JPS60258882A - Static eleminating and charging method and discharging device - Google Patents

Static eleminating and charging method and discharging device

Info

Publication number
JPS60258882A
JPS60258882A JP11450084A JP11450084A JPS60258882A JP S60258882 A JPS60258882 A JP S60258882A JP 11450084 A JP11450084 A JP 11450084A JP 11450084 A JP11450084 A JP 11450084A JP S60258882 A JPS60258882 A JP S60258882A
Authority
JP
Japan
Prior art keywords
discharge
electrode
width
creeping
induction electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11450084A
Other languages
Japanese (ja)
Inventor
幸雄 永瀬
細野 長穂
江上 秀己
達夫 竹内
里村 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11450084A priority Critical patent/JPS60258882A/en
Priority to GB08415278A priority patent/GB2156597B/en
Priority to DE19843422401 priority patent/DE3422401A1/en
Priority to FR848411105A priority patent/FR2561829B1/en
Publication of JPS60258882A publication Critical patent/JPS60258882A/en
Priority to US06/882,206 priority patent/US4709298A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

1亙次」 本発明は静電記録、電子写真装置等において帯電・除電
を行う除・帯電方法および放電装置に関する。
1. TECHNICAL FIELD The present invention relates to a charging/removing method and a discharging device for charging/removing static electricity in electrostatic recording, electrophotographic devices, etc.

