JPS6025784B2 - Recording paper that suppresses the amount of curling - Google Patents

Recording paper that suppresses the amount of curling

Info

Publication number
JPS6025784B2
JPS6025784B2 JP56207694A JP20769481A JPS6025784B2 JP S6025784 B2 JPS6025784 B2 JP S6025784B2 JP 56207694 A JP56207694 A JP 56207694A JP 20769481 A JP20769481 A JP 20769481A JP S6025784 B2 JPS6025784 B2 JP S6025784B2
Authority
JP
Japan
Prior art keywords
paper
curl
rolls
sample
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56207694A
Other languages
Japanese (ja)
Other versions
JPS58107548A (en
Inventor
丈治 稲留
祥 坂本
義雄 吉田
博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Kokusaku Pulp Co Ltd
Original Assignee
Sanyo Kokusaku Pulp Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Kokusaku Pulp Co Ltd filed Critical Sanyo Kokusaku Pulp Co Ltd
Priority to JP56207694A priority Critical patent/JPS6025784B2/en
Publication of JPS58107548A publication Critical patent/JPS58107548A/en
Publication of JPS6025784B2 publication Critical patent/JPS6025784B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • G03G7/006Substrates for image-receiving members; Image-receiving members comprising only one layer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 この発明は、カールの発生量を抑制した記録用紙に関し
、特に定着用斜交ロールを用いる圧力定着方式の磁気記
録法または静電記記録法に用いるに適したカール発生量
を抑制した記録紙であって、式渋く26M。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a recording paper that suppresses the amount of curl, and is particularly suitable for use in pressure fixing magnetic recording or electrostatic recording using diagonal fixing rolls. It is a recording paper that suppresses the amount of paper, and is 26M in size.

−10〔式中、Wは紙のメートル坪量(夕/〆)pは紙
の密度(タ′で) Gは湊れ自由減衰振動法で測定した動的剛性率(ダイン
/地)〕であることを特徴とする記録用紙に関している
-10 [where W is the metric basis weight of the paper (dyne/ground), p is the density of the paper (ta'), and G is the dynamic rigidity (dyne/ground) measured by the free-damped vibration method.] It relates to recording paper that has certain characteristics.

磁気記録法または静電記録法の圧力定着方式は、記録媒
体から紙に転写されたトナーまたは紙に形成した潜像を
現像したトナーを、紙とともに一対の加圧斜交ロ−ル間
を通過させ、トナー粒子・をニップ圧により強制的に紙
中に侵入させて定着させる方式である。この方式は、加
熱ロールによりトナ−を溶融定着する方式に比較すれば
、定着に要するエネルギーが4・さく、待ち時間を要せ
ず、火災の危険がなく、機器の保全不要等の長所を有し
ている。この場合、斜交ロールを用いる理由は、次の通
りである。第1図および第2図において、一対の下部駆
動金属ロール1および上部従動金属ロール2は、その軸
が2o以下の4・ごな角度、一般に1.5oで斜交し、
紙3は交叉角の中心線x−xと直角に通過させられる(
図面では、交叉角は説明の便宜上大きくしてある)。
In the pressure fixing method of magnetic recording or electrostatic recording, toner transferred from a recording medium to paper or developed from a latent image formed on paper is passed together with paper between a pair of pressurized diagonal rolls. This method uses nip pressure to forcibly force the toner particles into the paper and fix them. Compared to the method of melting and fixing the toner using heated rolls, this method has the advantages of requiring less energy for fixing, no waiting time, no risk of fire, and no maintenance of equipment. are doing. In this case, the reason for using diagonal rolls is as follows. In FIGS. 1 and 2, a pair of lower driving metal roll 1 and upper driven metal roll 2 have their axes obliquely intersecting at an angle of 4° or less, generally 1.5°,
Paper 3 is passed perpendicular to the center line x-x of the intersection angle (
In the drawings, the intersecting angle is enlarged for convenience of explanation).

ロールを斜交したために、紙はその幅方向に均一に圧力
を加えられ、ロールにクラウンを設けた場合と同様の効
果があり、この結果トナ−は紙に均一に附着する。同時
に、紙はロールニップの通過中、ロール中心部から端部
に向って伸ばされ、雛の発生が防止される。しかし、こ
のような斜交ロールを用いると、ロール通過後記鏡用紙
の四隅にカールが発生し、カールが大きくなると記録後
の搬走性を悪くし、かつソーテイング作業において支障
を生ずる欠点がある。
Because the rolls are crossed, pressure is applied uniformly to the paper across its width, which has the same effect as when the rolls are crowned, so that the toner is evenly deposited on the paper. At the same time, the paper is stretched from the center of the roll toward the edges during passage through the roll nip, preventing the formation of brood. However, when such diagonal rolls are used, curls occur at the four corners of the mirror paper after passing through the rolls, and when the curls become large, the paper has the disadvantage that it impairs the transportability after recording and causes trouble in sorting work.

