JPS6025735B2 - Closed type curing degree measuring device for viscoelastic substances - Google Patents

Closed type curing degree measuring device for viscoelastic substances

Info

Publication number
JPS6025735B2
JPS6025735B2 JP51041313A JP4131376A JPS6025735B2 JP S6025735 B2 JPS6025735 B2 JP S6025735B2 JP 51041313 A JP51041313 A JP 51041313A JP 4131376 A JP4131376 A JP 4131376A JP S6025735 B2 JPS6025735 B2 JP S6025735B2
Authority
JP
Japan
Prior art keywords
sample
torque
inner cylinder
cylinder
sample chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51041313A
Other languages
Japanese (ja)
Other versions
JPS52125392A (en
Inventor
近雄 戸崎
敬治郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP51041313A priority Critical patent/JPS6025735B2/en
Publication of JPS52125392A publication Critical patent/JPS52125392A/en
Publication of JPS6025735B2 publication Critical patent/JPS6025735B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は加硫できるゴム状物質又は硬化できる樹脂状物
質の硬化過程中の動的粘弾性特性を摩擦に起因する力学
的誤差を含まない形で測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring dynamic viscoelastic properties during the curing process of a vulcanizable rubber-like material or a curable resin-like material in a manner that does not include mechanical errors caused by friction.

ゴム、樹脂等の硬化過程中の物理的特性を試験するため
、旧来は夫々硬化処理時間の異なる多数の試験片を用意
し、次いでこれ等を個別的に試験してその物理特性や硬
化速度または適当な硬化時間に達するまでの時間などを
測定する方法がとられていた。
In order to test the physical properties of rubber, resin, etc. during the curing process, traditionally a large number of test pieces were prepared with different curing times, and then these were individually tested to determine their physical properties, curing speed, etc. The method used was to measure the time it takes to reach an appropriate curing time.

か)る方法では多数の試験片を作製し試験するため、時
間と費用を浪費し非能率的で即答性に欠ける難点があっ
た。その後、単一の試験片に振動的なせん断変形を与え
ながらその抵抗力を連続的に測定することにより、試料
の硬化に伴う力学特性の変化を硬化度として記録する各
種の測定装置が開発された。硬化度測定装置は、加硫用
プレスなどの加工機の中での粘弾性物質の状態を再現し
、試料の力学特性を試料以外の原因による影響を最小に
して測定する必要がある。
In this method, a large number of test pieces are prepared and tested, which wastes time and money, is inefficient, and lacks prompt response. Subsequently, various measuring devices were developed that record changes in mechanical properties as the specimen hardens as the degree of hardening by continuously measuring the resistance force while applying oscillatory shear deformation to a single specimen. Ta. A hardening degree measuring device must reproduce the state of a viscoelastic substance in a processing machine such as a vulcanization press, and measure the mechanical properties of a sample while minimizing the effects of causes other than the sample.

このためには、試料室は密閉された構造とし、しかもそ
の密閉することにより試料自体および試料の応力の検出
機構に余分の摩擦などの抵抗を生じさせないで、その応
力を検出し測定するのが重要である。この互に成立し1
こくい要件を同時に満足する硬化度測定装置は従来知ら
れていない。現在知られている測定装置の試料室の構造
は、‘1’開放型、‘2}密閉型で、ローターが試料に
包まれた型、{3’試料室の片面がロータ−を兼ねた半
密閉型、■試料室の片面がローターを兼ねており、試料
室の固定側とローターとの間隙を加圧空気で封じたもの
、などが知られている。
To this end, the sample chamber must be of a sealed structure, and by sealing it, it is possible to detect and measure the stress without creating extra friction or other resistance on the sample itself or on the sample's stress detection mechanism. is important. This mutually holds true 1
There is no known hardening degree measuring device that simultaneously satisfies the hardness requirements. The structure of the sample chamber of currently known measurement devices is '1' open type, '2' closed type where the rotor is wrapped in the sample, and {3' half type where one side of the sample chamber also serves as the rotor. Closed type, ■ One side of the sample chamber also serves as a rotor, and the gap between the fixed side of the sample chamber and the rotor is sealed with pressurized air.

上記{1}〜‘41の試料室をもつ測定装置は、夫々次
のような欠点がある。
The measuring devices having sample chambers {1} to '41 described above each have the following drawbacks.

【11の試料室では非密閉型である。[11 sample chambers are non-sealed.

加熱された試料が著しく発泡した状態で外気と接するた
め、その反応条件の相違により硬化速度に誤差を生ずる
。【21の試料室ではローターの軸と軸受との間隙に流
入した試料のスリップや局部的破壊による摩擦抵抗や応
力の不連続な減少が測定に無視できない誤差を生ずる。
Since the heated sample comes into contact with the outside air in a significantly foamed state, differences in reaction conditions cause errors in the curing speed. [In the sample chamber No. 21, the discontinuous decrease in frictional resistance and stress due to slippage and local breakage of the sample that entered the gap between the rotor shaft and the bearing causes non-negligible errors in measurement.

