has a valve body 21 mounted on the end plate of the fixed scroll 5
and a valve body 23 housed in a valve chamber 22 within the valve body 21. The lower part of the valve chamber 22 communicates with the compression chamber 9 through a first boat 24 bored in the head plate, and the upper part communicates with the compression chamber 9 through a second boat 25 bored in the valve seat portion of the valve body 21. A third boat 2 is connected to the refrigerant injection circuit 107 and is bored halfway through the valve body 21 and the end plate.
It communicates with the discharge boat 10 via 6. The valve body 2
No. 3 has pressure-receiving surfaces formed on its upper and lower surfaces, and has a flow path n opening to both pressure-receiving surfaces inside. The lower open end of the flow path 27 is located at the center of the valve body 23, and the upper open end is located offset from the center of the valve body 23 by a distance equal to or greater than the radius of the second boat 25.

そして、前記の弁装置においては、弁体23の上受圧面
に作用する圧力が下受圧面に作用する圧力よりも高いと
き、該弁体23がその差圧によシ下降させられて第17
−124および第3ボート26を閉じ、弁体23内の流
路27を介して圧縮室9内と液冷媒インジェクション回
路107とを連通させる。また弁体23の上受圧面に作
用する圧力が下受圧面に11開昭GO−259794(
4) 作用する圧力よりも低いときには、該弁体23がその差
圧によシ上昇させられて第2ポート25を閉じると同時
に、第1ボート24および第3ボート26を開いて圧縮
室9内と吐出ボート10とを前記の両ボート24.27
を介して連通させるようになっている。
In the above-mentioned valve device, when the pressure acting on the upper pressure receiving surface of the valve body 23 is higher than the pressure acting on the lower pressure receiving surface, the valve body 23 is lowered by the differential pressure and the 17th
-124 and the third boat 26 are closed, and the inside of the compression chamber 9 and the liquid refrigerant injection circuit 107 are communicated via the flow path 27 in the valve body 23. In addition, the pressure acting on the upper pressure receiving surface of the valve body 23 is applied to the lower pressure receiving surface.
4) When the pressure is lower than the applied pressure, the valve body 23 is raised by the pressure difference and closes the second port 25, and at the same time opens the first boat 24 and the third boat 26 to open the inside of the compression chamber 9. and the discharge boat 10, both of the aforementioned boats 24.27
It is designed to communicate via.

尚、本実施例において、前記第1ボート24を第2図に
示す如く、ラップ壁面にほぼ接する位置に、かつ圧縮吐
出過程の一時期には当該第1ボート24と吐出ボート1
0とが同一圧縮室に連通ずるような位置に設けた例を示
しているが、この位置は効率面で最も良好にできる位置
であって、それ以外の位置に設けることを妨げるもので
はない。
In this embodiment, as shown in FIG. 2, the first boat 24 is placed in a position that is almost in contact with the lap wall surface, and the first boat 24 and the discharge boat 1
0 is shown in the example in which it is provided in a position where it communicates with the same compression chamber, but this position is the most efficient in terms of efficiency, and it does not preclude it from being provided in any other position.

次に本発明の作用について説明する。Next, the operation of the present invention will be explained.

設計圧力比よりも高い圧力比で運転されている時は、圧
縮室9の圧力よりヒートポンプサイクルの高圧側圧力、
即ち凝縮器として作用している第1熱交換器102また
は第2熱交換器104の出口に接続する液冷媒インジェ
クション回路107の圧力の方が高いので、弁装置20
の弁体23が第3図の如く下降させられる。これにより
第1ボート24と第13頁 3ボート26が閉じて圧縮室9と吐出ボート1oとは遮
断される。また、このとき液冷媒インジェクション回路
107と圧縮室9とは弁体23の流路nを介して連通し
、矢印イで示す如く液冷媒が圧縮室9にインジェクショ
ンされて減圧し、気化して圧縮室9内のガス温度を低下
させる。従って、吐出ガス温度も低下し、過度の上昇が
防止される。
When operating at a pressure ratio higher than the design pressure ratio, the pressure on the high pressure side of the heat pump cycle is lower than the pressure in the compression chamber 9.
That is, since the pressure of the liquid refrigerant injection circuit 107 connected to the outlet of the first heat exchanger 102 or the second heat exchanger 104 acting as a condenser is higher, the valve device 20
The valve body 23 is lowered as shown in FIG. As a result, the first boat 24 and the thirteenth page third boat 26 are closed, and the compression chamber 9 and the discharge boat 1o are cut off. At this time, the liquid refrigerant injection circuit 107 and the compression chamber 9 communicate with each other via the flow path n of the valve body 23, and as shown by arrow A, the liquid refrigerant is injected into the compression chamber 9, depressurized, vaporized, and compressed. The gas temperature in chamber 9 is lowered. Therefore, the temperature of the discharged gas also decreases, and an excessive increase is prevented.