したがって、カールの発生を抑制した記録紙に対する要
望が高くなっている。本発明者等は、カール発生の原因
、機構について種々検討し、その結果紙の密度および動
的弾性率を高くすることにより、カールの発生を一定の
大きさ以下に抑制できることを見出し、この知見に基づ
いてこの発明を完成した。斜交ロールに紙を通すと、紙
はロールニップ通過後、ニップへの進入方向に対し角度
◇だけその進行方向が変化する。
Therefore, there is an increasing demand for recording paper that suppresses curling. The inventors of the present invention have conducted various studies on the causes and mechanisms of curl occurrence, and have found that by increasing the density and dynamic elastic modulus of paper, the occurrence of curl can be suppressed to below a certain size. This invention was completed based on. When paper is passed through the diagonal rolls, after passing through the roll nip, the paper's traveling direction changes by an angle ◇ with respect to the direction in which it enters the nip.

このときの屈折角は、次式により与えられる:ねn少=
〔(1;器で)2−1〕‐す (式中、Jはニップ通過後紙の屈折した角度、1はロー
ルの長さの1/2、公はロールの直径、 2のまロールの斜交角) この式に実際のロールの長さ、直径および斜交角の値を
代入して計算すると、0と】との間にはほぼ一定の比例
関係が成立する、即ちグラフにしたとき両者の間に直線
関係が成立する。
The refraction angle at this time is given by the following formula: n =
[(1; In a container) 2-1] - (In the formula, J is the angle at which the paper is bent after passing through the nip, 1 is 1/2 of the length of the roll, J is the diameter of the roll, and 2 is the angle of the paper after passing through the nip. Oblique angle) When calculated by substituting the actual roll length, diameter, and oblique angle values into this equation, an almost constant proportional relationship is established between 0 and ], that is, when plotted as a graph, the relationship between the two is A linear relationship is established between them.

このことは、1の値が大きくなる程、即ちロールの交叉
中心よりロール端部に向うにつれて、少も大きくなり、
紙の両端部が最大の屈折をすることを意味している。ま
た交叉点を中心として、その両側でロールの配置は逆の
関係であるから、紙の屈折も互に逆方向となる。紙の屈
折により、ロールにロえこ 力Pの分力として、屈折時に屈折方向およびその反対方
向にそれぞれPsinJが生じる。
This means that as the value of 1 increases, that is, as you move from the center of intersection of the rolls to the ends of the rolls, it becomes larger.
This means that the edges of the paper experience the greatest refraction. Furthermore, since the rolls are arranged in opposite directions on both sides of the intersection, the paper is bent in opposite directions. Due to the bending of the paper, PsinJ is generated in the bending direction and in the opposite direction at the time of bending as a component of the lo-erodynamic force P on the roll.

この分力Psin必ま、通常の平行ロール対の場合の駆
動力の伝達および摩擦抵抗により紙層内部に生ずるずり
力以外の新しいずり力として作用する。前述の通り、斜
交ロールの場合、屈折角?はロールの交叉中心では0、
カール端部に向う程大きくなるので、このずり力Psj
n0も中心部では0でカール端部に向って次第に大きく
なる。このずり力により、紙の表面と裏面とには、大き
さは等しいが方向が逆の応力が作用することになる。こ
の状態のベクトルを紙の表面および裏面について、それ
ぞれ第3図ないし第5図で示してあり、abcdおよび
ef述は紙の表面および裏面の四隅を示し、pqおよび
uvは、それぞれニップ中心下のx−x方向の線を示す
。図より明らかなように、紙の側面abfeにいて観察
すると、表面ではab方向に、裏面ではfe方向にそれ
ぞれ張力が生じる。
This component force Psin necessarily acts as a new shear force other than the shear force generated inside the paper layer due to the transmission of driving force and frictional resistance in the case of a normal pair of parallel rolls. As mentioned above, in the case of oblique rolls, the refraction angle? is 0 at the intersection center of the rolls,
This shear force Psj increases as it approaches the curled end.
n0 is also 0 at the center and gradually increases toward the curled ends. This shear force causes stresses of equal magnitude but opposite directions to act on the front and back surfaces of the paper. The vectors of this state are shown in Figures 3 to 5 for the front and back sides of the paper, respectively, where abcd and ef indicate the four corners of the front and back sides of the paper, and pq and uv are the corners below the center of the nip, respectively. A line in the xx direction is shown. As is clear from the figure, when observed from the side abfe of the paper, tension is generated on the front surface in the ab direction and on the back surface in the fe direction.

