JPS60257043A - Cathode-ray tube - Google Patents

Cathode-ray tube

Info

Publication number
JPS60257043A
JPS60257043A JP11345484A JP11345484A JPS60257043A JP S60257043 A JPS60257043 A JP S60257043A JP 11345484 A JP11345484 A JP 11345484A JP 11345484 A JP11345484 A JP 11345484A JP S60257043 A JPS60257043 A JP S60257043A
Authority
JP
Japan
Prior art keywords
ray tube
film
fluorescent surface
optical interference
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11345484A
Other languages
Japanese (ja)
Other versions
JPH0313699B2 (en
Inventor
Yasuo Iwasaki
安男 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11345484A priority Critical patent/JPS60257043A/en
Publication of JPS60257043A publication Critical patent/JPS60257043A/en
Publication of JPH0313699B2 publication Critical patent/JPH0313699B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/24Supports for luminescent material

Abstract

PURPOSE:To give directivity to emission of light of phosphorescent surface by providing a multi-layer optical film where silicon oxide film and tantalum oxide film are alternately formed between a face plate glass and phosphor material layer. CONSTITUTION:While a phase plate glass which is used as a substrate is heated up to about 300 deg.C, tantalum oxide and silicon dioxide are alternately vacuum deposited through heating by electron beam in the designed constant thickness and an optical interference film is formed by the six-layer coating. Thereby, an optical interference film for very stable cathode-ray tube phosphor surface providing both heat resistance characteristic and chemical resistance property can be obtained, it is also possible to give dependency on angle to distribution of luminousity of light emission of phosphor surface. As a result, a high quality cathode-ray tube for terminal and projection type cathode-ray tube can be obtained.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は螢光面からの発光に指向性を持たせた陰極線
管の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to the structure of a cathode ray tube in which light emitted from a fluorescent surface is given directionality.

〔従来技術〕[Prior art]

第1図は、従来の陰極線管の動作原理を示すための概略
断面図である。この図に詔いて、真空外囲器となるガラ
スバルブ(1)の一部を構成するフェースプレートガラ
ス(2)の円面には螢光体層(4)が形成されており、
この螢光体層(4)上には高圧電極および光反射膜とし
てのアルミニウム(An) の蒸着膜からなるメタルバ
ック膜(5)が形成されて螢光面(3)を構成している
。螢光面(3)のメタルバンク膜(5)側内面に対向配
置された電子銃(6)から発せられる電子線(7)のエ
ネルギにより螢光体層(4)が励起され、螢光面発光出
力が得られる。このような螢光体層(4)は通常、はぼ
完全拡散面に近いため、たとえば図中の(N点で、電子
線(7)により励起された発光の場合、光の発散角度に
対する光度分布はLAMBERTの法則にしたがい、図
で示すごと(、(2)θに比例した分布となる。また、
この場合の各角度方向の輝度分布は一定値、すなわちど
の方向から螢光面を見ても等輝度となることは良く知ら
れている。通常の家庭用などのテレビジョン受像機にお
いては、このように螢光面(3)に映し出された映像の
明るさが、どの方向から見てもほぼ同じように見えると
いうことは必須の条件であるが、用途の種類によっては
必ずしも螢光面(3)の明るさが見る角度によって同じ
ではなく、むしろ角度依存性を持たせた方が好ましいも
のもある。その−例がコンピュータなどの端末用の陰極
線管である。
FIG. 1 is a schematic cross-sectional view showing the operating principle of a conventional cathode ray tube. Referring to this figure, a phosphor layer (4) is formed on the circular surface of the face plate glass (2) that constitutes a part of the glass bulb (1) that serves as the vacuum envelope.
On this phosphor layer (4), a high-voltage electrode and a metal back film (5) consisting of a vapor-deposited film of aluminum (An) as a light reflecting film are formed to constitute a phosphor surface (3). The phosphor layer (4) is excited by the energy of the electron beam (7) emitted from the electron gun (6) which is placed opposite to the inner surface of the metal bank film (5) side of the phosphor surface (3), and the phosphor layer (4) Luminous output can be obtained. Since such a phosphor layer (4) is usually close to a completely diffusing surface, for example, in the case of light emission excited by an electron beam (7) at point (N in the figure), the luminous intensity with respect to the divergence angle of the light is The distribution follows LAMBERT's law, and as shown in the figure (, (2) the distribution is proportional to θ.
It is well known that the brightness distribution in each angular direction in this case is a constant value, that is, the brightness is the same no matter which direction the fluorescent surface is viewed from. For ordinary home television receivers, it is an essential condition that the brightness of the image projected on the fluorescent surface (3) appears almost the same no matter what direction it is viewed from. However, depending on the type of use, the brightness of the fluorescent surface (3) is not necessarily the same depending on the viewing angle, and in some cases it is preferable to have angle dependence. An example is a cathode ray tube for terminals such as computers.