一方、設計圧力比よりも低い圧力比で運転されている時
および起動時は、ヒートポンプサイクルの高圧側圧力、
即ち凝縮器出口に接続する液冷媒インジェクション回路
107の圧力より圧縮室9の圧力の方が高くなり、弁装
置2oの弁体23が第4図の如く上昇させられる。これ
にょシ第2ポート25が閉じて圧縮室9と液冷媒インジ
ェクション回路107とは遮断される。また、このとき
圧縮室9と吐出ボートlOとは第1ボート24および第
3ボート26を介して連通し、圧縮室9内のガスが矢印
口で示す如く吐出ボートlo側へ逃がされる。従って、
過圧縮が防止され、低圧力比運転時の効率が向上し、ま
た起動時には過大トルク、過大電流を防止14頁 できる。
On the other hand, when operating at a pressure ratio lower than the design pressure ratio and at startup, the high-pressure side pressure of the heat pump cycle,
That is, the pressure in the compression chamber 9 becomes higher than the pressure in the liquid refrigerant injection circuit 107 connected to the condenser outlet, and the valve body 23 of the valve device 2o is raised as shown in FIG. At this time, the second port 25 is closed, and the compression chamber 9 and the liquid refrigerant injection circuit 107 are cut off. Further, at this time, the compression chamber 9 and the discharge boat LO communicate with each other via the first boat 24 and the third boat 26, and the gas in the compression chamber 9 is released to the discharge boat LO side as shown by the arrow port. Therefore,
Overcompression is prevented, efficiency is improved during low pressure ratio operation, and excessive torque and excessive current can be prevented during startup.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、高圧力比運転時
には吐出ガス温度の過度の上昇を防ぎ、かつ低圧力比運
転時および起動時には過圧縮現象を防止できるので、信
頼性が高くなり、しかも広範囲な条件で効率の良い運転
を行える。
As explained above, according to the present invention, it is possible to prevent excessive rise in discharge gas temperature during high pressure ratio operation, and prevent overcompression phenomenon during low pressure ratio operation and startup, thereby increasing reliability. Moreover, it can operate efficiently under a wide range of conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示し、第1図
は本発明によるヒートポンプ式空調機のサイクル系統図
およびスクロール圧縮機の縦断面図、第2図はスクロー
ル圧縮機の圧縮機部の横断面図、第3図は同圧縮機部お
よび弁装置の断面斜視図、第4図は弁装置の作動状態を
示す断面斜視図、第5図は従来のヒートポンプ式空調機
のサイクル系統図およびスクロール圧縮機の縦断面図、
第6図(a)はスクロール圧縮機の圧縮機部の縦断面図
、同図Tb)はその横断面図、第7図は圧力容積線図で
ある。 5、・・・固定スクロール、6・・・旋回スクロール、
9l5 百 ・・・圧縮室、10・・・吐出ボート、20・・・弁装
置、21・・・弁本体、22・・・弁室、23・・・弁
体、24・・・第1ボート、25・・・第2ボート、2
6・・・第3ポート、27・・・流路、100・・・ス
クロール圧縮機、101・・・四方弁、102・・・第
1熱交換器、103・・・膨張弁、104・・・第2熱
交換器、107・・・液冷媒インジェクション回路。 代理人 弁理士 秋 本 正 実 第 1 ロ ー第2図 易 3 コ 第4図 107 第5図 第6図 ′P、7図 6藷V
1 to 4 show an embodiment of the present invention, FIG. 1 is a cycle system diagram of a heat pump air conditioner according to the present invention and a longitudinal sectional view of a scroll compressor, and FIG. 2 is a compression diagram of a scroll compressor. 3 is a cross-sectional perspective view of the compressor unit and valve device, FIG. 4 is a sectional perspective view showing the operating state of the valve device, and FIG. 5 is a cycle of a conventional heat pump air conditioner. System diagram and vertical cross-sectional view of scroll compressor,
FIG. 6(a) is a longitudinal cross-sectional view of the compressor section of the scroll compressor, Tb) is a cross-sectional view thereof, and FIG. 7 is a pressure-volume diagram. 5. Fixed scroll, 6. Rotating scroll,
9l5 100... Compression chamber, 10... Discharge boat, 20... Valve device, 21... Valve body, 22... Valve chamber, 23... Valve body, 24... First boat , 25... 2nd boat, 2
6... Third port, 27... Channel, 100... Scroll compressor, 101... Four-way valve, 102... First heat exchanger, 103... Expansion valve, 104... -Second heat exchanger, 107...liquid refrigerant injection circuit. Agent Patent Attorney Tadashi Akimoto Jitsu No. 1 Law No. 2 Illustration 3 Ko No. 4 107 Fig. 5 Fig. 6 'P, 7 Fig. 6 藷V