この結果、紙端aには縮みが生じ、一方反対側の紙端e
には伸びが生じ、紙は上向きのカールが生じる。同様に
して、紙端bでは伸びが、紙撚fでは縮みが生じ、この
隅では下向きのカールが生じる。反対の側面では、総点
c,gでは上向きの、端点d,hでは下向きのカールが
それぞれ生じることになる。結局、紙の対角線acおよ
びdb方向の両端では、それぞれ方向が同一で、総点a
とbおよびdとcではそれぞれ逆方向のカールとなり、
プロペラカールが発生する。以上は紙の側面について観
察したが、紙の内部断面においても、上記の通りニップ
の交叉中心即ち紙の中心から両側に向う距離に比例して
増加する応力により、側面におけるのと同様な原理でそ
れぞれ伸びと縮みが生じ、これらの効果は集約された形
で紙端に現れる。もし、紙が均質であれば、紙の四隅で
発生するカールの大きさは、方向は違っていても、その
絶対値は等しいことになる。しかし、実際には紙の繊維
酉己向による縦および横方向の性質差および表裏の差に
より、現実に発生するカールの大きさは異なっている。
特に対角線両端の同方向の一組のカール(上向きまたは
下向き)は、その大きさの差は小さい。しかし、紙の左
右両端の逆方向の一組のカールは、その大きさは著るし
く異っている。もし、上向きのカールが大きければ、下
向きのカールは小さ〈甚しいときは0になり、これは逆
方向のカールについても同様である。以上により、圧力
定着方式では、用いる斜交ロールの機構上必然的に生ず
る紙の表裏に加えられるずり力に起因して、記録紙の四
隅にプロペラカールが発生するのは避けられず、しかも
カールの大きさはずり変形の量に対応していることは明
らかであ。したがって、カールを抑制するためには、ず
り変形の小さな紙を用いればよいことになる。紙のずり
変形は、直接測定する方法もあるが、複雑である。
As a result, paper edge a shrinks, while the opposite paper edge e
Stretching occurs and the paper curls upward. Similarly, elongation occurs at the paper edge b, shrinkage occurs at the paper twist f, and downward curl occurs at this corner. On the opposite side, upward curls occur at the total points c and g, and downward curls occur at the end points d and h, respectively. After all, at both ends of the paper diagonal lines ac and db, the directions are the same, and the total point a
and b, d and c are curled in opposite directions, respectively.
Propeller curl occurs. The above observation was made on the side surface of the paper, but the same principle applies to the internal cross section of the paper as well, due to the stress increasing in proportion to the distance from the center of the nip, i.e. the center of the paper, to both sides. Elongation and contraction occur respectively, and these effects appear in a concentrated form at the edge of the paper. If the paper is homogeneous, the absolute values of the curls that occur at the four corners of the paper will be the same even if the directions are different. However, in reality, the size of curl that actually occurs differs due to differences in properties in the longitudinal and lateral directions due to the orientation of the paper fibers, and differences between the front and back sides.
In particular, the difference in size between a pair of curls (upward or downward) in the same direction at both ends of the diagonal line is small. However, a pair of curls in opposite directions at both the left and right ends of the paper are significantly different in size. If the upward curl is large, the downward curl is small (0 in severe cases), and the same is true for curls in the opposite direction. As described above, in the pressure fixing method, it is inevitable that propeller curl will occur at the four corners of the recording paper due to the shear force applied to the front and back sides of the paper, which is inevitably generated due to the mechanism of the diagonal rolls used. It is clear that the size of corresponds to the amount of shear deformation. Therefore, in order to suppress curling, it is sufficient to use paper with small shear deformation. There is a method to directly measure paper shear deformation, but it is complicated.

簡便のため、本発明者等は、擬れ振子の自由減衰振動を
用いて、間接的方法で紙の動的剛性率(ずり弾性率)を
求めた。この方法は、第6図に示したように、ストリッ
プ丈紙片Sを一対の固定ジョゥJ,と円盤状慣性体1に
固定したジョウJ2との間に固定し、慣性体1の上端中
央に取付けたピアノ線Wは滑車を介し、一定の荷重を加
え軸方向に緊張結合した振動系で測定する。この系を一
定温度の下に置き、慣性体を偏位させ紙片の上端に振れ
角(一般に約100)を与え、次いで慣性体を解放して
自由にすると減衰振動が生じる。記録される対数出力波
形から対数減衰率とこれに対応する振動周期を測定する
。なお、一般に振動系は、真空中に保持して測定するが
、この発明では、圧力定着方式におけるカール発生に擬
するために、常圧で測定を行った。このときに得られる
減衰曲線から、紙片の動的剛性率Gは、次式により算出
する。
For convenience, the present inventors determined the dynamic stiffness modulus (shear modulus) of paper using an indirect method using free damped vibration of a pseudopendulum. In this method, as shown in Fig. 6, a long strip of paper S is fixed between a pair of fixed jaws J and a jaw J2 fixed to a disc-shaped inertial body 1, and is attached to the center of the upper end of the inertial body 1. A constant load is applied to the piano wire W via a pulley, and the measurement is performed using a vibration system that is tension-coupled in the axial direction. The system is placed at a constant temperature, the inertia is deflected to give the upper end of the paper a deflection angle (generally about 100 degrees), and the inertia is then released to set it free, producing damped oscillations. The logarithmic damping rate and the corresponding vibration period are measured from the recorded logarithmic output waveform. Generally, the vibration system is held in a vacuum for measurement, but in this invention, the measurement was performed at normal pressure in order to simulate curling in a pressure fixing method. From the damping curve obtained at this time, the dynamic rigidity G of the paper piece is calculated by the following formula.