【釆教遣 従来より、静電記録、電子写真装置においては、線径0
.1mm程度のワイヤーに高電圧な印加することにより
コロナ放電を行うコロナ放電装置が広く用いられている
。しかしながら、このようなコロナ放電装置では、ワイ
ヤーが細いため破損し易く、さらにはワイヤーの汚れに
より放電ムラが生じるため被帯電体への帯電が不均一と
なるという欠点があった。また、ワイヤーとこれを包囲
している導電性シールド部材との距離をある程度以上に
離す必要があり、コロナ放電装置の小型化にも限界があ
った。 これに対して、他の放電装置として誘電体を挾む電極間
に交流電圧を印加し、これにより一方の電極の端面と誘
電体との接合部分に正・負イオンを発生させ、外部電界
により所望の極性のイオンな抽出するもの(米国特許4
155093、特開ll1l’154−53537号公
報)がある。このような装置においては、誘電体の厚み
を薄くする(例えば、厚みを50011.m以下、好ま
しくは20〜+ 200 p−m位にする)ことによっ
て、従来のコロノ) す放電装置に比較して小型な放電装置とすることができ
る。 ところが、」二記のような放電装置においては、被帯電
面を均一に帯電若しくは除電することが困難であった。 先艶匁上聯 本発明の目的は、実質的に均一に帯電・除電が可能とな
る除・帯電方法および放電装置を提供することにある。 本発明の他の目的は小型で、しかも均一な際会帯電が可
能な放電装置を提供することである。 本発明の他の目的は、比較的低い電圧で除命帯電効果の
高い放電装置を提供することである。 本発明の他の目的は、環境変動(温度、湿度等)に対し
て比較的安定で満足できる均一な帯電が可能な除・帯電
方法および放電装置を提供することである。 本発明の他の目的・効果は後述の本発明の実施例の記載
から明らかになろう。 11立IJ 本件発明者は公知のこの形式の前述の欠点は、誘電体の
片方の面に接する放電電極からこの面に沿って放電電極
に直角な方向に伸びる沿面放電の伸び方が該放電装置の
長手方向で均一に生じにくいからであると考察した。こ
の不均一な伸びの理由としては、誘電体材料の不均一性
、電極表面の微小な傷などが考えられる。 本発明の実施例によれば、除・帯電装置であって、誘電
体と、該誘電体を挾む誘導電極と放電電極と、該誘導電
極と該放電電極との間に交互電圧を印加して前記放電電
極側の前記誘電体表面に沿面放電を生じさせる電源と、
を有し、該交互電圧を、前記沿面放電の領域の幅が前記
誘導電極の幅とほぼ一致するようにした際会帯電装置が
提供されるので、放電電極と直角方向の沿面放電の伸び
はほぼ均一となり、均一な除・帯電が可能となる。 実jE例 以下、本発明の実施例を図面に基づいて説明する。 第1図は本発明の放電装置の基本構成を説明するもので
ある。放電部材lは被帯電部材2に対向して配置され、
誘電体3、誘導電極4、放電電極5を有している。第2
図は放電部材lの斜視図を示す。放電電極5は直線状の
1本の細長体であり、誘導電極4の巾方向の中心線に沿
って配置されている。 誘導電極4と放電電極5の間には交互電圧印加手段6に
より交互電圧が印加されている。一方、放電部材lに対
して相対的に矢印Aの方向に移動する被帯電部材2は導
電体基体2a上に絶縁体若しくは光導電体?bを有して
おり、導電体基体2aと放電電極5の間にはバイアス電
圧印加手段7によりバイアス電圧が印加されている。 帯電方法としては、誘導電極4と放電電極5との間へ交
互電圧を印加することにより、放電電極5周辺から放電
を起こさせ、十分な正・負イオンを発生させ、放電電極
5と導電体基体2a間のバイアス電圧の印加により、−
ヒ記正又は負イオンを選択的に抽出して被帯電部材・2
の絶縁体若しくは光導電体2b表面を特定極性に、かつ
所望の値に帯電させるものである。 ここで、誘電体としては、セラミック、雲母、ガラス等
の比較的硬度の高い無機材料や、ポリイミド、四フッ化
エチレン、ポリエステル、アクリル、塩化ビニル、ポリ
エチレン等の柔軟性のある有機高分子材料等が用いられ
る。 第3A図〜第3B図は、第1図および第2図に示した放
電部材1の放電電極5と誘導電極4との間に交互電圧を
印加して、放電電極5の近傍で誘電体3の表面に沿って
沿面放電を発生させているときの状態を放電電極5側か
ら見た図として示す。一点鎖線で示されているのは誘電
体3の裏面に接した誘導電極4でありそのl]をLで示
す。斜線の領域10は放電電極5の両側で誘電体3の表
面に沿って伸びた沿面放電の伸びの領域である。 ユ 第3A図は、本発明を用いないときの沿面数電の状
態を示す。第3A図で沿面放電の領域IOは放電電極5
を中心に伸びその巾lは長手方向で不均一である。この
ために第1図に示したように被帯電部材2を移動して絶
縁体若しくは光導電体2bの表面を帯電した場合放電部
材lの長手方向に不均一な表面の帯電分布となる。 本件発明者は、沿面放電領域10のrllttは誘導電
極4と放電電極5との間に印加される交互電圧のピーク
学ピークの値によって異なることを見い出した。これを
示したのが第4図で、横軸に交互電圧のビーク拳ビーク
の値を、縦軸に沿面放電領域10の巾lをとっである。 ピークφピーク値を上げていくと放電開始電圧Bで沿面
放電が開始し、沿面放電領域lOの巾!はピーク・ピー
ク値の増加とともに増加する。そして、やがて飽和しそ
のとき沿面放電領域中lは誘導電極4のfi]Lに略一
致する。それ以上ピーク・ピーク値を−1−げても沿面
放電領域中lは誘導電極4の巾りを越えて増加すること
はない。ここで誘電体3として厚さ200 gmのアル
ミナセラミックスを使い、放電電極の巾は500p、m
、誘導電極の巾は6.5mmであった。 本発明は、この現象を利用し、誘電体3材料の不均一性
や電極表面の微小な傷の存在にもかかわらず、沿面放電
領域10の巾を放電部材1の長手方向全体にわたって均
一にするものである。 第3B図は本発明を使用した場合の沿面放電領域10を
示す。本実施例では交互電圧のピーク・ピーク値を、沿
面放電領域10が放電部材1の長手方向全体にわたって
図示の如く誘導電極4のl】と一致するように設定され
ている。図示の如く沿面放電領域中lは、放電部材lの
長手方向全体にわたって、誘導電極4の巾とほぼ一致し
、したがって、均一である。印加電圧は交互電圧である
から微視的に見れば、沿面放電領域中!は時間に対して
変化し伸縮が繰返されるが、最大に伸びた時の沿面放電
領域中!は誘導電極4の巾とほぼ一致し、放電部材lの
長手方向全体にわたって均一である。 このように沿面放電の伸び巾が全体にわたって誘導電極
4の巾近傍まで少なくとも到達する交m電圧の値を放電
電極5と誘導電極4との間に印加すると、沿面放電領域
10の巾!が長手方向で一定となり、第1図のようにし
て帯電すると均一な帯電が得られる。前述のごとく上記
交互電圧をさらに高めても沿面放電領域IOの巾!は誘
導電極4の11 L以上伸びない。沿面放電領域10内
の電荷密度が増加するだけである。しかも、沿面放電領
域10内は放電部材1の長手方向全体にわたってほぼ均
一な電荷密度となる。この現象を最大限に利用して帯電
すると環境変動(温度、湿度等)に対しても比較的安定
で、かつ充分に満足できる均一な帯電が可能となる。 実際に、誘電体3として厚みが200 gmのアルミナ
のセラミックスを使い、放電電極5の巾を500川m、
誘導電極4の巾を4.5mmにして両電極間にピーク・
ピークの電圧が2kVppの交流電圧を印加したところ
、沿面放電の伸びは誘導電極4の巾まで到達せず、第1
図バイアス電源7の出力を2kVとして帯電したところ
±8%の帯電ムラが生じた。 つぎに、両電極4,5間に印加する交流電圧を4kVp
pにして充分沿面放電領域lOを伸長させ、誘導電極4
のllまで充分到達させて帯電したところ、測定された
帯電ムラは±3%であった。したがってこの例ではピー
ク番ピーク値を変えるだけで、帯電ムラの60%強が除
去された。 また、両電極4,5間に印加する電圧を4kVPPとし
た場合でも、誘導電極4の巾を変えて30mmとした場
合は(その他は前記と同一条件)、沿面放電領域lOは
誘導電極4の巾まで到達しておらず、帯電ムラは17%
であった。 第5図および第6A図は、それぞれ本発明の他の実施例
による放電装置の基本構成および放電部材lの刺視図で
ある。本実施例は放電電極5を構成する細長の放電電極
部材が複数列、実質的に等間隔で設けられ、それにとも
なって、誘導電極および誘電体のの幅が大きくなってい
ることを除3 ’ r ’a bt l tt前E ’
4 m m ko−−ch6(1)T・”9する部材に
同一の参照符号を付することによって詳細な説明を省略
する。 第7A図は第5図および第6A図に示す本発明の放電装
置における沿面放電領域を示す。複数の放電電極部材5
aおよび5bはぼ等間隔に配置される。そして、それら
のうち最も外側に配置された放電電極部材5aの中心線
と誘導電極4の幅方向の端部との距離をLl、隣接する
放電電極の中心線間の距離をL2としたとき、L1≧ 
l/2×L2となるように配されている。本実施例では
内側放電電極部材5bは1本、すなわち、全部で3本の
放電電極として示されているが、これはこの内側放電電
極部材5bはOを含めて何本でもよい。交互電圧のピー
ク争ピーク値は、最外側の両数電電極部材5aから伸び
る沿面放電領域10aが放電部材lの長手方向全体にわ
たって図示の如く誘導電極4の巾とほぼ一致するように
設定されている。このようにすると、」二記の寸法条件
から、各放電電極間においては、各放電電極の沿面放電
領域が互いに接触もしくは重合し、各放電電極間にも全
面に均一な沿面放電領域10bが形成される。図示の如
く放電部材lの長手方向の各点1 における沿面放電領域全体の巾は、該長手方向全体にわ
たって、誘導電極4の巾とほぼ一致し、したがって均一
である。 に記条件を満たすさすに、LL<1/2XL2の場合で
、誘導電極4の幅とほぼ一致するような均一な沿面放電
領域lOを形成させるためには、放電電極部材間に充満
した(したがって均一な)沿面放電領域10bが形成さ
れるように電圧を印加すればよい。また、同じ<Ll<
1/2XL2の条件で、両最外側の放電電極部材5aの
外側の沿面放電領域10aを誘導電極4の幅にほぼ一致
させる最低のピーク・ピーク値とした場合は、内側にお
いては、一部の放電゛電極からの沿面放電領域がそれと
隣り合う放電電極からの沿面放電領域とたがいに接触ま
たは重合しない場合でも、かなりの均一化が達成できる
。 このように沿面放電・の伸び巾が全体にわたって誘導電
極4の11まで少なくとも到達する交互電圧の値を放電
電極と誘導電極4との間に印加すると11.沿面放電領
域lOの巾が長手方向で一定とな2 す、第5図のようにして帯電すると均一な帯電が得られ
る。前述のごとく・上記交互電圧をさらに高めても沿面
放電領域10の巾は誘導電極4のll L以上伸びない
。沿面放電領域lO内の電荷密度が増加するだけである
。しかも、沿面放電領域10内は放電部材lの長手方向
全体にわたってほぼ均一な電荷密度となる。この現象を
最大限に利用して帯電すると環境変動(温度、湿度等)
に対しても比較的安定で、かつ充分に満足できる均一な
帯電が可能となる。 これら複数列の放電電極は片側端部で電気的に接続され
たくし形としてもよく(第6B図)、あるいは両端を接
続してもよく(第6C図)、さらにジグザグ形に接続し
てもよい(第6D図)。 放電電極5が1本の細長体で形成されている場合は、沿
面放電領域の幅は交互電圧のピーク・ピー値で制限され
てしまうため沿面放電領域幅を増加させるためには、交
互電圧をかなり上昇させる必要があるが、複数本の放電
電極を用いた場合は電圧を大幅にTRさせることなく、
その本数により任意に全体の沿面放電領域幅を増加させ
ることができるので、帯電あるいは除電効果を著しく向
−1−させることができる。 第7B図は、」−記のごとき沿面放電の状態でない場合
を示す。第7A図で沿面放電の領域10は各放電電極部
材5を中心に伸びその各Ill l、2および3は長手
方向でそれぞれ不均一である。このために第5図に示し
たように被帯電部材2を移動して絶縁体若しくは光導電
体2bの表面を帯電した場合、第3A図と同様に放電部
材1の長手方向に不均一な表面の帯電分布となり好まし
くない。 実際に、誘電体3として厚みが2001Lmのアルミナ
のセラミックスを使い、3本の巾500Ii、mの放電
電極を間隔(L2)5mmで配置し1、誘導電極4の巾
を14 m mにして両電極間森 にピーク・ピークの
電圧が2kVPPの交流電圧を印加したところ、沿面放
電の伸びは第7B図と同様であり、第1図のバイアス電
源7の出力を2kVとして帯電したところ±7・5%の
帯電ムラが生じた。 つぎに、両電極4,5間に印加する交流電圧を4kVp