さらにロータ−脚を通じての熱漏洩が大きく、試料充填
時の温度上昇が遅く、熱的誤差を生ずる。脚では試料室
の固定側と駆動側との境界部にて‘2}と同様に試料の
スリップや局部的破壊が生じ、これが測定に誤差を生ず
る。
Furthermore, heat leakage through the rotor legs is large, and the temperature rise during sample filling is slow, resulting in thermal errors. In the legs, sample slipping and local breakage occur at the boundary between the fixed side and the drive side of the sample chamber, similar to '2}, which causes errors in measurement.

しかもこの種の誤差はその大きさを予見する方法がない
ため測定後補正することができない。‘4}では試料室
の気密を保つためのシール部分の抵抗が大きい、さらに
試料室を加圧するための機構が複雑である。さらに密閉
した試料室で生じる圧力を軸受が受けるために、回転方
向への抵抗が大きくなって、試料に生じる回転方向の応
力の検出精度を低下する。またローター軸方向の圧力の
影響をさげるため、軸受の構造に複雑なものが必要であ
る。以上説明したように従来の硬化度測定装置は、試料
室の密閉、試料への過大なひずみの発生、或は試料に加
えるせん断ひずみへの抵抗力の検出機構などに欠点があ
り、精度の高い硬化度測定が困難であった。
Moreover, since there is no way to predict the magnitude of this type of error, it is impossible to correct it after measurement. In '4}, the resistance of the seal part for keeping the sample chamber airtight is large, and the mechanism for pressurizing the sample chamber is complicated. Furthermore, since the bearing receives the pressure generated in the sealed sample chamber, resistance in the rotational direction increases, reducing the accuracy of detecting stress in the rotational direction generated in the sample. Furthermore, in order to reduce the influence of pressure in the axial direction of the rotor, a complex bearing structure is required. As explained above, conventional hardening degree measuring devices have drawbacks such as sealing the sample chamber, generating excessive strain on the sample, and detection mechanism for resistance force to shear strain applied to the sample, and are not highly accurate. It was difficult to measure the degree of cure.

本発明は従来の硬化度測定装置のもつ前述の欠点を解消
すべく鋭意研究を行なった結果、簡単な構造でしかも高
精度の密閉式硬化度測定装置の開発に成功した。
The present invention has been made as a result of intensive research aimed at solving the above-mentioned drawbacks of conventional hardness measuring devices, and as a result has succeeded in developing a closed-type hardening degree measuring device with a simple structure and high accuracy.

本発明の目的は、試料室に充填した試料に振動的な線返
しせん断ひずみを与えながらその抵抗力を測定する粘弾
性物質の硬化度の測定装置において、試料室の固定側と
駆動側の境界部分を弾性材料で接続する部分を設け、前
記駆動側を摩擦トルクの発生を伴わずして支える回転振
動可能な軸受け部分を備えることを特徴とする粘弾性物
質の密閉式硬化度測定装置を得るにある。
An object of the present invention is to provide a hardening degree measuring device for a viscoelastic material that measures the resistance force while applying an oscillatory linear return shear strain to a sample filled in a sample chamber. Provided is a closed-type hardening degree measuring device for a viscoelastic substance, characterized in that a portion is provided to connect the portions with an elastic material, and a bearing portion capable of rotating and vibrating supports the driving side without generating frictional torque. It is in.

すなわち、本発明の装置は外筒(ダイ)と、この外筒と
の間に試料室を形成する内筒(ダィ)と、この外筒と内
筒の何れか一方に相対的に揺動運動を与える機構と、前
記機構によって前記外筒と内節の何れか一方に加えられ
るトルクを測定する機構とを有する粕弾性物質の密閉式
硬化度測定装置において、【ィ)前記内筒(ダィ)と外
髄(ダィ)間の境界部分を摩擦抵抗がなく連結する弾性
体と、【o揃記トルクを測定する機構の軸方向の圧力を
中心鞠の延長線上に連結して取付けたねじりばねもしく
は薄肉中空円筒を用いて鞠方向の圧力を回転方向の摩擦
抵抗とすることなく支持する機構とを備えることを特徴
とする粘弾性物質の密閉式硬化度測定装置を提供するも
のである。
That is, the device of the present invention includes an outer cylinder (die), an inner cylinder (die) forming a sample chamber between the outer cylinder, and a device that swings relative to either the outer cylinder or the inner cylinder. In a closed type hardening degree measuring device for a lees elastic material, which has a mechanism for imparting motion and a mechanism for measuring torque applied to either the outer cylinder or the inner cylinder by the mechanism, (a) An elastic body that connects the boundary between the (a) and the outer pulp without frictional resistance, and an elastic body that connects the axial pressure of the mechanism that measures the uniform torque on the extension line of the center ball. The present invention provides a closed-type curing degree measuring device for viscoelastic substances, characterized by having a mechanism that uses a torsion spring or a thin-walled hollow cylinder to support pressure in the ball direction without turning it into frictional resistance in the rotational direction. .