G=〔左(1−o‐年)Wtっ‐1〔(4中2学2)I
Q−k。
G = [Left (1-o-year) Wt-1 [(4 Junior High School 2nd year) I
Q-k.

〕〔式中Lは試料紙片のジョウ間の長さ、(仇)、wは
試料紙片の幅、(仇)、tは試料の厚さ(弧)、 Qは対数減衰率、 Lは慣性体の慣性能率(夕・地) Tはのこ対応する振動周期(sec) koはピアノ線の擦れ定数(ダイン・功)〕式の右辺第
1項は、試料の形状因子を示し、第2項は試料紙片の剛
性係数を示している。
[In the formula, L is the length between the jaws of the sample paper, w is the width of the sample paper, t is the thickness of the sample (arc), Q is the logarithmic attenuation rate, and L is the inertial body. where T is the vibration period corresponding to the saw (sec), ko is the friction constant of the piano wire (dyne/gong)] The first term on the right side of the equation indicates the shape factor of the sample, and the second term indicates the stiffness coefficient of the sample paper piece.

本発明者等は、カールの大きさと紙の物性との関係を種
々の角度から鋭意検討し、研究の結果、カールの大きさ
とW/pG(W、pおよびGは前記の通り)との間に極
めて良好な比例関係が成立することを見出した。
The present inventors have diligently investigated the relationship between the size of curl and the physical properties of paper from various angles, and as a result of their research, the relationship between the size of curl and W/pG (W, p, and G are as described above) has been determined. It was found that an extremely good proportional relationship holds true.

第7図は、機軸にW/pG×10‐loを、縦軸にA列
4判の紙を斜交ロールに通したときの対角線方向のカー
ル高さ(柵)の大きな方の一組の平均値をプロツトした
グラフである。図より明らかなように、両者の間には、
直線関係が成立し、カールを小さくするためには、W/
pGを4・さくすればよいことになる。しかし、カール
を完全に0とすることは事実上不可能であり、実際は複
写後の取扱いにおいて、支障を生じない一定の限界以下
にカールの大きさを抑制することで満足せざるを得ない
。この限界値について、実際の圧力定着方式の記録機器
について種々検討した結果、対角線方向の大きい方のカ
ールの平均高さが2仇奴以下であれば、紙の搬走性、ソ
ーティング特性等が満足できて、その後の処理、取扱い
に支障のないことが確認された。カールの高さ2仇机こ
対応するW/pGの値は、第7図より26.1×10‐
10である。したがって、次の条件を有する紙は、斜交
ロールを用いる圧力定着方式におけるカールの発生を抑
制できる:器<26・IXI。
Figure 7 shows one set of larger curl heights (fences) in the diagonal direction when W/pG x 10-lo is on the machine axis and A-row 4-size paper is passed through the diagonal rolls on the vertical axis. This is a graph plotting the average value. As is clear from the figure, there is a difference between the two.
In order to establish a linear relationship and reduce curl, W/
All you have to do is reduce pG by 4. However, it is virtually impossible to eliminate curl completely, and in reality, one must be satisfied by suppressing the size of curl to below a certain limit that does not cause problems in handling after copying. Regarding this limit value, as a result of various studies on actual pressure fixing type recording equipment, we found that if the average height of the larger curl in the diagonal direction is 2 mm or less, paper transportability, sorting characteristics, etc. are satisfied. It was confirmed that there was no problem with subsequent processing and handling. The value of W/pG corresponding to the height of the curl is 26.1×10-
It is 10. Therefore, paper having the following conditions can suppress the occurrence of curling in a pressure fixing method using diagonal rolls: <26.IXI.

−10〔式中Wは紙のメートル坪量(タ′〆) pは紙の密度(夕/泳) Gは陳れ自由減衰振動法で測定した動的剛性率(ダイン
/仇)〕W/pGの絶対値を4・さくするためには、W
を4・さくし、かつpおよびGを大きくすればよいこと
は明らかであ。
-10 [In the formula, W is the metric basis weight of the paper (Ta′〆), p is the density of the paper (Y/Y), and G is the dynamic rigidity (Dyne/K) measured by the free damping vibration method] W/ In order to reduce the absolute value of pG by 4, W
It is clear that it is sufficient to reduce by 4 and to increase p and G.