Claims (1)

【特許請求の範囲】 1、 圧縮機、四方弁、第1熱交換器、膨張弁、第2熱
交換器を配管接続してヒートポンプサイクルを構成し、
前記圧縮機として、鏡板にうず巻状のラップを直立して
なる固定スクロール部材および旋回スクロール部材を備
え、両スクロール部材を互にラップを内側に向けて組み
合わせ、固定スクロール部材に対し、旋回スクロール部
材を自転しないように旋回させて、冷媒を圧縮するスク
ロール圧縮機を用いたヒートポンプ式空調機において、
前記ヒートポンプサイクルに、第1、第2熱交換器が凝
縮器として作用する場合の当該凝縮器の出口側にそれぞ
れ接続する液冷媒インジェクション回路を設け、前記ス
クロール圧縮機内の最小密閉容積となる圧縮室に連通ず
る位置に、前記圧縮室の圧力とヒートポンプサイクルの
高圧回路圧力との差圧で作動する弁装置を設け、前記圧
縮室内の圧力がヒートポンプサイクルの高圧回路圧力2
頁 より低い時には前記弁装置を介して前記圧縮室と前記液
冷媒インジェクション回路とを連通させ、前記圧縮室内
の圧力がヒートポンプサイクルの高圧回路圧力より高い
時には前記弁装置を介して圧縮室と吐出ボート側とを連
通させるように構成したことを特徴とするヒートポンプ
式空調機。 2、 前記弁装置は、固定スクロール部材の鏡板に装着
される弁本体と、その弁本体内の弁室に収納される弁体
とを備え、前記弁室の一方は前記鏡板に穿った第1ボー
トを介して前記圧縮室内に連通し、かつ他方は弁本体の
弁シート部に設けた第2ボートを介して前記液冷媒イン
ジェクション回路に連通ずると共に、途中は弁本体およ
び鏡板に亘って穿った第3ポートを介して前記吐出ボー
トに連通し、前記弁体の両面には受圧面が形成され、か
つ内部に両受圧面に開口する流路が設けられ、前記圧縮
室内の圧力がヒートポンプサイクルの高圧回路圧力より
低いと、その圧力差によシ前記弁体が第1ボートを閉じ
る位置に変位させられて、圧縮室と液冷媒インジェクシ
ョン回路とを前記流3頁 路を介して連通し、前記圧縮室内の圧力がヒートポンプ
サイクルの高圧回路圧力よシ高くなると、その圧力差に
より前記弁体が第2ボートを閉じる位置に変位させられ
て、圧縮室と吐出ボートとを前記第3ボートを介して連
通する構成となっていることを特徴とする特許梢求の範
囲第1項記載のヒートポンプ式空調機。
[Claims] 1. A heat pump cycle is configured by connecting a compressor, a four-way valve, a first heat exchanger, an expansion valve, and a second heat exchanger with piping,
The compressor includes a fixed scroll member and an orbiting scroll member each having a spiral wrap standing upright on an end plate, and both scroll members are assembled with the wraps facing inward. In a heat pump air conditioner that uses a scroll compressor that compresses refrigerant by rotating the refrigerant without rotating,
The heat pump cycle is provided with a liquid refrigerant injection circuit connected to the outlet side of the condenser when the first and second heat exchangers act as a condenser, and a compression chamber having a minimum sealed volume in the scroll compressor is provided. A valve device operated by a pressure difference between the pressure in the compression chamber and the high pressure circuit pressure of the heat pump cycle is provided in a position communicating with
When the pressure in the compression chamber is higher than the high pressure circuit pressure of the heat pump cycle, the compression chamber and the liquid refrigerant injection circuit are communicated via the valve device, and when the pressure in the compression chamber is higher than the high pressure circuit pressure of the heat pump cycle, the compression chamber and the discharge boat are communicated via the valve device. A heat pump type air conditioner characterized by being configured to communicate with the side. 2. The valve device includes a valve body mounted on an end plate of a fixed scroll member, and a valve body housed in a valve chamber in the valve body, and one of the valve chambers has a first hole bored in the end plate. The second boat communicates with the compression chamber via a boat, and the other communicates with the liquid refrigerant injection circuit via a second boat provided in the valve seat portion of the valve body, and a hole is bored halfway through the valve body and end plate. It communicates with the discharge boat through a third port, pressure receiving surfaces are formed on both sides of the valve body, and a flow path opening to both pressure receiving surfaces is provided inside, so that the pressure in the compression chamber is controlled by the heat pump cycle. When the pressure is lower than the high pressure circuit pressure, the pressure difference causes the valve body to be displaced to the position where the first boat is closed, thereby communicating the compression chamber and the liquid refrigerant injection circuit via the flow path, and When the pressure inside the compression chamber becomes higher than the high pressure circuit pressure of the heat pump cycle, the pressure difference causes the valve body to be displaced to a position that closes the second boat, thereby connecting the compression chamber and the discharge boat via the third boat. A heat pump type air conditioner according to item 1 of the patent application, characterized in that the heat pump type air conditioner is configured to communicate with each other.
JP11323984A 1984-06-04 1984-06-04 Heat pump type air conditioner Pending JPS60259794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11323984A JPS60259794A (en) 1984-06-04 1984-06-04 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11323984A JPS60259794A (en) 1984-06-04 1984-06-04 Heat pump type air conditioner