本発明装置によれば(ィ}試料室の固定側と駆動側との
境界部に弾性材料を用いることにより、従釆この部分で
生じていた試料の過大なひずみに起因する抵抗を生じさ
せないこと、{o}試料の粘弾性を測定する側の筒(ダ
ィ)に連結した軸の支持機構として摩擦トルクの発生し
ないつり持ち構造の軸受けを用いたので、試料室の圧力
の影響を受けないで再現性よく純粋に試料の粘弾性的低
抗力を表わす硬化度を得ることができる特徴を有する。
According to the device of the present invention, (a) By using an elastic material at the boundary between the fixed side and the driving side of the sample chamber, resistance due to excessive strain of the sample that occurs in this part of the sample chamber is not generated. , {o}A bearing with a hanging structure that does not generate friction torque is used as the support mechanism for the shaft connected to the cylinder (die) on the side where the viscoelasticity of the sample is measured, so it is not affected by the pressure in the sample chamber. It has the characteristic of being able to reproducibly and purely obtain a degree of hardening that represents low viscoelastic drag of the sample.

更に本発明装置によれば、し一試料室が密閉式であるた
め硬化中の条件が実際の加工機における金型中での条件
に近いこと、0小さなせん断ひずみを繰返す振動方式の
測定であるため硬化の全過程に百つて硬化度が測定可能
であること、(村試料室が密閉構造でありながら、ロー
ターが試料で包み込まれた構造ではないので熱漏洩や熱
的遅れによる誤差が小さく、かつ試料着脱が容易なこと
などの特徴がある。本発明で特徴的に使用される試料室
の固定側と駆動側の境界部分を接続する弾性材料は、耐
熱性の弾性材料、例えばシリコンゴム、弗素ゴム、アク
リルゴム及びニトリルゴムなどが用いられる。
Furthermore, according to the device of the present invention, since the sample chamber is a closed type, the conditions during curing are close to those in a mold in an actual processing machine, and the measurement is performed using a vibration method that repeats a small shear strain. Therefore, the degree of hardening can be measured during the entire curing process (although the sample chamber has a sealed structure, the rotor is not surrounded by the sample, so errors due to heat leakage and thermal delays are small; The elastic material that connects the boundary between the stationary side and the drive side of the sample chamber, which is characteristically used in the present invention, is a heat-resistant elastic material such as silicone rubber, etc. Fluororubber, acrylic rubber, nitrile rubber, etc. are used.

この弾性材料は環状であって、その厚さは少なくとも0
.5肋以上、好ましくは2〜10肋の範囲で使用される
。弾性材料の断面構造は試料室の構造に応じて任意に選
択できる。また、本発明において弾性材料と共に特徴的
に使用される試料室の圧力を摩擦トルクの発生を伴わず
して支える回転振動可能な軸受としては、ねじりバネも
しくは薄肉中空円筒などを用いたつり持ち装置が使用さ
れる。
The elastic material is annular and has a thickness of at least 0
.. It is used in a range of 5 or more ribs, preferably 2 to 10 ribs. The cross-sectional structure of the elastic material can be arbitrarily selected depending on the structure of the sample chamber. In addition, as a bearing capable of rotational vibration that supports the pressure of the sample chamber without generating friction torque, which is characteristically used in conjunction with an elastic material in the present invention, a suspension device using a torsion spring or a thin-walled hollow cylinder can be used. is used.

本発明装置に使用されるトルク計は、ロータ−軸と同軸
上のねじりバネもしくは薄肉中空円筒の上に装着しても
よいが、好ましくはローター軸を回転振動させるアーム
上に装置する。
The torque meter used in the device of the present invention may be mounted on a torsion spring or a thin hollow cylinder coaxial with the rotor shaft, but is preferably mounted on an arm that rotates and vibrates the rotor shaft.

次に図面に従って本発明の実施例を詳細に説明する。Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は試料室を閉じた状態における装置の全体を表わ
す説明図である。
FIG. 1 is an explanatory diagram showing the entire apparatus with the sample chamber closed.

試料室1は下熱盤2の中央に設けられた円錐台形の凹部
又は外筒(ダィ)3と、取付枠4に固定された上熱盤5
の中央に外筒3と同軸状態で位層ぎめされた円錐台形の
内筒(ダィ)6との間に形成される。内筒(ダィ)6と
外筒3との境界には弾性材料7と、弾性材料7の取付金
具8とが介挿される。取付金具8は上熱盤6にネジ止め
されており、弾性材料7の交換はこのネジ(図示せず)
をはずすことにより容易に行なえる。試料の着脱はエア
ーシリンダー9の圧力をエアーバルブ(図示せず)によ
り操作し、下熱盤2を取付枠4に相対的に降下させて行
なう。下熱盤2を降下させると内外筒は充分に離間し、
上下熱盤の間には必要な各種作業が容易に行なえるだけ
の空間があくようになる。内筒6は一種のローターとし
ての役割りをはたすが、従釆装置の或種のもののように
試料に包み込まれた形のローターと異なり、試料の着脱
は容易である。10は下熱盤2の上面に設けた凹溝であ
る。
The sample chamber 1 includes a truncated conical recess or outer cylinder (die) 3 provided in the center of a lower heating plate 2, and an upper heating plate 5 fixed to a mounting frame 4.
It is formed at the center between an outer cylinder 3 and a truncated conical inner cylinder (die) 6 coaxially stratified. An elastic material 7 and a mounting fitting 8 for the elastic material 7 are inserted at the boundary between the inner cylinder (die) 6 and the outer cylinder 3. The mounting bracket 8 is screwed to the upper heating plate 6, and the elastic material 7 can be replaced using this screw (not shown).
This can be easily done by removing the . The attachment and detachment of the sample is carried out by operating the pressure in the air cylinder 9 using an air valve (not shown) and lowering the lower heating plate 2 relative to the mounting frame 4. When lower heating plate 2 is lowered, the inner and outer cylinders are sufficiently separated,
There will be enough space between the upper and lower heating plates to easily perform various necessary operations. The inner tube 6 serves as a kind of rotor, but unlike some types of follower devices where the rotor is wrapped around the sample, it is easy to attach and detach the sample. 10 is a groove provided on the upper surface of the lower heating plate 2.