pにして沿面放電領域10を伸長させ、誘導電極4の巾
まで充分到達させて帯電したところ、測定された帯電ム
ラは上2゜5%であった。したがってこの例ではピーク
・ピーク値を変えるだけで、帯電ムラの65%強が除去
された。 また、両電極4,5間に印加する電圧を4kVPPとし
た場合でも、誘導電極4の11を変えて60 m m 
、放電電極間の距離を20mmとした場合は(その他は
前記と同一条件)、沿面放電領域10は誘導電極4の巾
まで到達しておらず、第3A図と同様の状態となり、帯
電ムラは±7%であった。 」二記いずれの実施例においても、沿面放電領域10の
巾は誘電体3の材質、誘電率や、表面電気抵抗等によっ
て異なるものであるが、それらの条件に応じてピーク・
ピーク値を決定すればよ5 い。 さらに、沿面放電領域10の巾は放電装置の使用条件、
例えば、気圧、湿度、温度、誘電体3表面の汚れ等によ
っても異なるものであるが、実際の使用条件に合せて、
これらの変動にかかわりなく、沿面放電領域IOの巾が
誘導電極4の幅とほぼ一致するように交互電圧のピーク
Φピーク値を決定することができるものであり、またそ
のように設定することが望ましい。 誘導電極4と放電電極5との間に印加する交互電圧は必
ずしもいわゆるAC電圧でなくても矩形波電圧でもパル
ス電圧でも良い。 以上の説明では、被帯電部材2を帯電する場合について
説明したが、放電部材lを被帯電部材2に近づければ電
1ii7を必要とせずに被帯電部材2を除電することが
できる。この場合でも、上記本発明は全く同様に適用で
き、その効果も同様に奏される。 電源7は直波でも脈流でも、放電電極5の近傍に発生し
たイオンを被帯電部材2の方向に引張6 れる電圧であれば良い。 」乳立力] 以」二説明のごとく1本発明によれば、小型の放電装置
で除・帯電の不均一性を大幅に改善することができる。
[Kadokyokei Traditionally, in electrostatic recording and electrophotographic equipment, wire diameters of 0
.. Corona discharge devices that perform corona discharge by applying a high voltage to a wire of about 1 mm are widely used. However, such a corona discharge device has the disadvantage that the wire is thin and easily damaged, and furthermore, dirt on the wire causes uneven discharge, resulting in non-uniform charging of the charged object. Furthermore, it is necessary to maintain a certain distance between the wire and the conductive shielding member surrounding the wire, which limits the miniaturization of the corona discharge device. On the other hand, as another discharge device, an alternating current voltage is applied between electrodes that sandwich a dielectric material, thereby generating positive and negative ions at the junction between the end face of one electrode and the dielectric material, and by an external electric field. Extracting ions of desired polarity (U.S. Pat.
155093, Japanese Patent Application Laid-open No. ll1l'154-53537). In such a device, by reducing the thickness of the dielectric material (for example, making the thickness 50011.m or less, preferably about 20 to +200 p-m), compared to a conventional discharge device. As a result, a compact discharge device can be obtained. However, in the discharge device as described in Section 2, it is difficult to uniformly charge or neutralize the surface to be charged. SUMMARY OF THE INVENTION An object of the present invention is to provide a charge removal/charging method and a discharge device that enable substantially uniform charging and removal. Another object of the present invention is to provide a discharge device that is compact and capable of uniform electrification. Another object of the present invention is to provide a discharge device that has a high life-killing charging effect at a relatively low voltage. Another object of the present invention is to provide a charge removal/charging method and a discharge device that are relatively stable against environmental changes (temperature, humidity, etc.) and are capable of satisfactorily uniform charging. Other objects and effects of the present invention will become apparent from the description of the embodiments of the present invention described below. 11 Tate IJ The above-mentioned drawback of this type, which is known to the present inventor, is that the creeping discharge, which extends from the discharge electrode in contact with one surface of the dielectric material along this surface in a direction perpendicular to the discharge electrode, is It was considered that this is because it is difficult to form uniformly in the longitudinal direction. Possible reasons for this non-uniform elongation include non-uniformity of the dielectric material and minute scratches on the electrode surface. According to an embodiment of the present invention, there is provided a charge removal/charging device that applies alternating voltages between a dielectric, an induction electrode and a discharge electrode sandwiching the dielectric, and the induction electrode and the discharge electrode. a power source that causes a creeping discharge on the dielectric surface on the discharge electrode side;
and the alternating voltage is set such that the width of the creeping discharge region almost matches the width of the induction electrode, so that the creeping discharge extends in the direction perpendicular to the discharge electrode. It becomes almost uniform, making it possible to remove and charge uniformly. Practical Examples Examples of the present invention will be described below with reference to the drawings. FIG. 1 explains the basic configuration of the discharge device of the present invention. The discharge member l is arranged facing the charged member 2,
It has a dielectric 3, an induction electrode 4, and a discharge electrode 5. Second
The figure shows a perspective view of the discharge member l. The discharge electrode 5 is a single linear elongated body, and is arranged along the center line of the induction electrode 4 in the width direction. Alternate voltages are applied between the induction electrode 4 and the discharge electrode 5 by an alternate voltage application means 6. On the other hand, the charged member 2 moving in the direction of the arrow A relative to the discharge member 1 is formed of an insulator or a photoconductor on the conductor base 2a. b, and a bias voltage is applied between the conductor base 2a and the discharge electrode 5 by a bias voltage applying means 7. The charging method is to apply alternating voltages between the induction electrode 4 and the discharge electrode 5 to generate a discharge from around the discharge electrode 5, generate sufficient positive and negative ions, and connect the discharge electrode 5 and the conductor. By applying a bias voltage between the bases 2a, -