コンピュータなどの端末用ディスプレの場合、第2図で
示すごとく、端末用陰極線管(8)の螢光面(3)のほ
ぼ中心線上にオペレータ(9)が位置して螢光面(3)
に映し出された情報を見ながら作業を行うため、実際に
オペレータ(9)の目に視覚情報として捕えられるのは
、螢光面(3)からの発光の内、画面中央部で約±Cの
発散角の範囲であり、画面周辺部を考慮してもせいぜい
約±80°の発散角の範囲の発光である。したがって、
この範囲外の発光はコンピュータの端末作業にとっては
無意味な発光といえる。この約±8♂の発散角外の光束
を、第8図で示すごとく、±80′以内の発散角内に集
約化できれば、輝度分布に角度依存性が生じ、オペレー
タ(9)側の螢光面の輝度を大幅に向上でき、エネルギ
の節約にもつなげることが可能である。また螢光面の輝
度分布に角度依存性を持たせた方が好ましい。もう一つ
の例として、投写型陰極線管の場合があげられる。
In the case of a display for a terminal such as a computer, as shown in FIG.
Since the operator (9) performs the work while looking at the information displayed on the screen, the operator (9) actually sees the visual information of approximately ±C of the light emitted from the fluorescent surface (3) at the center of the screen. Even if the periphery of the screen is considered, the light emission is within a divergence angle range of about ±80° at most. therefore,
Light emission outside this range can be said to be meaningless light emission for computer terminal work. If the luminous flux outside the divergence angle of about ±8♂ can be concentrated within the divergence angle of ±80′ as shown in Fig. 8, angular dependence will occur in the luminance distribution, and the fluorescence on the operator (9) side will The brightness of the surface can be significantly improved, which can also lead to energy savings. Further, it is preferable that the luminance distribution of the fluorescent surface has angular dependence. Another example is a projection cathode ray tube.

第4図は投写型テレビジョンセットの構成原理を示すた
めの概略断面図である。投写型陰極線管θυはその螢光
面(3)に映し出された映像を、投写レンズユニット@
を介して前方に設置されたスクリーン(6)に拡大投影
するものである。この投写レンズユニット(6)は通常
8〜8枚程度の光学レンズを組み込んだ複合レンズとし
て構成される。
FIG. 4 is a schematic sectional view showing the principle of construction of a projection television set. The projection cathode ray tube θυ transmits the image projected on its fluorescent surface (3) to the projection lens unit @
The image is enlarged and projected onto a screen (6) installed in front of the screen. This projection lens unit (6) is usually configured as a compound lens incorporating about 8 to 8 optical lenses.

このような投写レンズユニツ) Q”2Jの場合、収差
の問題やコストおよびスペース的な問題のため、投写型
陰極線管Qυの螢光面(3)の大きさに比べてあまり大
きなレンズ口径を選ぶことは困難である。
In the case of such a projection lens (unit) Q"2J, it is difficult to choose a lens aperture that is too large compared to the size of the fluorescent surface (3) of the projection cathode ray tube Qυ due to aberration problems, cost, and space problems. It is difficult.