内筒6と外筒3の表面には試料のスリップ防止のための
4・さな凹凸を試料室全面にわたって設ける。本発明の
試料室の特徴の一つは、試料のスリップや局部破壊の原
因となるところの過大な試料ひずみを強制する部分が試
料室全体に存在しないことにある。従来装置でスリップ
の発生する部分は主として駆動側と固定側の固い壁面同
志を隣接させた境界部分であるが、本発明ではこの部分
が弾性材料で接続され、一種の弾性的な壁面として試料
と共に変形するため、試料内のひずみが弾性壁面にそっ
て無理なく連続的に分布し、局所的に大きな集中ひずみ
を生じない。内筒6は内筒駆動軸11、内筒軸支持枠1
2「ねじりバネ13を介して取付枠4に固定され、また
内筒駆動軸11の上端に接続したクランクア−ム14,
15及び偏心軸16、減速機17を介してモーター18
により内筒6はその軸の周りに揺動的に駆動される。
The surfaces of the inner tube 6 and the outer tube 3 are provided with four small irregularities over the entire surface of the sample chamber to prevent the sample from slipping. One of the characteristics of the sample chamber of the present invention is that there are no parts in the entire sample chamber that force excessive sample strain that may cause sample slippage or local breakage. In conventional devices, the area where slipping occurs is mainly at the boundary area where the hard walls on the drive side and the fixed side are adjacent to each other, but in the present invention, this area is connected with an elastic material, so that it acts as a kind of elastic wall surface together with the sample. Because of the deformation, the strain within the sample is naturally and continuously distributed along the elastic wall surface, and no large concentrated strain occurs locally. The inner cylinder 6 has an inner cylinder drive shaft 11 and an inner cylinder shaft support frame 1.
2, a crank arm 14 fixed to the mounting frame 4 via a torsion spring 13 and connected to the upper end of the inner cylinder drive shaft 11;
15, an eccentric shaft 16, and a motor 18 via a reducer 17.
As a result, the inner cylinder 6 is driven to swing around its axis.

内筒6の揺動角振幅は士5o以下程度の小さな値に設定
するが、その大きさは偏心軸16を交換することにより
変更できる。内筒6を駆動するに要するトルクはクラン
クアーム15の途中に設けたロードセル方式のトルク計
19によって電気信号に変換され記録装置2川こ記録さ
れる。試料を試料室1内に充填する際に加えた高い圧力
は測定中もいくらか減少しながら試料中に残るが、この
試料圧により内筒6に働く上向きの力はねじりバネ13
で支えられ、トルク計19には作用しない。このような
回転軸の軸方向荷重(スラスト荷重)を支える場合、従
来よく知られた方法はスラスト型ボールベアリングなど
の市販のスラスト軸受けを用いる方法であるがこの方法
では軸受けの内部でスラスト荷重に対応した摩擦抵抗ト
ルクが発生し、この摩擦トルクがトルク計の検出量に無
視できない大きさの誤差として混入する。
The swing angle amplitude of the inner cylinder 6 is set to a small value of about 5° or less, but its magnitude can be changed by replacing the eccentric shaft 16. The torque required to drive the inner cylinder 6 is converted into an electric signal by a load cell type torque meter 19 provided in the middle of the crank arm 15, and is recorded on two recording devices. The high pressure applied when filling the sample chamber 1 with the sample remains in the sample while decreasing somewhat during measurement.
, and does not act on the torque meter 19. When supporting such an axial load (thrust load) on a rotating shaft, a conventionally well-known method is to use a commercially available thrust bearing such as a thrust type ball bearing, but this method does not support the thrust load inside the bearing. A corresponding frictional resistance torque is generated, and this frictional torque is mixed into the detected amount of the torque meter as an error of a size that cannot be ignored.

