JPS60256513A - Separate cooling device for engine - Google Patents

Separate cooling device for engine

Info

Publication number
JPS60256513A
JPS60256513A JP11272884A JP11272884A JPS60256513A JP S60256513 A JPS60256513 A JP S60256513A JP 11272884 A JP11272884 A JP 11272884A JP 11272884 A JP11272884 A JP 11272884A JP S60256513 A JPS60256513 A JP S60256513A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
engine
cooling medium
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11272884A
Other languages
Japanese (ja)
Inventor
Mitsuo Matsuki
松木 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK, Fuji Heavy Industries Ltd filed Critical Fuji Jukogyo KK
Priority to JP11272884A priority Critical patent/JPS60256513A/en
Publication of JPS60256513A publication Critical patent/JPS60256513A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • F01P9/06Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00 by use of refrigerating apparatus, e.g. of compressor or absorber type

Abstract

PURPOSE:To enlarge the limit of knocking to aim at enhancing engine torque, by cooling cooling water in an auxiliary cooling line system with the use of an auxiliary cooling medium passage when the opening degree of a throttle exceeds a predetermined value upon operation of an air-conditioning system to locally cool the end gas zone of a combustion chamber. CONSTITUTION:When the temperature of a passenger's compartment reaches a predetermined value so that a temperature switch 25 engages an electromagnetic clutch 27, a compressor 13 is driven by an engine body 1 through a belt 12 to establish an air-conditioning operation. In this time stage when the opening degree of a throttle exceeds a predetermined value and therefore a throttle switch 24 is turned on, a relay 29 is turned on to open a solenoid valve 19. Accordingly, a part of cooling medium in a main cooling medium system 18 is branched into an auxiliary cooling medium passage 23, then is introduced into an evaporator 22 to be evaporated after pressure reduction by an expansion valve 20, and is thereafter merged into the main cooling medium at the inlet port of the compressor 13. At this time, since cooling water in a cooling water tank 7 flows into a separate cooling water passage 10, the end gas zone of a combustion chamber may be concentratedly cooled.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野1 本発明は、エアコン、ノックセンサを装備した車両にお
けるエンジンの分離冷却装置に関し、詳しくはエアコン
使用時のノッ々限界を拡大してエンジントルクの向上を
図るものに関する。 【発明の背J!】 近年、車両用エンジンでは出力の向上を図るためターボ
チャージャを搭載したものが一出現しており、このター
ボチャージャ付エンジンにおいてはノッキングによるエ
ンジン破壊を回避プるために、ノックセンサで点火時期
をリタード制御する制御@置が設けられている。また、
ノッキングの発生を抑制する手段として、例えば特開昭
57−56620 ′号公報に示づ°ように、燃焼寮内
のノッキング発生源であるエンドガスゾーンを冷却する
ことが提案されている。 ところで、エアコン使用時はコンプレッサ負荷分だけ低
速から高速に及んで有効量ンジントルクが低下し、この
ためスロットル開度の増大により高負荷側で運転される
頻度が高くなり、この結果、上記ノッキングが生じ易く
なって、点火時期のりタート醗を増すと更にエンジント
ルクの低下を招く。そこで、かかるエアコン使用時には
上記先行技術等のにうにノッキングの発生を抑える手段
を用いてノッキング限界を拡大し、エンジントルクの向
上を図ることが望まれる。 このことから、例えば実開昭54−171039号公報
に示ずように、エンジンの冷却系を分離して燃焼室のノ
ッキング発生源を局部冷却することが考えられるが、こ
の場合にエアコン使用の右前に関係なく燃焼室の局部冷
却を行うと、エアコン使用時と不使用時のトルク特性に
おいて比較的大きいトルク差が生じ、エアコン使用時の
駆動力不足をユーザーに実感させることになって、フィ
ーリング上好ましくない。また、ノッキングはスロット
ル開度の大きい領域で生じ易いので、低スロツトル間度
では上述のような燃焼室局部冷却の必要がない。従って
、燃焼室のノッキング発生源を局部冷却する場合には、
上述のことを考慮して行うことが望まれる。
INDUSTRIAL APPLICATION FIELD 1 The present invention relates to an engine separation cooling device for a vehicle equipped with an air conditioner and a knock sensor, and more particularly to a system for improving engine torque by expanding the knock limit when using an air conditioner. [The back of invention J! ] In recent years, some vehicle engines have been equipped with turbochargers to improve output, and in order to avoid engine damage due to knocking, these turbocharged engines use knock sensors to adjust the ignition timing. A control unit for retard control is provided. Also,
As a means for suppressing the occurrence of knocking, it has been proposed, for example, as disclosed in Japanese Unexamined Patent Publication No. 57-56620', to cool the end gas zone, which is the source of knocking, in the combustion chamber. By the way, when using an air conditioner, the effective amount of engine torque decreases by the compressor load from low speed to high speed, and as a result, the throttle opening increases and the engine is operated more frequently at high load, resulting in the above-mentioned knocking. If the ignition timing is increased and the ignition timing is increased, the engine torque will further decrease. Therefore, when using such an air conditioner, it is desirable to increase the knocking limit by using means for suppressing the occurrence of knocking, such as the above-mentioned prior art, and to improve engine torque. From this, for example, as shown in Japanese Utility Model Application No. 54-171039, it is conceivable to separate the engine cooling system and locally cool the knocking source in the combustion chamber. If local cooling of the combustion chamber is performed regardless of the air conditioner, a relatively large torque difference will occur between the torque characteristics when the air conditioner is used and when the air conditioner is not used, making the user feel that the driving force is insufficient when the air conditioner is used, and the feeling Not good. Furthermore, since knocking tends to occur in a region where the throttle opening is large, there is no need for local cooling of the combustion chamber as described above at low throttle openings. Therefore, when locally cooling the knocking source in the combustion chamber,
It is desirable to take the above into consideration.