このため螢光面(3)からの発光を投写レンズユニット
(6)に取り込む際の有用取り込み角度は非常に限られ
たものとなる。たとえば螢光面(3)の中央における発
光の場合、光学的に有用な発光は発光点で螢光面(3)
に立てた法線に対して概略±15〜±2「の範囲である
。また同様に螢光面(3)の周辺にaける発光の場合は
、螢光面(3)の内側に向って約80の範囲である。し
たがって、螢光面(3)の中央部詔よび周辺部の両方を
考慮しても、発光点で螢光面(3)に立てた法線に対し
て約±8♂の発散角よりも大清な発光は投写レンズユニ
ット(6)の光学的に有用な光路をとることができない
不要光である。
For this reason, the useful angle for capturing the light emitted from the fluorescent surface (3) into the projection lens unit (6) is extremely limited. For example, in the case of light emission at the center of the fluorescent surface (3), optically useful light emission occurs at the light emitting point on the fluorescent surface (3).
The range is approximately ±15 to ±2" with respect to the normal line set on the surface. Similarly, when emitting light around the fluorescent surface (3), The range is about 80. Therefore, even if both the central part and the peripheral part of the fluorescent surface (3) are considered, the range is about ±8 with respect to the normal to the fluorescent surface (3) at the light emitting point. Light emitted with a larger divergence angle than the male is unnecessary light that cannot take an optically useful optical path of the projection lens unit (6).

この約±8♂の発散角外の光束を第8図で示すごとく、
±80′以内の発散角内に集約化できれば輝度分布に角
度依存性が生じ、スクリーンθ葎に拡大投影された映像
の明るさを大幅に向上することが可能となる。
As shown in Figure 8, the luminous flux outside the divergence angle of about ±8♂ is
If the luminance can be concentrated within a divergence angle of ±80', angular dependence will occur in the luminance distribution, making it possible to significantly improve the brightness of the image enlarged and projected onto the screen θ.

以上述べたような螢光面(3)の発光の光束の内、発散
角の大きいものを発散角の小さい方へ集約化させて発散
角の小さい方向での輝度を大きくして、螢光面の輝度分
布に角度依存性を持たせる一つの方法として特開昭55
−150582号の「ハローを抑制するための陰極線管
面板構造およびその抑制方法」に開示されている方法が
非常に示唆的である。すなわち、第8図で示すごとく、
螢光面(3)のフェースプレートガラス(2)と螢光体
層(4)との間に光学的干渉膜00を形成することによ
り螢光面(3)の輝度分布に角度依存性が与えられるこ
とが示唆されている。この光学的干渉膜QOは螢光体層
(4)からこの膜に入射してくる光の内、入射角の小さ
いものをできるだけ透過し、入射角の大きいものは反射
して螢光体層(4)側へもどす作用をする。光学的干渉
膜叫への入射角が大きくて螢光体層(4)側へ反射され
た光は再び螢光体表面で乱反射され、この乱反射された
光の内、光学的干渉膜Mへの入射角が小さいもののみ透
過され、残りはまた反射される。この過程がくり返され
ることにより、第8図に示したような発散角の小さい範
囲に光束が集約化されたような、角度依存性を持った輝
度分布が実現される。
Of the luminous flux of the fluorescent surface (3) as described above, those with a large divergence angle are concentrated into the direction with a small divergence angle, and the brightness in the direction with a small divergence angle is increased. As a method to make the luminance distribution of angular dependence, JP-A-55
The method disclosed in ``Cathode ray tube face plate structure for suppressing halo and method for suppressing the same'' of No. 150582 is very suggestive. That is, as shown in Figure 8,
By forming an optical interference film 00 between the face plate glass (2) of the fluorescent surface (3) and the fluorescent layer (4), angular dependence is imparted to the luminance distribution of the fluorescent surface (3). It has been suggested that This optical interference film QO transmits as much of the light that is incident on the film from the phosphor layer (4) as possible with a small angle of incidence, and reflects the light that has a large angle of incidence and reflects the light that enters the film from the phosphor layer (4). 4) Acts to return it to the side. The light that enters the optical interference film M at a large angle of incidence and is reflected toward the phosphor layer (4) is diffusely reflected again on the phosphor surface. Only those with small angles of incidence are transmitted; the rest are also reflected. By repeating this process, a luminance distribution with angular dependence is realized, as shown in FIG. 8, in which the luminous flux is concentrated in a range with a small divergence angle.

このような光学的干渉膜の具体的な例として前記特開昭
55−150582号には低屈折率層として二酸化硅素
 (Sin2)、高屈折率層として二酸化チタン (T
i02)の組み合わせからなる6層コーティングの例が
開示されている。
As a specific example of such an optical interference film, the above-mentioned Japanese Patent Application Laid-Open No. 55-150582 uses silicon dioxide (Sin2) as a low refractive index layer and titanium dioxide (T) as a high refractive index layer.
An example of a six-layer coating consisting of a combination of i02) is disclosed.