(h) Selectively extracting positive or negative ions to charge the charged member ・2
The surface of the insulator or photoconductor 2b is charged to a specific polarity and a desired value. Here, dielectric materials include relatively hard inorganic materials such as ceramic, mica, and glass, and flexible organic polymer materials such as polyimide, tetrafluoroethylene, polyester, acrylic, vinyl chloride, and polyethylene. is used. 3A to 3B, alternate voltages are applied between the discharge electrode 5 and the induction electrode 4 of the discharge member 1 shown in FIG. 1 and FIG. The figure shows a state in which a creeping discharge is generated along the surface of the discharge electrode 5 when viewed from the discharge electrode 5 side. What is indicated by a dashed line is the induction electrode 4 in contact with the back surface of the dielectric 3, and its 1] is indicated by L. A shaded area 10 is an area where creeping discharge extends along the surface of the dielectric 3 on both sides of the discharge electrode 5. Figure 3A shows the state of creepage current when the present invention is not used. In FIG. 3A, the creeping discharge area IO is located at the discharge electrode 5.
It extends around the center and its width l is non-uniform in the longitudinal direction. For this reason, when the surface of the insulator or photoconductor 2b is charged by moving the member 2 to be charged as shown in FIG. 1, the surface charge distribution becomes uneven in the longitudinal direction of the discharge member 1. The inventor of the present invention has found that rlltt of the creeping discharge region 10 differs depending on the peak value of the alternating voltage applied between the induction electrode 4 and the discharge electrode 5. This is shown in FIG. 4, where the horizontal axis represents the peak value of the alternating voltage, and the vertical axis represents the width l of the creeping discharge region 10. As the peak φ peak value is increased, creeping discharge starts at the discharge starting voltage B, and the width of the creeping discharge area lO! increases with increasing peak-to-peak value. Then, it eventually becomes saturated, at which time l in the creeping discharge region substantially matches fi]L of the induction electrode 4. Even if the peak-to-peak value is further increased by -1, the creeping discharge area 1 will not increase beyond the width of the induction electrode 4. Here, alumina ceramics with a thickness of 200 gm is used as the dielectric material 3, and the width of the discharge electrode is 500p, m
, the width of the induction electrode was 6.5 mm. The present invention makes use of this phenomenon to make the width of the creeping discharge region 10 uniform over the entire longitudinal direction of the discharge member 1, despite the non-uniformity of the dielectric material 3 and the presence of minute scratches on the electrode surface. It is something. FIG. 3B shows creeping discharge region 10 using the present invention. In this embodiment, the peak-to-peak values of the alternating voltages are set so that the creeping discharge region 10 coincides with l] of the induction electrode 4 over the entire longitudinal direction of the discharge member 1 as shown. As shown in the figure, the creeping discharge region 1 substantially matches the width of the induction electrode 4 over the entire longitudinal direction of the discharge member 1, and is therefore uniform. The applied voltage is an alternating voltage, so if you look at it microscopically, it is in the creeping discharge area! changes with time and expands and contracts repeatedly, but it is in the creeping discharge region when it reaches its maximum expansion! almost matches the width of the induction electrode 4 and is uniform over the entire length of the discharge member l. In this way, when an AC voltage value such that the creeping discharge reaches at least the width of the induction electrode 4 over the entire area is applied between the discharge electrode 5 and the induction electrode 4, the width of the creeping discharge area 10! is constant in the longitudinal direction, and when charged as shown in FIG. 1, uniform charging can be obtained. As mentioned above, even if the above alternating voltage is further increased, the width of the creeping discharge area IO is still the same! does not extend beyond 11 L of the induction electrode 4. Only the charge density in the creeping discharge region 10 increases. Furthermore, the charge density within the creeping discharge region 10 is substantially uniform throughout the longitudinal direction of the discharge member 1. Charging that takes full advantage of this phenomenon allows relatively stable charging against environmental changes (temperature, humidity, etc.), and satisfactorily uniform charging. Actually, we used alumina ceramics with a thickness of 200 gm as the dielectric material 3, and the width of the discharge electrode 5 was 500 gm.
The width of the induction electrode 4 is set to 4.5 mm, and the peak and
When an AC voltage with a peak voltage of 2 kVpp was applied, the elongation of the creeping discharge did not reach the width of the induction electrode 4, and the first
When charging was performed with the output of the bias power supply 7 set to 2 kV, charging unevenness of ±8% occurred. Next, change the AC voltage applied between both electrodes 4 and 5 to 4 kVp.