一般に、記録性および搬走性等の点から、記録紙として
は坪量(W)60〜70夕/あのものが用いられ、これ
より軽量の紙は好ましくない。一方、紙の密度(p)は
、抄紙工程で脱水後の湿式をさらに加圧緊密化する、乾
燥後のマシンカレンダー処理を強化するおよびオフマシ
ンでのスーパーカレンダー処理を強化する公知手段を単
独または絹合せて用いることで、容易に高くすることが
できる。また紙の動的剛性率(G)は、密度の増大とと
もに大きくなることが、実験により確認されたので、紙
の密度を大きくすればW/pGの絶対値は小さくなる。
したがって、この発明の目的は、緑紙および/または乾
燥紙を加圧して緊密化することで達成できる。
Generally, from the point of view of recording performance and transportability, a paper having a basis weight (W) of 60 to 70 mm is used as a recording paper, and paper lighter than this is not preferred. On the other hand, the paper density (p) can be determined by using known means such as further pressurizing the wet process after dehydration, strengthening machine calendering after drying, and strengthening off-machine supercalendering in the papermaking process. By using it in combination with silk, it can be easily increased in price. Furthermore, it has been experimentally confirmed that the dynamic rigidity (G) of paper increases as the density increases, so if the density of paper increases, the absolute value of W/pG decreases.
Therefore, the object of the present invention can be achieved by pressurizing green paper and/or dry paper to make it compact.

この発明を、以下の実施例でさらに詳細に説明するが、
実施例中の動的剛性率およびカールの大きさの測定法は
、次の通りである。
This invention will be explained in more detail in the following examples.
The methods for measuring dynamic rigidity and curl size in Examples are as follows.

動的剛性率の測定 記録機器での通紙方向を長さ方向とした幅IQ岬のスト
リップ片を試料Sとした。
Sample S was a strip piece having a width IQ cape whose length direction was the paper passing direction in a dynamic rigidity measuring and recording device.

第6図に示したタイプの株式会社レスガ製作所製擬れ自
由減衰型粘弾性測定装置RD−10M型を用い、取付け
チャックJ,,J2間に測定長8仇豚で正確に固定し、
慣性能率L=2.80×1ぴ夕・めの慣性体を取付ける
。用いたピアノ線Wは、擦り係数ko=1.80×1ぴ
ダィン・cmを有し直径0.2側、長さ73側であった
。常圧、室温で起動コイルにより振動を開始させた。記
録された対数出力波形から対数減衰率Qおよび周期T(
秒)を求め、これに基き前記式により動的剛性率Gを計
算した。カールの測定 直径6仇廠、長さ210肋のスチールロール2本を、斜
交角1.5oで上下に重ね、上部ロール両端のばねによ
り、ロールニツプに圧力を加えた。
Using the simulated free damping type viscoelasticity measuring device RD-10M model manufactured by Resuga Seisakusho Co., Ltd. shown in Fig. 6, the measurement length was accurately fixed between mounting chucks J and J2 with a measuring length of 8 mm.
Attach an inertial body with an inertia rate L = 2.80 x 1 mm. The piano wire W used had a friction coefficient ko = 1.80 x 1 pidine cm, a diameter of 0.2 and a length of 73. Vibration was started by a starter coil at normal pressure and room temperature. Logarithmic decay rate Q and period T (
seconds), and based on this, the dynamic rigidity G was calculated using the above formula. Measurement of Curl Two steel rolls with a diameter of 6 mm and a length of 210 ribs were stacked one on top of the other at an oblique angle of 1.5 degrees, and pressure was applied to the roll nip by springs at both ends of the upper roll.

下部ロールを駆動した。A列4判の紙を、紙の縦方向を
通級方向として斜交ロールのニップ間を通した。四隅に
発生したカールの中で、対角線方向で大きい方の一組で
、水平面から紙端までの距離を測定し、その平均値をカ
ールの高さ(肌)とした。なお紙の密度は、JISP8
113により、坪量および厚さから算出した。
Driven the lower roll. A 4-size paper in A row was passed between the nips of diagonal rolls with the longitudinal direction of the paper as the passing direction. Among the curls that occurred at the four corners, the distance from the horizontal plane to the edge of the paper was measured for one set that was larger in the diagonal direction, and the average value was taken as the curl height (skin). The density of paper is JISP8
113, it was calculated from the basis weight and thickness.

実施例 1 北海道産LBKP60/ユーカリBKP40の混合パル
プを、430私CSFまで叩解し、サイズ剤および硫酸
バン士をそれぞれ対パルプ0.4%および1%、タルク
を紙中灰分12%となるように添加し、テストマシンで
坪量65タ′〆の上質紙を抄造し、3%酸化デンプン溶
液で、サイズプレスにより表面サイズした。
Example 1 A mixed pulp of LBKP60/Eucalyptus BKP40 produced in Hokkaido was beaten to 430% CSF, and the sizing agent and sulfuric acid were added to the pulp at 0.4% and 1%, respectively, and the talc was added at an ash content of 12% in the paper. A test machine was used to make high-quality paper with a basis weight of 65 ta', and the surface was sized using a 3% oxidized starch solution using a size press.

マシンカレンダーの線圧102035および40k9′
伽でトそれぞれ密度0.650.700.80および0
.83夕/地の4種類の紙を得た。動的剛性率およびカ
ールの高さを測定し、結果を第1表に示した。
Machine calender line pressure 102035 and 40k9'
Density 0.650.700.80 and 0 respectively
.. I got 4 types of paper of 83 evening/earth. The dynamic stiffness and curl height were measured and the results are shown in Table 1.