この誤差は試料圧により複雑かつ大幅に変化するため予
め誤差分だけを測定しておいて補正する方法がとれない
。これに比べて本発明のねじりバネによるスラスト軸受
け機構は摩擦部分を持たない。トルク計19によって検
出されるトルクは主として試料、弾性材料7、ねじりバ
ネ13の3つのねじり抵抗力の和であるが弾性材料とね
じりバネのねじり抵抗力は試料圧によって変化しないの
で試料充填前に装置を駆動することにより、両者の和を
いわゆる空トルクとして測定しておき、試料充填後の測
定トルクから適当な方法で差引くことにより、試料のね
じり抵抗力だけを求めることができる。測定中、内筒6
と外筒3を互いに共軸状態に保ち、かつ内筒を滑らかに
駆動するため上熱盤5と内筒駆動軸11の間にラジアル
軸受けを用いる。この場合、通常のボールベアリングよ
りも弗素樹脂加工された筒状の滑り軸受け21を用いる
方が熱伝導を向上できる意味において望ましい。滑り軸
受けの摩擦係数はボールベアリングのそれに比べて大き
く、充填時の試料の片寄りに起因する横荷重のための軸
受け摩擦が大きくなるが、この横荷重は前述のスラスト
荷重に比べて微少であり、かつ測定の初めの短かし、時
間に急速に減少するので前記の軸受け摩擦は実際上無視
できる。上下熱盤は夫々その外周面に巻きつけた2個の
バンド状電熱式ヒーター22により加熱され、各熱盤内
部に埋設した温度センサー23を介して温度調節器(図
示せず)により所定の測定温度に維持される。温度セン
サー及び温度調節器は当業界で良く知られている熱電対
方式のもの、白金抵抗方式のもの何れをも適用できる。
熱盤材質をアルミ合金のような熱の良導体に選び、外周
面を適当な保温材で保温することにより、熱盤内部の温
度分布を充分に小さくすることができる。内筒6は直接
的には加熱されないが、内筒駆動軸11の材質を熱の良
導体に選び、滑り軸受け21との接触面積を広くとり、
内筒軸支持枠12との接続部分にアスベストのような硬
質断熱材(図示せず)を使用することにより、内筒6と
上下熱盤との温度差を無視できる程度に小さく保つこと
ができる。このようにして試料室に充填された試料はそ
の両側から加熱されるため速やかに所定の温度に達し、
その間の熱的遅れによる誤差は最小限に止められる。本
発明の装置を使用して粘弾性物質の硬化度を測定するに
は、試料室内容積よりや)多目の体積の試料を、試料室
1に投入し、所定温度に調節した上下熱盤2,5を閉じ
る。
Since this error complexly and significantly changes depending on the sample pressure, it is not possible to measure only the error in advance and then correct it. In comparison, the thrust bearing mechanism using a torsion spring of the present invention does not have a frictional part. The torque detected by the torque meter 19 is mainly the sum of the three torsional resistance forces of the sample, the elastic material 7, and the torsion spring 13, but since the torsion resistance of the elastic material and the torsion spring do not change depending on the sample pressure, By driving the device, the sum of the two is measured as a so-called empty torque, and by subtracting it using an appropriate method from the measured torque after filling the sample, only the torsional resistance force of the sample can be determined. During measurement, inner cylinder 6
A radial bearing is used between the upper heating plate 5 and the inner cylinder drive shaft 11 in order to keep the outer cylinder 3 and the outer cylinder 3 coaxial with each other and to drive the inner cylinder smoothly. In this case, it is preferable to use a cylindrical sliding bearing 21 processed with a fluororesin rather than a normal ball bearing in the sense that heat conduction can be improved. The coefficient of friction of a sliding bearing is larger than that of a ball bearing, and the bearing friction increases due to the lateral load caused by the deviation of the sample during filling, but this lateral load is minute compared to the thrust load mentioned above. , and the bearing friction described above is practically negligible since it decreases rapidly over time and is short at the beginning of the measurement. The upper and lower heating plates are each heated by two band-shaped electric heaters 22 wrapped around their outer circumferential surfaces, and a temperature controller (not shown) performs a predetermined measurement via a temperature sensor 23 embedded inside each heating plate. maintained at temperature. As the temperature sensor and temperature controller, either a thermocouple type or a platinum resistance type which is well known in the art can be used.
The temperature distribution inside the heating plate can be made sufficiently small by selecting the material of the heating plate as a good conductor of heat, such as aluminum alloy, and insulating the outer peripheral surface with a suitable heat insulating material. Although the inner cylinder 6 is not directly heated, the material of the inner cylinder drive shaft 11 is selected to be a good conductor of heat, and the contact area with the sliding bearing 21 is widened.
By using a hard insulating material such as asbestos (not shown) at the connection part with the inner cylinder shaft support frame 12, the temperature difference between the inner cylinder 6 and the upper and lower heating plates can be kept small enough to be ignored. . In this way, the sample filled in the sample chamber is heated from both sides, so it quickly reaches the specified temperature.
Errors due to thermal delays during this time can be kept to a minimum. To measure the degree of hardening of a viscoelastic substance using the apparatus of the present invention, a sample with a volume larger than the volume inside the sample chamber is placed in the sample chamber 1, and the upper and lower heating plates 2 are adjusted to a predetermined temperature. , 5 close.

余分の試料は下熱盤2に形成した凹溝101こ流出する
。駆動装置により内筒6を一定角度で往復回転させると
、試料の粘度に応じた応力がトルク計19を通じて、記
録装置2川こ記録される。なお第1図に榛式的に示した
ように、実際に記録装置2川こ描かれる図形は、振幅が
なだらかに増加する対称的な連続波動曲線であるが、次
に示す測定例図では比較の便の為全波形の描写を省略し
、その対称的な振幅軌跡の片側のみを描く、即ち第3図
において縦軸はトルク振幅を表わし、横軸はもとの図形
の対称軸で経過時間を表わす。
The excess sample flows out through the groove 101 formed in the lower heating plate 2. When the inner cylinder 6 is reciprocally rotated at a constant angle by the driving device, the stress corresponding to the viscosity of the sample is recorded by the torque meter 19 and the recording device 2. As shown in Figure 1, the shape actually drawn by two recording devices is a symmetrical continuous wave curve with a gently increasing amplitude. For convenience, the depiction of the entire waveform is omitted and only one side of the symmetrical amplitude locus is drawn. In other words, in Figure 3, the vertical axis represents the torque amplitude, and the horizontal axis is the symmetrical axis of the original figure and represents the elapsed time. represents.