p, the creeping discharge area lO is sufficiently extended, and the induction electrode 4
When the battery was fully charged to 11, the measured charging unevenness was ±3%. Therefore, in this example, just by changing the peak number and peak value, more than 60% of the charging unevenness was removed. Furthermore, even when the voltage applied between both electrodes 4 and 5 is 4 kVPP, when the width of the induction electrode 4 is changed to 30 mm (other conditions are the same as above), the creeping discharge area lO of the induction electrode 4 is It has not reached the width, and the charging unevenness is 17%.
Met. FIG. 5 and FIG. 6A are perspective views of the basic configuration of a discharge device and a discharge member l according to other embodiments of the present invention, respectively. In this embodiment, a plurality of rows of elongated discharge electrode members constituting the discharge electrode 5 are provided at substantially equal intervals, and the widths of the induction electrode and the dielectric body are accordingly increased. r 'a bt l ttbeforeE'
4 mm ko--ch6(1)T・"9 The detailed explanation is omitted by giving the same reference numerals to the members. FIG. 7A shows the discharge of the present invention shown in FIGS. 5 and 6A. A creeping discharge area in the device is shown. A plurality of discharge electrode members 5
a and 5b are arranged at approximately equal intervals. Then, when the distance between the center line of the discharge electrode member 5a arranged on the outermost side and the widthwise end of the induction electrode 4 is Ll, and the distance between the center lines of adjacent discharge electrodes is L2, L1≧
They are arranged so as to be 1/2×L2. In this embodiment, one inner discharge electrode member 5b is shown, that is, three discharge electrodes in total, but any number of inner discharge electrode members 5b including O may be used. The peak values of the alternating voltages are set so that the creeping discharge region 10a extending from the outermost bipolar electrode member 5a substantially matches the width of the induction electrode 4 over the entire longitudinal direction of the discharge member l, as shown in the figure. There is. In this way, due to the dimensional conditions described in section 2, the creeping discharge regions of the respective discharge electrodes contact or overlap each other, and a uniform creeping discharge region 10b is formed over the entire surface between the discharge electrodes. be done. As shown in the figure, the width of the entire creeping discharge area at each point 1 in the longitudinal direction of the discharge member 1 substantially matches the width of the induction electrode 4 throughout the longitudinal direction, and is therefore uniform. In the case of LL<1/2XL2, in order to form a uniform creeping discharge area IO that almost matches the width of the induction electrode 4, it is necessary to fill the gap between the discharge electrode members (therefore, A voltage may be applied so that a uniform creeping discharge region 10b is formed. Also, the same <Ll<
Under the condition of 1/2 XL2, if the creeping discharge area 10a on the outside of both outermost discharge electrode members 5a is set to the lowest peak-to-peak value that almost matches the width of the induction electrode 4, some of the inside Considerable uniformity can be achieved even if the creeping discharge regions from the discharge electrodes do not contact or overlap with the creeping discharge regions from adjacent discharge electrodes. In this way, when an alternating voltage value is applied between the discharge electrode and the induction electrode 4 such that the creeping discharge reaches at least 11 of the induction electrode 4 over the entire length, 11. Uniform charging can be obtained by charging as shown in FIG. 5, in which the width of the creeping discharge region IO is constant in the longitudinal direction. As described above, even if the alternating voltage is further increased, the width of the creeping discharge region 10 will not increase beyond the width of the induction electrode 4. Only the charge density in the creeping discharge region lO increases. Moreover, the charge density within the creeping discharge region 10 is approximately uniform throughout the longitudinal direction of the discharge member l. If you take full advantage of this phenomenon and charge it, environmental changes (temperature, humidity, etc.)
It is also possible to achieve relatively stable and fully satisfactory uniform charging. These multiple rows of discharge electrodes may be connected in a comb shape electrically connected at one end (Fig. 6B), or may be connected at both ends (Fig. 6C), or may be connected in a zigzag shape. (Figure 6D). If the discharge electrode 5 is formed of one elongated body, the width of the creeping discharge region is limited by the peak-to-peak value of the alternating voltage. Therefore, in order to increase the width of the creeping discharge region, the alternating voltage must be It is necessary to raise the voltage considerably, but if multiple discharge electrodes are used, the voltage can be increased without significantly increasing the TR voltage.