一方、陰極線管の螢光面にこのような光学的干渉膜を適
用する場合には、要求される光学特性以外に2つの重要
な性能がこの光学的干渉膜に要求される。その一つは耐
熱性である。通常、陰極線管はその製造工程で約400
〜450℃まで昇温する熱処理工程を最低2度は通過し
なければならない。したがって、このような熱処理工程
で螢光面に形成された光学的干渉膜の光学特性に変化を
生じてはならない。
On the other hand, when such an optical interference film is applied to the fluorescent surface of a cathode ray tube, two important performances are required of the optical interference film in addition to the required optical properties. One of them is heat resistance. Normally, the manufacturing process for cathode ray tubes requires approximately 400
It must pass through a heat treatment step at least twice in which the temperature is raised to ~450°C. Therefore, such a heat treatment step must not cause any change in the optical properties of the optical interference film formed on the fluorescent surface.

このような耐熱性という点からは二酸化硅素(Si02
)と二酸化チタン(Ti02)からなる多層膜は不安定
であり、400°Cに80分間保持するのみでも光学特
性に大幅な変動を生じることが明らかとなった。また、
このような光学的干渉膜に要求されるもう一つの重要な
性能は耐薬品性である。
From the point of view of such heat resistance, silicon dioxide (Si02
) and titanium dioxide (Ti02) are unstable, and it has been revealed that even holding the temperature at 400°C for 80 minutes causes significant fluctuations in optical properties. Also,
Another important performance required of such an optical interference film is chemical resistance.

通常、陰極線管の螢光面(3)を形成する場合、螢光体
層(4)を形成する前に、ガラスバルブ(1)の内面は
弗化水素酸(IF)などの酸性溶液により洗浄される。
Usually, when forming the phosphor surface (3) of a cathode ray tube, the inner surface of the glass bulb (1) is cleaned with an acidic solution such as hydrofluoric acid (IF) before forming the phosphor layer (4). be done.

この洗浄は陰5its管の動作寿命を確保する上では必
要不可欠な工程である。このガラスバルブ(1)の内面
の洗浄は螢光体層(4)形成の直前に行われるため、ガ
ラスバルブ(1)のフェースプレートガラス(2)の内
面に、あらかじめ形成されている光学的干渉膜もHFな
どによって洗浄を受けることになり、このために膜の光
学特性が損われてはならない。しかしながら、二酸化硅
素 (Sin2)と二酸化チタン (TiO2)からな
る多層膜の場合、約1.0wt%の弗化水素酸(HF)
に約1分間浸漬されるのみで、膜の分解、剥離が生じ、
耐薬品性の観点からもはなはだ不満足なものである。し
たがって、二酸化硅素(Si02)と二酸化チタン(T
i02)の多層膜からなる光学的干渉膜は、膜の初期特
性としては要求に十分応えられるものであっても、陰極
線管の製造工程で当然要求される耐熱性や耐薬品性など
の要求性能を満足できず、したがって陰極線管の螢光面
に適用することは非常に困難といえる。
This cleaning is an essential step to ensure the operational life of the 5its tube. This cleaning of the inner surface of the glass bulb (1) is carried out immediately before the formation of the phosphor layer (4), so that the optical interference formed in advance on the inner surface of the face plate glass (2) of the glass bulb (1) The membrane will also be subjected to cleaning, such as with HF, and the optical properties of the membrane must not be impaired due to this. However, in the case of a multilayer film consisting of silicon dioxide (Sin2) and titanium dioxide (TiO2), about 1.0 wt% of hydrofluoric acid (HF)
After being immersed in water for only about 1 minute, the film decomposes and peels off.
It is also extremely unsatisfactory from the viewpoint of chemical resistance. Therefore, silicon dioxide (Si02) and titanium dioxide (T
Although the optical interference film consisting of a multilayer film described in i02) can sufficiently meet the initial properties of the film, it does not meet the required performance such as heat resistance and chemical resistance, which are naturally required in the manufacturing process of cathode ray tubes. Therefore, it is extremely difficult to apply it to the fluorescent surface of a cathode ray tube.