記号toは試料の充填された時刻でしより左側の曲線は
前述の空トルクを表わす。図中曲線イはスチレンーブタ
ジェンラバーとカーボンブラックを主成分とし、通常用
いられる加硫剤等を含む配合物を試料とし、本発明の装
置で測定したデータ、曲線口は本発明の装置においてね
じりバネによる軸受け機構の代りに市販のスラスト型ボ
ールベアリングを用いた場合のデータである。空トルク
部分ではスラスト荷重がないため、ボールベアリングの
摩擦が小さく、曲線口は略ねじりバネのトルク相当分だ
け曲線イを下まわるが、試料充填後は曲線イでは試料抵
抗トルクが加わるだけであるのに対し、曲線口ではその
上に大きなスラスト荷重によるベアリングの摩擦抵抗が
加算されるため、曲線イを上まるトルクが観測されてい
る。曲線口に含まれるこの誤差トルクは試料の粘度や仕
込み量によって敏感かつ複雑に変化するため補正の方法
がなく、また測定の再現性にも悪影響を与える。これに
比べ、{ィ}の場合は仕込み量を一定にするなどの特別
な注意を払わなくても容易に良い再現性が得られ、試料
の硬化のみに対応する正しい硬化曲線が空トルク値を菱
引くだけの簡単な操作によつて入手できる。第4図中曲
線ハは本発明装置による空トルクを差引し、た硬化曲線
、曲線二はローターのない不完全密閉型構造の装置とし
て知られるJSRキュラストメーター(特公昭45−2
9474号参照)による硬化曲線、曲線木はローターの
ある密閉型構造の装置として知られるオシレーテーング
デスク レオメータ(侍公昭42一16035号参照
)によるデータである。
The symbol to represents the time when the sample was filled, and the curve to the left represents the empty torque described above. Curve A in the figure is data measured using the device of the present invention using a sample of a compound containing styrene-butadiene rubber and carbon black as main components and a commonly used vulcanizing agent, etc.; This is data when a commercially available thrust type ball bearing is used instead of the torsion spring bearing mechanism. In the empty torque section, there is no thrust load, so the friction of the ball bearing is small, and the curved opening falls below curve A by approximately the equivalent of the torque of the torsion spring, but after filling the sample, only the sample resistance torque is added at curve A. On the other hand, at the entrance of a curve, the frictional resistance of the bearing due to the large thrust load is added to that, so a torque that exceeds the curve A is observed. This error torque included in the curve opening changes sensitively and complexly depending on the viscosity of the sample and the amount of preparation, so there is no way to correct it, and it also adversely affects the reproducibility of measurements. In comparison, in the case of {i}, good reproducibility can be easily obtained without special precautions such as keeping the charging amount constant, and the correct hardening curve corresponding only to the hardening of the sample can be used to calculate the empty torque value. It can be obtained by simply drawing a diamond. In Fig. 4, curve C is a hardening curve obtained by subtracting the idle torque produced by the device of the present invention, and curve 2 is a hardening curve obtained by subtracting the dry torque produced by the device of the present invention.
The hardening curve and curve tree are data obtained from an oscillating desk rheometer (see Samurai Ko Sho 42-16035), which is a known closed-structure device with a rotor.