Since the total creeping discharge area width can be increased arbitrarily by changing the number of the electrodes, the charging or neutralizing effect can be significantly improved. FIG. 7B shows a case where there is no creeping discharge as shown in "-". In FIG. 7A, the creeping discharge area 10 extends around each discharge electrode member 5, and each of the regions 11, 2, and 3 is nonuniform in the longitudinal direction. For this reason, when the charged member 2 is moved to charge the surface of the insulator or photoconductor 2b as shown in FIG. 5, the surface of the discharge member 1 is uneven in the longitudinal direction as in FIG. 3A. This results in an undesirable charge distribution. Actually, alumina ceramics with a thickness of 2001 Lm was used as the dielectric 3, three discharge electrodes each having a width of 500 Ii, m were arranged at an interval (L2) of 5 mm, and the width of the induction electrode 4 was 14 mm. When an AC voltage with a peak-to-peak voltage of 2 kVPP was applied between the electrodes, the growth of the creeping discharge was similar to that shown in Figure 7B, and when charged with the output of the bias power supply 7 in Figure 1 set to 2 kV, the increase was ±7. Charging unevenness of 5% occurred. Next, change the AC voltage applied between both electrodes 4 and 5 to 4 kVp.
When the creeping discharge region 10 was extended to fully reach the width of the induction electrode 4 and charged, the charging unevenness was measured to be 2.5% above. Therefore, in this example, just by changing the peak-to-peak value, more than 65% of the charging unevenness was removed. In addition, even when the voltage applied between both electrodes 4 and 5 is 4kVPP, 11 of the induction electrode 4 is changed to 60 mm
When the distance between the discharge electrodes is 20 mm (other conditions are the same as above), the creeping discharge region 10 does not reach the width of the induction electrode 4, resulting in a state similar to that shown in FIG. 3A, and the charging unevenness is It was ±7%. In both embodiments, the width of the creeping discharge region 10 varies depending on the material, dielectric constant, surface electrical resistance, etc. of the dielectric 3, but the width of the creeping discharge region 10 varies depending on the conditions.
All you have to do is determine the peak value. Furthermore, the width of the creeping discharge area 10 is determined based on the usage conditions of the discharge device.
For example, it varies depending on the atmospheric pressure, humidity, temperature, dirt on the surface of the dielectric 3, etc., but depending on the actual usage conditions,
Regardless of these fluctuations, the peak Φ peak value of the alternating voltage can be determined and set so that the width of the creeping discharge region IO almost matches the width of the induction electrode 4. desirable. The alternating voltage applied between the induction electrode 4 and the discharge electrode 5 is not necessarily a so-called AC voltage, but may be a rectangular wave voltage or a pulse voltage. In the above description, the case where the member to be charged 2 is charged has been described, but if the discharge member l is brought close to the member to be charged 2, the charge to be charged member 2 can be neutralized without requiring the charge 1ii7. Even in this case, the above-mentioned present invention can be applied in exactly the same way, and the same effects can be achieved. The power source 7 may be a direct wave or a pulsating current, as long as it can pull the ions generated in the vicinity of the discharge electrode 5 toward the charged member 2. ``Milk-raising force'' As explained below, according to the present invention, the non-uniformity of charge removal and charging can be significantly improved with a small-sized discharge device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による除・帯電方法を用いる放電装置
の実施例の基本的構成を示し、第2図は、第1図に示す
放電装置に用いる放電部材の斜視図であり、 第3A図は本発明を用いない場合の沿面放電状態を示し
、 第3B図は本発明の実施例の除・帯電方法および放電装
置における沿面放電状態を示し、第4図は印加交τ電圧
のピーク・ピーク値と沿面放電状態巾の関係を示すグラ
フである。 第5図は、本発明による除・帯電方法を用いる放電装置
の他の実施例の基本的構成を示し、第6A図は、第5図
に示す放電装置に用いる放電部材の斜視図であり、 第6B、第60、第6D図は複数列の放電電極の接続の
例を示し、 第7A図は第5図および第6図の放電装置における沿面
放電状態を示し、 第7B図は沿面放電が不十分な状態かを示す。 符号の説明 1:放電部材 2:被帯電部材 3:誘電体 4:誘導電極 5:放電電極 5a、5b:複数の放電電極部材 6:交互電圧印加手段 第 1 口 第2図  9 第4図 2 4 6 to−7・ 仁’−’yati (k’rl)第7A図 第78図
FIG. 1 shows the basic configuration of an embodiment of a discharge device using the electrification/charging method according to the present invention, and FIG. 2 is a perspective view of a discharge member used in the discharge device shown in FIG. The figure shows the creeping discharge state when the present invention is not used, FIG. 3B shows the creeping discharge state in the discharge/charging method and discharge device according to the embodiment of the present invention, and FIG. 4 shows the peak and It is a graph which shows the relationship between a peak value and creeping discharge state width. FIG. 5 shows the basic configuration of another embodiment of a discharge device using the electrification/charging method according to the present invention, and FIG. 6A is a perspective view of a discharge member used in the discharge device shown in FIG. Figures 6B, 60, and 6D show examples of connections between multiple rows of discharge electrodes, Figure 7A shows creeping discharge conditions in the discharge devices of Figures 5 and 6, and Figure 7B shows creeping discharge conditions. Indicates insufficient condition. Explanation of symbols 1: Discharge member 2: Charged member 3: Dielectric 4: Inductive electrode 5: Discharge electrodes 5a, 5b: Plural discharge electrode members 6: Alternate voltage application means 1st mouth 2nd figure 9 4th figure 2 4 6 to-7・ 仁'-'yati (k'rl)Figure 7AFigure 78