[発明の概要] この発明は、光学的干渉膜を陰極線管の螢光面のフェー
スプレートガラスと螢光体層の間に設けて螢光面の輝度
分布に角度依存性を持たせる際に、従来技術ではどうし
ても解決できながった光学的干渉膜の緒特性の不安定さ
に鑑みなされたものであり、耐熱性、耐薬品性とも兼ね
そなえた非常に安定な陰極線管蛍光面用の光学的干渉膜
を提供するものである。
[Summary of the Invention] This invention provides an optical interference film between the face plate glass and the phosphor layer of the fluorescent surface of a cathode ray tube to make the luminance distribution of the fluorescent surface angularly dependent. This was developed in view of the instability of optical interference film properties that could not be resolved using conventional technology, and was developed to provide an extremely stable optical system for cathode ray tube phosphor screens that is both heat resistant and chemical resistant. The purpose of this invention is to provide a targeted interference film.

〔発明の実施例〕[Embodiments of the invention]

陰極線管の螢光面に適用可能な耐熱性および耐薬品性を
兼ねそなえた光学膜を得るため、種々の金属酸化物につ
いて、実際に蒸着された膜について実験を行った結果、
低屈折率層として二酸化硅素 (S i02 )、高屈
折率層として酸化タンタル(Ta02またはTa2’s
)からなる多層光学膜の場合が耐熱性、耐薬品性ともに
、非常に優れており、陰極線管の螢光面に十分適用でき
ることが確認された。
In order to obtain an optical film that has both heat resistance and chemical resistance that can be applied to the fluorescent surface of cathode ray tubes, we conducted experiments on films actually deposited using various metal oxides.
Silicon dioxide (S i02 ) is used as the low refractive index layer, and tantalum oxide (Ta02 or Ta2's) is used as the high refractive index layer.
) has excellent heat resistance and chemical resistance, and has been confirmed to be fully applicable to the fluorescent surface of cathode ray tubes.

基板となるフェースプレートガラスを約800°Cに加
熱しながら酸化タンタル(Ta02またはTa203)
と二酸化硅素 (Si02)を電子線加熱により一定に
設計された膜厚で交互に蒸着して6層コーティングを行
って形成した光学的干渉膜の場合、450°Cで80分
間保持の温度サイクルを8回くりかえすとともに、この
間に2.0wt%の弗化水素酸(HF)溶液への5分間
の浸漬を付加しても光学的干渉膜の特性その他に何ら異
常を生じなかった。
Tantalum oxide (Ta02 or Ta203) is heated to approximately 800°C while the face plate glass serving as the substrate is heated.
In the case of an optical interference film formed by coating 6 layers by alternately depositing silicon dioxide (Si02) and silicon dioxide (Si02) at a constant film thickness using electron beam heating, a temperature cycle of holding at 450°C for 80 minutes was performed. Even if this was repeated 8 times and 5 minutes of immersion in a 2.0 wt % hydrofluoric acid (HF) solution was added during this period, no abnormality occurred in the properties of the optical interference film or other properties.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、耐熱性、耐薬品性と
もに優れた光学的干渉膜を#極線管の螢光面に適用する
ことが可能となり、螢光面の発光の輝度分布に角度依存
性を持たせることができ、この結果、高品質の端末用陰
極線管や投写型陰極線管を提供することが可能となる。
As described above, according to the present invention, it is possible to apply an optical interference film with excellent heat resistance and chemical resistance to the fluorescent surface of a #polar ray tube, and the luminance distribution of the light emitted from the fluorescent surface can be changed. Angular dependence can be provided, and as a result, it becomes possible to provide high-quality terminal cathode ray tubes and projection type cathode ray tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の陰極線管の動作原理を示すための概略断
面図、第2図はコンピュータなどの端末用ディスプレの
作業状態を示す図、第8図は陰極線管の螢光面の発光の
輝度分布に角度依存性を持たせた状態を示す図、第4図
は投写型テレビジョンセットの構成原理を示すための概
略断面図である。 (1)・・・ガラスバルブ、(2)・・・フェースプレ
ートガラス、(3)・・・螢光面、(4)・・・螢光体
層、0I・・・光学的干渉膜。 なお、図中同一符号は同一または相当部分を示す。 代理人 大岩増雄
Figure 1 is a schematic sectional view showing the operating principle of a conventional cathode ray tube, Figure 2 is a diagram showing the working status of a terminal display such as a computer, and Figure 8 is the luminance of the fluorescent surface of the cathode ray tube. FIG. 4 is a schematic cross-sectional view showing the principle of construction of a projection television set. (1)... Glass bulb, (2)... Face plate glass, (3)... Fluorescent surface, (4)... Fluorescent layer, 0I... Optical interference film. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] (1) 螢光面を構成するフェースプレートガラスと螢
光体層との間に、二酸化硅素(Si02) 膜と酸化タ
ンタル(Ta02またはTa203) 膜とを交互に形
成してなる多層光学膜を設けて螢光面の発光に指向性を
持たせたことを特徴とする陰極線管。
(1) A multilayer optical film formed by alternately forming a silicon dioxide (Si02) film and a tantalum oxide (Ta02 or Ta203) film is provided between the face plate glass that constitutes the fluorescent surface and the phosphor layer. A cathode ray tube characterized by having a fluorescent surface that emits light with directionality.
JP11345484A 1984-05-31 1984-05-31 Cathode-ray tube Granted JPS60257043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11345484A JPS60257043A (en) 1984-05-31 1984-05-31 Cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11345484A JPS60257043A (en) 1984-05-31 1984-05-31 Cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS60257043A true JPS60257043A (en) 1985-12-18
JPH0313699B2 JPH0313699B2 (en) 1991-02-25