曲線こ及びホは前述の理由により空トルク差引きの操作
は意味がないので、元の図形の対称軸をそのま)横軸と
している。また第4図の縦軸の尺度は各曲線の加稀前の
トルク振幅の最小値と充分に加硫した状態のトルク振幅
の平衡値との差が図の上で同じ大きさに表現されるよう
な相対尺度を用いてある。曲線ホの立上り部分を除き曲
線二,木が何れも曲線ハに比べて上方に位置しているの
はそれらの曲線に余分な摩擦トルクが加算されている為
である。また曲線ハに比べて見かけ上曲線二の加流が速
く曲線ホの加硫が遅くなっているのは、二の場合は不完
全密閉構造の為ダイス周辺の隙間を通して外気の影響を
受け加孫速度が速められた事が主な原因であり、ホの場
合はローター脚を通じての定常的な熱漏洩により生じる
ダイスと試料の間の温度差が見かけの上で加硫速度を低
下させた事が主な原因であると考える。第1図に示す実
施例の変形例を第5図に示す。第1図はトルク検出部分
を介して内筒6を駆動することにより、駆動に要するト
ルクを検出する構造の例であるが、第5図に示す実施例
は駆動側とトルク検出側とを分離した構造に関する。第
5図中第1図におけると同様の部分は同一符号を附して
示す。試料室1はトルク検出軸11′に固定された円盤
状の上側ダィ24(第1図の内筒6に相当する)と、駆
動軸26に固定された円盤状の下側ダィ25(第1図の
外筒3に相当する)と、それらの周囲の熱盤2及び5に
対して固定された上下2ケのりング状取付金具8と、前
記ダィと取付金具との境界部分を接続する上下2ケのり
ング状弾性材料7とによって囲まれた円盤状の空間であ
る。駆動鞭26がクランクアーム23,30‘とよって
振動されることにより下側ダィ25が振動し、この振動
が試料室1に充満した試料を介して上側ダイ24に伝わ
り検出軸11′、クランクアーム14,15を通してロ
ードセル19に伝わる。ロードセル19の他端は適当な
固定具によって上側熱盤5に対して固定する。駆動藤2
6は前述と同じ理由により望ましくは弗素樹脂加工した
滑り軸受け27及び28によって支える。この構造では
検出トルクに対する弾性材料7のねじり剛性の影響が少
ないため第1図の構造に比べてより丈夫な形状の弾性材
料を使用できる利点がある。
For the curves C and E, the operation of subtracting the idle torque is meaningless due to the above-mentioned reason, so the axis of symmetry of the original figure is used as the horizontal axis. In addition, the scale of the vertical axis in Figure 4 is such that the difference between the minimum value of torque amplitude before vulcanization and the equilibrium value of torque amplitude in a fully vulcanized state is expressed as the same size on the diagram. A relative scale like this is used. Except for the rising portion of curve E, curves 2 and 2 are all located higher than curve C because extra frictional torque is added to those curves. Also, the reason why the vulcanization of curve 2 is apparently faster and the vulcanization of curve E is slower than that of curve C is because vulcanization in curve 2 is incompletely sealed, so the vulcanization is affected by outside air through the gap around the die. The main reason was that the speed was increased; in the case of E, the temperature difference between the die and the sample caused by constant heat leakage through the rotor leg apparently decreased the vulcanization rate. I think this is the main cause. A modification of the embodiment shown in FIG. 1 is shown in FIG. Figure 1 shows an example of a structure in which the torque required for driving is detected by driving the inner cylinder 6 via a torque detection part, but the embodiment shown in Figure 5 separates the drive side and torque detection side. Regarding the structure. Portions in FIG. 5 that are similar to those in FIG. 1 are designated by the same reference numerals. The sample chamber 1 includes a disk-shaped upper die 24 (corresponding to the inner cylinder 6 in FIG. 1) fixed to the torque detection shaft 11', and a disk-shaped lower die 25 (corresponding to the inner cylinder 6 in FIG. 1) fixed to the drive shaft 26. (corresponding to the outer cylinder 3 in FIG. It is a disk-shaped space surrounded by two connecting upper and lower ring-shaped elastic materials 7. When the drive whip 26 is vibrated by the crank arms 23, 30', the lower die 25 vibrates, and this vibration is transmitted to the upper die 24 through the sample filled in the sample chamber 1, causing the detection shaft 11' and the crank to vibrate. It is transmitted to the load cell 19 through the arms 14 and 15. The other end of the load cell 19 is fixed to the upper heating plate 5 by a suitable fixture. driving wisteria 2
6 is preferably supported by sliding bearings 27 and 28 made of fluororesin for the same reason as mentioned above. In this structure, the effect of the torsional rigidity of the elastic material 7 on the detected torque is small, so there is an advantage that an elastic material having a stronger shape can be used compared to the structure shown in FIG. 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の説明図、第2図は測定部分を振動
させるための駆動部分とトルク検出部分の関係を示す説
明図、第3図は軸受部分に本発明における非摩擦軸受を
使用した測定例と、従来のスラスト型ボールベアリング
軸受を使用した測定例を示す線図、第4図は本発明の装
置と従来装置とによる同一試料の硬化度の測定例を示す
線図、第5図は第1図に示す実施例の変形例である。 1…・・・試料室、2・・・・・・下熱盤、3・・…・
外筒、4・・・・・・取付枠、5・・・・・・上熱盤、
6・・・・・・内筒、7・・・・・・弾性材料、8・…
・・取付金具、9・・・・・・エアーシリンダ、10・
・・・・・凹溝、11・・・・・・内筒駆動軸、12・
・・・・・内筒軸支持枠、13・・…・ねじりバネ、1
4,15・・・・・・クランクアーム、16・・・・・
・偏心軸、17・・・・・・減速機、18・・・・・・
モーター、19・・・・・・トルク計、20・・・・・
・記録装置、21・・・・・・滑り軸受け、22・・・
・・・ヒーター、23・・・・・・温度センサー。 努l図篤Z図 第3凶 第4図 努5図
Fig. 1 is an explanatory diagram of the device of the present invention, Fig. 2 is an explanatory diagram showing the relationship between the driving part for vibrating the measurement part and the torque detection part, and Fig. 3 is an explanatory diagram showing the relationship between the driving part for vibrating the measuring part and the torque detection part. Fig. 4 is a diagram showing an example of measurement using a conventional thrust type ball bearing, and Fig. 4 is a diagram showing an example of measurement of the degree of hardening of the same sample using the device of the present invention and the conventional device. The figure shows a modification of the embodiment shown in FIG. 1...Sample chamber, 2...Lower heating plate, 3...
Outer cylinder, 4...Mounting frame, 5...Top heating plate,
6... Inner cylinder, 7... Elastic material, 8...
...Mounting bracket, 9...Air cylinder, 10.
... Concave groove, 11 ... Inner cylinder drive shaft, 12.
...Inner cylinder shaft support frame, 13 ...Torsion spring, 1
4, 15... Crank arm, 16...
・Eccentric shaft, 17...Reducer, 18...
Motor, 19...Torque meter, 20...
・Recording device, 21...Sliding bearing, 22...
... Heater, 23 ... Temperature sensor. Tsutomu l figure Atsushi Z figure 3 Kyo figure 4 Tsutomu figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 外筒と、この外筒との間に試料室を形成する内筒と
、この外筒と内筒の何れか一方に相対的に揺動運動を与
える機構と、前記機構によつて前記外筒と内筒の何れか
一方に加えられるトルクを測定する機構とを有する粘弾
性物質の密閉式硬化度測定装置において、(イ)前記内
筒と外筒間の境界部分を摩擦抵抗がなく連結する弾性体
と、(ロ)前記トルクを測定する機構の軸方向の圧力を
中心軸の延長線上に連結して取付けたねじりばねもしく
は薄肉中空円筒を用いて軸方向の圧力を回転方向の摩擦
抵抗とすることなく支持する機構とを備えることを特徴
とする粘弾性物質の密閉式硬化度測定装置。
1 an outer cylinder, an inner cylinder forming a sample chamber between the outer cylinder, a mechanism that provides relative rocking motion to either the outer cylinder or the inner cylinder, and a mechanism that provides a relative rocking motion to either the outer cylinder or the inner cylinder; In a closed-type curing degree measuring device for a viscoelastic material having a mechanism for measuring torque applied to either one of a cylinder and an inner cylinder, (a) the boundary between the inner cylinder and the outer cylinder is connected without frictional resistance. and (b) a torsion spring or thin-walled hollow cylinder connected and attached on an extension of the central axis to convert the axial pressure of the torque measuring mechanism into frictional resistance in the rotational direction. 1. A device for measuring the degree of hardening of a viscoelastic substance, characterized by comprising a mechanism for supporting the degree of hardening of a viscoelastic substance.
JP51041313A 1976-04-14 1976-04-14 Closed type curing degree measuring device for viscoelastic substances Expired JPS6025735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51041313A JPS6025735B2 (en) 1976-04-14 1976-04-14 Closed type curing degree measuring device for viscoelastic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51041313A JPS6025735B2 (en) 1976-04-14 1976-04-14 Closed type curing degree measuring device for viscoelastic substances