Claims (4)

【特許請求の範囲】[Claims] (1)誘電体を挾む誘導電極と放電電極とを有する放電
部材の放電電極側を被除・帯電部材に対面させ、 前記誘導電極と前記放電電極との間に交互電圧を印加し
て該放電電極側の前記誘電体表面に沿面放電を生じさせ
、前記交互電圧を、前記沿面放電の領域の巾が前記誘導
電極の巾とほぼ一致するように設定し、 これにより生じた沿面放電によって、被除・帯電部材を
除・帯電することを特徴とする除・帯電方法。
(1) The discharge electrode side of a discharge member having an induction electrode and a discharge electrode sandwiching a dielectric material is made to face the discharged/charged member, and an alternating voltage is applied between the induction electrode and the discharge electrode. A creeping discharge is generated on the dielectric surface on the discharge electrode side, and the alternating voltage is set so that the width of the creeping discharge region almost matches the width of the induction electrode, and the creeping discharge generated thereby: A method for removing and charging a charged member, which is characterized by removing and charging a charged member.
(2)除・帯電装置であって、 誘電体と 該誘電体を挾む誘導電極と放電電極と、該誘導電極と該
放電電極との間に交互電圧を印加して前記放電電極側の
前記誘電体表面に沿面放電を生じさせる電源と、 を有し、該交互電圧を、前記沿面放電の領域の幅が前記
誘導電極の幅とほぼ一致するようにした除・帯電装置。
(2) A charge removal/charging device, which applies alternating voltages between a dielectric, an induction electrode and a discharge electrode sandwiching the dielectric, and the induction electrode and the discharge electrode to A power source for generating a creeping discharge on the surface of a dielectric material, and the alternating voltage is applied such that the width of the region of the creeping discharge substantially matches the width of the induction electrode.
(3) 特許請求の範囲第2項に記載の除・帯電装置で
あって、前記放電電極は等間隔の複数列の放電電極部材
を有する。
(3) In the electrification/charging device according to claim 2, the discharge electrode includes a plurality of equally spaced rows of discharge electrode members.
(4) 特許請求の範囲第3項に記載の除・帯電装置で
あって、前記複数列の放電電極部材のうち最も外側の放
電電極部材と前記誘導電極の幅の端部との距離は放電電
極部材間の距離の172以上である。
(4) In the electrification/charging device according to claim 3, the distance between the outermost discharge electrode member of the plurality of rows of discharge electrode members and the width end of the induction electrode is determined by the discharge The distance between the electrode members is 172 or more.
JP11450084A 1984-03-26 1984-06-06 Static eleminating and charging method and discharging device Pending JPS60258882A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11450084A JPS60258882A (en) 1984-06-06 1984-06-06 Static eleminating and charging method and discharging device
GB08415278A GB2156597B (en) 1984-03-26 1984-06-15 Charging or discharging a member
DE19843422401 DE3422401A1 (en) 1984-03-26 1984-06-15 METHOD AND DEVICE FOR CHARGING OR UNLOADING A COMPONENT
FR848411105A FR2561829B1 (en) 1984-03-26 1984-07-12 METHOD AND DEVICE FOR ELECTRICALLY CHARGING AND UNLOADING AN ELEMENT
US06/882,206 US4709298A (en) 1984-03-26 1986-07-03 Method and device for charging or discharging a member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11450084A JPS60258882A (en) 1984-06-06 1984-06-06 Static eleminating and charging method and discharging device