Family

ID=14612642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11345484A Granted JPS60257043A (en) 1984-05-31 1984-05-31 Cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS60257043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109237A (en) * 1988-10-18 1990-04-20 Nippon Electric Glass Co Ltd Cathode-ray tube for projection type television
DE4115437A1 (en) * 1990-05-09 1991-11-14 Mitsubishi Electric Corp PROJECTION CATHODE RAY TUBES
US5107173A (en) * 1990-03-29 1992-04-21 Mitsubishi Denki Kabushiki Kaisha Projection cathode ray tube
US5645461A (en) * 1990-08-20 1997-07-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing projection cathode ray tube with uniform optical multiple interference film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109237A (en) * 1988-10-18 1990-04-20 Nippon Electric Glass Co Ltd Cathode-ray tube for projection type television
US5107173A (en) * 1990-03-29 1992-04-21 Mitsubishi Denki Kabushiki Kaisha Projection cathode ray tube
US5126626A (en) * 1990-03-29 1992-06-30 Mitsubishi Denki Kabushiki Kaisha Projection cathode ray tube
DE4115437A1 (en) * 1990-05-09 1991-11-14 Mitsubishi Electric Corp PROJECTION CATHODE RAY TUBES
DE4115437C2 (en) * 1990-05-09 1998-07-02 Mitsubishi Electric Corp Projection cathode ray tube
US5645461A (en) * 1990-08-20 1997-07-08 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing projection cathode ray tube with uniform optical multiple interference film

Also Published As

Publication number Publication date
JPH0313699B2 (en) 1991-02-25

Similar Documents

Publication Publication Date Title
KR950000822B1 (en) Projection television display tube and projection television device comprising at least one such tube
US4642695A (en) Projection cathode-ray tube having enhanced image brightness
KR950014857B1 (en) Projection tv system
JPH0588497B2 (en)
US5126626A (en) Projection cathode ray tube
JPH0546654B2 (en)
JPH0278139A (en) Projection type television desplay tube having band passage interference filter and device
JPS60257043A (en) Cathode-ray tube
US5177400A (en) Projection cathode-ray tube
JPH01254087A (en) Projection type television receiver
JPH03133034A (en) Projection-type cathode-ray tube
JP2004170757A (en) Polarizing plate for liquid crystal projector apparatuses and its manufacturing method
US6424086B1 (en) Color cathode-ray tube having nonglare means on internal surface of faceplate
JP2714995B2 (en) Projection type cathode ray tube
JPH0447421B2 (en)
CA2049491C (en) Projection cathode-ray tube with uniform optical multiple interference film
JPH11283529A (en) Cathode-ray tube and its manufacture
JPH0721949A (en) Projection cathode-ray tube and manufacture thereof
JP2001126646A (en) Cathode-ray tube
JPS59201349A (en) Fluorescent screen and its production method
JPS60100346A (en) Projection type cathode ray tube
JPH03201339A (en) Manufacture of projection type cathode-ray tube
JPH0155540B2 (en)
JPS60124185A (en) Projection type television receiver
JPH0161225B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term