Publications (2)

Publication Number Publication Date
JPS52125392A JPS52125392A (en) 1977-10-21
JPS6025735B2 true JPS6025735B2 (en) 1985-06-20

Family

ID=12605006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51041313A Expired JPS6025735B2 (en) 1976-04-14 1976-04-14 Closed type curing degree measuring device for viscoelastic substances

Country Status (1)

Country Link
JP (1) JPS6025735B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962467B2 (en) 2005-03-31 2021-03-30 C2 Diagnostics Optical measurement method for counting and/or differentiating leucocytes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212549A (en) * 1986-03-14 1987-09-18 Kao Corp Method for testing characteristics of catalyst for preparing polyurethane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962467B2 (en) 2005-03-31 2021-03-30 C2 Diagnostics Optical measurement method for counting and/or differentiating leucocytes

Also Published As

Publication number Publication date
JPS52125392A (en) 1977-10-21

Similar Documents

Publication Publication Date Title
US3479858A (en) Apparatus for measuring viscoelasticity
US4552025A (en) Multifunction processability testing method and apparatus
US3488992A (en) Curometer
JPH0321861B2 (en)
US20170131225A1 (en) Compression heat-generation detector and method therefor
US4837776A (en) Process for measuring the variations in volume of fluids, especially shrinkage measurements in synthetic resins during hardening and a device for carrying out the process
WO1992017764A1 (en) Capillary rheometer plunger pressure transducer and measurement technique
US3494172A (en) Cone curemeter
JP3224956B2 (en) Method and apparatus for measuring viscoelasticity
JPH0223822B2 (en)
JP6169243B2 (en) Sealless rheometer die assembly
US6962086B2 (en) Rheometer
US4577412A (en) Rheometer rotor height gauge
JPS6025735B2 (en) Closed type curing degree measuring device for viscoelastic substances
US3387490A (en) Rheometer die improvement
US2414550A (en) Compression machine
CN212722333U (en) Commercial concrete anti-cracking performance test device
US3982427A (en) Apparatus for working and testing solid elastomers
US3525252A (en) Fluid material measurement apparatus
US5221500A (en) Mechanical in situ curometer
US3401550A (en) Lubricity tester
JP2591342B2 (en) Expansion characteristic measurement method
JP4032021B2 (en) Vulcanization test equipment
CN110836826A (en) Scouring device and method for testing shear stress of concrete surface under action of water flow
RU2261429C1 (en) Device for testing non-metal samples, particularly polymeric ones, for compression