Publications (1)

Publication Number Publication Date
JPS60258882A true JPS60258882A (en) 1985-12-20

Family

ID=14639304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11450084A Pending JPS60258882A (en) 1984-03-26 1984-06-06 Static eleminating and charging method and discharging device

Country Status (1)

Country Link
JP (1) JPS60258882A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167382A (en) * 1986-12-22 1988-07-11 ゼロックス コーポレーション Charger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167382A (en) * 1986-12-22 1988-07-11 ゼロックス コーポレーション Charger
JPH0541992B2 (en) * 1986-12-22 1993-06-25 Xerox Corp

Similar Documents

Publication Publication Date Title
JPH024904B2 (en)
JPS6232468B2 (en)
US4709298A (en) Method and device for charging or discharging a member
US4875060A (en) Discharge head for an electrostatic recording device
US6205309B1 (en) AC corona charging arrangement with current—limiting capacitor
US4589053A (en) Method and device for charging or discharging a member
JPS60258882A (en) Static eleminating and charging method and discharging device
US4794254A (en) Distributed resistance corona charging device
USRE33633E (en) Method and device for charging or discharging a member
JPS60258569A (en) Destaticizing and charging method and discharging device
US5153435A (en) Planar scorotron device
JPS60201367A (en) Destaticizing and electrifying method
JPS6115162A (en) Discharging device
JPS60201368A (en) Destaticizing and electrifying method
JPS60201366A (en) Destaticizing and electrifying method
JPH0443897Y2 (en)
JP2622821B2 (en) De-electrode structure
JPS6317472A (en) Corona discharger
JPS60211789A (en) Discharging device
JPS62240979A (en) Solid state discharge device
JPS6263953A (en) Solid-state discharging device
JPS61289365A (en) Solid-state discharging device
JPS60193279A (en) Solid state discharger
JPS5923499A (en) Static electricity removing method
JPS61223758A (en) Corona discharge generator