第1表 上記より、紙の坪量がほぼ一定の場合、密度pおよび動
的剛性率Gが増加すればトW/pG)は低下し、その値
が23.5×10‐10以下であれば、カール高さは所
望の20肋以下となった。
From Table 1 above, when the basis weight of paper is almost constant, as density p and dynamic rigidity G increase, tW/pG) decreases, even if the value is 23.5×10-10 or less. For example, the curl height was less than the desired 20 ribs.

これに対し、W/pG=33.0×10‐10の試料N
o.1は、カール高さが許容範囲2批奴を越えた。灰分
量12%の場合、試料NO.3およびNO.4が、特に
好適であった。実施例 2 別々に叩解した国内産LBKP85/輸入NBKP15
の総0の‘CSFの混合紙料に、ロジンサイズ0.5%
、硫酸バン士1%(何れも対パルプ)およびタルク90
/二酸化チタン10を灰分量24%で添加し、テストマ
シンで709/あの紙を抄造し、マシンカレンダーで線
圧15k9/弧で処理した(試料NO.5)。
On the other hand, sample N with W/pG=33.0×10-10
o. 1, the curl height exceeded the allowable range of 2. When the ash content is 12%, sample No. 3 and NO. 4 was particularly suitable. Example 2 Domestic LBKP85/Imported NBKP15 beaten separately
0.5% rosin size in a mixed stock of total 0' CSF
, banyl sulfate 1% (both for pulp) and talc 90%
/Titanium dioxide 10 was added with an ash content of 24%, 709/that paper was made with a test machine, and treated with a machine calender at a linear pressure of 15k9/arc (sample No. 5).

さらにスーパーカレンダーの圧力計の読み25k9/め
で1回(試料No.6)および2回(試料NO.7、お
よび40k9′ので5回(試料No.8)で処理し、密
度それぞれ0.700.斑、0.班および1.03夕/
地の4種類の紙を得た。動的剛性率Gおよびカール高さ
を測定し、結果を第2表に示した。
Further, the pressure gauge of the supercalender was processed once (sample No. 6) and twice (sample No. 7) with a pressure gauge reading of 25k9, and five times (sample No. 8) with a pressure gauge of 40k9', each having a density of 0.700. Spot, 0. group and 1.03 evening/
Obtained four types of ground paper. The dynamic rigidity G and curl height were measured and the results are shown in Table 2.

第2表 この実施例でも、紙を加圧して高密度にすれば、W/p
Gが低下し、カール高さが減少した。
Table 2 In this example as well, if the paper is pressurized to make it denser, W/p
G decreased and curl height decreased.

しかし、紙の灰分含有量を大きくすると、動的剛性率G
の上昇割合は低くなり、紙の密度向上によるカール高さ
減少の効果は、比較的小さくなることが判明した。実施
例 3 実施例1の紙料に、合成サイズ剤0.1%、カチオン性
デンプン0.3%、歩留り向上剤0.01%(何れも対
パルプ)および炭酸カルシウムを灰分量8%で添加し、
坪量65夕/枕を目標として、テストマシンで中性抄造
した。
However, when increasing the ash content of paper, the dynamic stiffness G
It was found that the rate of increase in paper density became low, and the effect of reducing curl height due to improvement in paper density became relatively small. Example 3 0.1% of a synthetic sizing agent, 0.3% of a cationic starch, 0.01% of a retention agent (all based on pulp) and calcium carbonate were added to the stock of Example 1 at an ash content of 8%. death,
A neutral paper was produced using a test machine, aiming for a basis weight of 65 sheets/pillow.

線圧15k9′肌でマシンカレンダー処理し(試料No
.9)、さらにゲージ読み25k9′めで1回(試料N
o.10)および2回(試料No.11)スーパーカレ
ンダー処理した。結果を、第3表に示した。第3表 第3表より、炭酸カルシウム内添、中性紙の場合は、紙
を一層高密度にする必要があり、0.81夕/地でも所
望のカール高さ以上であった。
Machine calendered with linear pressure 15k9' skin (sample No.
.. 9), and once again at gauge reading 25k9' (sample N
o. 10) and twice (sample No. 11) were supercalendered. The results are shown in Table 3. Table 3 From Table 3, in the case of neutral paper with internal addition of calcium carbonate, it was necessary to make the paper even more dense, and even at 0.81 m/kg, the desired curl height was exceeded.

試料No.11が、給紙、排紙性およびトナーの転写、
定着性が良好であった。実施例 4実施例1の紙料にサ
イズ剤0.5%、硫酸バン土1%(何れも対パルプ)お
よびタルクを灰分量6%で添加し、テストマシンで抄造
後、マシンカレンダーで線圧20k9/仇で処理して密
度0.74夕/地の基紙を得た。
Sample No. 11 is paper feeding, paper ejection performance, and toner transfer;
The fixing properties were good. Example 4 0.5% sizing agent, 1% aluminum sulfate (all relative to pulp), and talc were added to the paper stock of Example 1 with an ash content of 6%, and after papermaking with a test machine, linear pressure was applied with a machine calender. A base paper having a density of 0.74 mm/base was obtained by processing with 20k9/base.