Publications (1)

Publication Number Publication Date
JPS60259794A true JPS60259794A (en) 1985-12-21

Family

ID=14607091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11323984A Pending JPS60259794A (en) 1984-06-04 1984-06-04 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS60259794A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329788A (en) * 1992-07-13 1994-07-19 Copeland Corporation Scroll compressor with liquid injection
EP0768464A2 (en) * 1995-10-11 1997-04-16 Denso Corporation Scroll compressor
US7771178B2 (en) * 2006-12-22 2010-08-10 Emerson Climate Technologies, Inc. Vapor injection system for a scroll compressor
JP2012127222A (en) * 2010-12-14 2012-07-05 Mitsubishi Electric Corp Scroll compressor and refrigerating cycle device with the same
US8303278B2 (en) 2008-07-08 2012-11-06 Tecumseh Products Company Scroll compressor utilizing liquid or vapor injection
JP2015086704A (en) * 2013-10-28 2015-05-07 日立アプライアンス株式会社 Scroll compressor
US9127677B2 (en) 2012-11-30 2015-09-08 Emerson Climate Technologies, Inc. Compressor with capacity modulation and variable volume ratio
US9249802B2 (en) 2012-11-15 2016-02-02 Emerson Climate Technologies, Inc. Compressor
US9303642B2 (en) 2009-04-07 2016-04-05 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US9435340B2 (en) 2012-11-30 2016-09-06 Emerson Climate Technologies, Inc. Scroll compressor with variable volume ratio port in orbiting scroll
US9651043B2 (en) 2012-11-15 2017-05-16 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US9739277B2 (en) 2014-05-15 2017-08-22 Emerson Climate Technologies, Inc. Capacity-modulated scroll compressor
US9790940B2 (en) 2015-03-19 2017-10-17 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US9989057B2 (en) 2014-06-03 2018-06-05 Emerson Climate Technologies, Inc. Variable volume ratio scroll compressor
US10066622B2 (en) 2015-10-29 2018-09-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
JP2021021370A (en) * 2019-07-29 2021-02-18 パナソニックIpマネジメント株式会社 Scroll compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329788A (en) * 1992-07-13 1994-07-19 Copeland Corporation Scroll compressor with liquid injection
EP0768464A2 (en) * 1995-10-11 1997-04-16 Denso Corporation Scroll compressor
EP0768464A3 (en) * 1995-10-11 1998-06-17 Denso Corporation Scroll compressor
US7771178B2 (en) * 2006-12-22 2010-08-10 Emerson Climate Technologies, Inc. Vapor injection system for a scroll compressor
US8303278B2 (en) 2008-07-08 2012-11-06 Tecumseh Products Company Scroll compressor utilizing liquid or vapor injection
US9879674B2 (en) 2009-04-07 2018-01-30 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11635078B2 (en) 2009-04-07 2023-04-25 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10954940B2 (en) 2009-04-07 2021-03-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US9303642B2 (en) 2009-04-07 2016-04-05 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
JP2012127222A (en) * 2010-12-14 2012-07-05 Mitsubishi Electric Corp Scroll compressor and refrigerating cycle device with the same
US10094380B2 (en) 2012-11-15 2018-10-09 Emerson Climate Technologies, Inc. Compressor
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US9651043B2 (en) 2012-11-15 2017-05-16 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US10907633B2 (en) 2012-11-15 2021-02-02 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US9249802B2 (en) 2012-11-15 2016-02-02 Emerson Climate Technologies, Inc. Compressor