カオリン10礎都、PVA8部および高分子系導電剤8
碇都を含み、固形分濃度15%の導電処理組成物を、テ
ストコーターにより基紙の両面に合計約7夕/あの割合
で塗布した。
10 parts of kaolin, 8 parts of PVA, and 8 parts of polymer conductive agent
A conductive treatment composition containing Ikarito and having a solid content concentration of 15% was applied to both sides of the base paper using a test coater at a rate of about 7 coats in total.

導電処理紙(試料No.12)と導電処理紙のスーパー
カレンダー処理を線圧50kg/肌(試料No.13)
および150k9/仇(試料No.14)で行った3種
類の紙に、テストコーターで誘電体層の仕上げ塗工を行
った。塗工液は、メチルメタクリル酸ェステルースチレ
ン共重合体に対し、炭酸カルシウムおよび無水ケイ酸の
微粉末をそれぞれ35%および5%添加し、固形分濃度
20%のもので、約6タ′〆を塗工した。結果を、第4
表に示した。第4表 導電層および誘導体層を有する静電記録紙においても、
W/pG<26.1×10‐10のときカール高さが2
&奴以下という関係は成立した。
Conductive treated paper (sample No. 12) and super calender treatment of conductive treated paper at a linear pressure of 50 kg/skin (sample No. 13)
and 150k9/Ki (Sample No. 14), and three types of paper were coated with a dielectric layer using a test coater. The coating solution was made by adding 35% and 5% fine powder of calcium carbonate and silicic anhydride to methyl methacrylic acid ester styrene copolymer, respectively, and having a solid content of 20%. was coated. The result is the 4th
Shown in the table. Also in the electrostatic recording paper having the fourth surface conductive layer and dielectric layer,
When W/pG<26.1×10-10, the curl height is 2
& A relationship of being below him was established.

誘電体層の平滑化の目的だけでなく、高密度によるカー
ル抑制のためにも、紙の緊密化処理は必要である。上記
実施例より、カール高さ2物奴以下を達成するためには
、紙を緊密化してW/pG<26.1×10‐10の条
件を満足させ、紙の密度は一般に約0.75夕/地位好
ましくは0.8タ′地より高くし、場合によっては約1
.0タ′地以上にすればよいことが判明する。これは、
従来の記録紙が例えば灰分量10%で密度0.6〜0.
8夕/塊であったのとは対照的である。
Paper compaction treatment is necessary not only for the purpose of smoothing the dielectric layer but also for suppressing curling due to high density. From the above examples, in order to achieve a curl height of 2 or less, the paper must be made denser to satisfy the condition of W/pG<26.1×10-10, and the density of the paper is generally about 0.75. Evening/Status Preferably higher than 0.8 ta', in some cases about 1
.. It turns out that it is sufficient to set the value to 0 or higher. this is,
For example, conventional recording paper has an ash content of 10% and a density of 0.6 to 0.
This is in contrast to the previous 8 evenings/mass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧着ロール間を紙が通過する状態を示す平面図
、第2図は第1図の1−1線に沿った断面図、第3図お
よび第4図は、それぞれ紙の表面および裏面に加えられ
る力の状態を示す、第5図は紙の斜面図、第6図は擦れ
自由減衰振動を測定する装置の正面図、第7図はカール
高さとW/pGとの関係を示すグラフである。 1・・・・・・下部駆動金属ロール、2・・・・・・上
部従動金属ロール、3・・・・・・紙、S・・・・・・
ストリップ状紙片、J.・・・・・・固定ジョウ、1・
・・・・・円盤状慣性体、し・・・・・ジョウ、W……
ピアノ線。 第ノ図 繁2図 集う図 繁4図 第5図 繁る図 傘ァ図
Fig. 1 is a plan view showing the state in which paper passes between pressure rolls, Fig. 2 is a sectional view taken along line 1-1 in Fig. 1, and Figs. 3 and 4 respectively show the surface of the paper and Figure 5 shows the state of the force applied to the back side. Figure 5 is an oblique view of the paper. Figure 6 is a front view of the device for measuring free damping vibration due to friction. Figure 7 shows the relationship between curl height and W/pG. It is a graph. 1...Lower driving metal roll, 2...Upper driven metal roll, 3...Paper, S...
Strips of paper, J. ...Fixed jaw, 1.
... Disc-shaped inertial body, ... Jaw, W ......
piano wire. Figure 2 Figure 2 Figure 4 Figure 5 Figure 5 Umbrella diagram

Claims (1)

【特許請求の範囲】 1 次式で示される性質を有することを特徴とする圧力
定着方式用の記録用紙:W/(ρG)<26.1×10
^−^1^0〔式中、Wは紙のメートル坪量(g/m^
2)ρは紙の密度(g/cm^3)Gは捩れ自由減衰振
動法で測定した動的剛性率(ダイン/cm^2)〕
[Claims] Recording paper for pressure fixing, characterized by having properties expressed by the linear equation: W/(ρG)<26.1×10
^-^1^0 [In the formula, W is the metric basis weight of the paper (g/m^
2) ρ is the paper density (g/cm^3) and G is the dynamic rigidity (dyne/cm^2) measured by the torsional free damping vibration method.]
JP56207694A 1981-12-22 1981-12-22 Recording paper that suppresses the amount of curling Expired JPS6025784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56207694A JPS6025784B2 (en) 1981-12-22 1981-12-22 Recording paper that suppresses the amount of curling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56207694A JPS6025784B2 (en) 1981-12-22 1981-12-22 Recording paper that suppresses the amount of curling

Publications (2)

Publication Number Publication Date
JPS58107548A JPS58107548A (en) 1983-06-27
JPS6025784B2 true JPS6025784B2 (en) 1985-06-20

Family

ID=16544020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207694A Expired JPS6025784B2 (en) 1981-12-22 1981-12-22 Recording paper that suppresses the amount of curling

Country Status (1)

Country Link
JP (1) JPS6025784B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167038A (en) * 1984-09-11 1986-04-07 Fuji Xerox Co Ltd Electrophotographic transfer paper
US4639405A (en) * 1985-09-30 1987-01-27 Eastman Kodak Company Method and apparatus for fixing toner images
US4983481A (en) * 1989-01-03 1991-01-08 Xerox Corporation Electrostatographic imaging system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952641A (en) * 1972-09-19 1974-05-22
JPS5050042A (en) * 1973-06-29 1975-05-06
JPS52129525A (en) * 1976-04-23 1977-10-31 Hitachi Metals Ltd Pressure fixing apparatus
JPS52156628A (en) * 1976-06-22 1977-12-27 Oji Paper Co Electrostatic recording material for pressure fixing
JPS5366233A (en) * 1976-11-26 1978-06-13 Hitachi Metals Ltd Method of fixing dry developing agent for use in electrostatic latent image development
JPS5380229A (en) * 1976-12-24 1978-07-15 Hitachi Metals Ltd Recording paper for use in pressure fixing
JPS53106038A (en) * 1977-02-28 1978-09-14 Hitachi Metals Ltd Electronic photograph recording paper for use in pressure fixing
JPS53143230A (en) * 1977-05-19 1978-12-13 Ricoh Co Ltd Paperbase for electrophotographic light sensitive paper

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952641A (en) * 1972-09-19 1974-05-22
JPS5050042A (en) * 1973-06-29 1975-05-06
JPS52129525A (en) * 1976-04-23 1977-10-31 Hitachi Metals Ltd Pressure fixing apparatus
JPS52156628A (en) * 1976-06-22 1977-12-27 Oji Paper Co Electrostatic recording material for pressure fixing
JPS5366233A (en) * 1976-11-26 1978-06-13 Hitachi Metals Ltd Method of fixing dry developing agent for use in electrostatic latent image development
JPS5380229A (en) * 1976-12-24 1978-07-15 Hitachi Metals Ltd Recording paper for use in pressure fixing
JPS53106038A (en) * 1977-02-28 1978-09-14 Hitachi Metals Ltd Electronic photograph recording paper for use in pressure fixing
JPS53143230A (en) * 1977-05-19 1978-12-13 Ricoh Co Ltd Paperbase for electrophotographic light sensitive paper

Also Published As

Publication number Publication date
JPS58107548A (en) 1983-06-27

Similar Documents

Publication Publication Date Title
US10316470B2 (en) Tissue paper
ES2217781T3 (en) METHOD OF MANUFACTURE OF CALANDRATED PAPER.
Pettersson et al. Measurement of the flexibility of wet cellulose fibres using atomic force microscopy
US3647619A (en) High pressure calendering of a paper web between heated calender rolls having non-resilient surfaces
Popil Physical testing of paper
JPS6025784B2 (en) Recording paper that suppresses the amount of curling
US11519133B2 (en) Tissue paper
JP2013209773A (en) Glass interleaving paper and laminate
Leheny et al. Directional dependence of the mechanical properties of aged paper
JP3055867B2 (en) Renewable water and oil resistant paper
RU2004121956A (en) COATED PAPER HAVING A SILK-SILK
US6673203B1 (en) Soft low lint tissue
JPH0241024B2 (en)
Charles et al. The effect of supercalendering on the strength properties of paper
JP2893925B2 (en) Transfer paper
JP2736701B2 (en) Method for producing transfer paper for neutral electrophotography
JP3345465B2 (en) Photographic paper support
KR20010031354A (en) Additives for improving resistance of paper in humid and dry conditions
JP3976136B2 (en) Paper quality improver
Niska et al. Influence of coating grammage on the utility properties of coated papers
Niskanen Model study of paper elasticity and drying restraints
Kappil Effect of drying restraint and recycling on mechanical properties of fibers in machine-made paper
JPS63270893A (en) Papermaking size composition
JPH06158579A (en) Production of paper
JPH07150498A (en) Method and equipment for processing paper sheet