US11434910B2 (en) 2012-11-15 2022-09-06 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US9777730B2 (en) 2012-11-30 2017-10-03 Emerson Climate Technologies, Inc. Scroll compressor with variable volume ratio port in orbiting scroll
US9127677B2 (en) 2012-11-30 2015-09-08 Emerson Climate Technologies, Inc. Compressor with capacity modulation and variable volume ratio
US9435340B2 (en) 2012-11-30 2016-09-06 Emerson Climate Technologies, Inc. Scroll compressor with variable volume ratio port in orbiting scroll
US9494157B2 (en) 2012-11-30 2016-11-15 Emerson Climate Technologies, Inc. Compressor with capacity modulation and variable volume ratio
JP2015086704A (en) * 2013-10-28 2015-05-07 日立アプライアンス株式会社 Scroll compressor
US9739277B2 (en) 2014-05-15 2017-08-22 Emerson Climate Technologies, Inc. Capacity-modulated scroll compressor
US9989057B2 (en) 2014-06-03 2018-06-05 Emerson Climate Technologies, Inc. Variable volume ratio scroll compressor
US10323638B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10323639B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US9790940B2 (en) 2015-03-19 2017-10-17 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10378540B2 (en) 2015-07-01 2019-08-13 Emerson Climate Technologies, Inc. Compressor with thermally-responsive modulation system
US10087936B2 (en) 2015-10-29 2018-10-02 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10066622B2 (en) 2015-10-29 2018-09-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11754072B2 (en) 2018-05-17 2023-09-12 Copeland Lp Compressor having capacity modulation assembly
JP2021021370A (en) * 2019-07-29 2021-02-18 パナソニックIpマネジメント株式会社 Scroll compressor
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11879460B2 (en) 2021-07-29 2024-01-23 Copeland Lp Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Similar Documents

Publication Publication Date Title
JPS60259794A (en) Heat pump type air conditioner
US4560330A (en) Scroll device with suction chamber pressure relief
US7168257B2 (en) Rotary compressor, method for manufacturing the same, and defroster for refrigerant circuit
US4545747A (en) Scroll-type compressor
US8109116B2 (en) Dual compressor air conditioning system with oil level regulation
US4475360A (en) Refrigeration system incorporating scroll type compressor
US20190360488A1 (en) System Including High-Side And Low-Side Compressors
EP2497955B1 (en) Heat pump device, two-stage compressor, and method of operating heat pump device
EP1953388A1 (en) Multistage compressor
JPH05133367A (en) Multistep gas compressor provided with bypass valve device
KR20100025539A (en) Capacity modulated compressor
JPH02118362A (en) Capacity control air conditioner
KR20030074372A (en) Multistage rotary compressor and refrigerant circuit system using the same
AU2007241901A1 (en) Refrigerating apparatus
JP4697734B2 (en) Refrigeration cycle
JP2015086704A (en) Scroll compressor
JP2005180320A (en) Scroll compressor
JPS59119080A (en) Scroll compressor
JP4991255B2 (en) Refrigeration cycle equipment
JP2699723B2 (en) Two-stage compression refrigeration system with check valve device
JPS59192880A (en) Scroll compressor
CN211343341U (en) Scroll compressor having a plurality of scroll members
JPH025917B2 (en)
JPS6187988A (en) Scroll compressor
JP4848432B2 (en) Scroll compressor