【発明の目的】[Purpose of the invention]

本発明は、このようなエアコン1ノツクセンサを装備し
た車両用エンジンの制御に鑑み、エアコン使用時におい
てノッキングを生じ易い所定のスロットル開度以上の場
合に、燃焼室を局部冷却し1) でノック限界を拡大し
、エンジントルクの向上を図り、且つコンプレッサ負荷
のトルク低下を補償するようにしたエンジンの分離冷却
装置を提供づることを目的とづる。
In view of the control of a vehicle engine equipped with such an air conditioner 1-knock sensor, the present invention locally cools the combustion chamber when the throttle opening is above a predetermined throttle opening that is likely to cause knocking when the air conditioner is in use. The object of the present invention is to provide an engine separation cooling device which is capable of increasing engine torque, increasing engine torque, and compensating for a decrease in compressor load torque.

【発明の構成] この目的のため本発明の構成は、エアコン使用時に限定しており、このときエアコン用冷媒が循環して車室内を冷却作用している点に着目し、■ンジン冷却水光路をラジェータを含む主冷却水系路と燃焼室エンドガスゾーンの近くを通る副冷却水光路に分離し、且つエアコン冷媒系路も車室側の主冷媒系路と、上記副冷却水光路を冷却するための副冷媒系路に分離し、エアコン使用時の所定のスロットル開度以上の場合に、副冷媒系路により副冷却水光路を冷却作用してその冷却水で燃焼室エンドガスゾーンの局部冷却を行うことを要旨とするものである。 【実 施 例】[Structure of the invention] For this purpose, the configuration of the present invention is limited to when the air conditioner is used, and focusing on the fact that at this time the air conditioner refrigerant circulates and acts to cool the interior of the vehicle. The air conditioner refrigerant system path is separated into a cooling water system path and a sub-cooling water optical path passing near the end gas zone of the combustion chamber, and the air conditioner refrigerant system path is also divided into a main refrigerant system path on the passenger compartment side and an auxiliary refrigerant system for cooling the sub-cooling water optical path. When the throttle opening is above a predetermined throttle opening when using an air conditioner, the sub-cooling water optical path is cooled by the sub-cooling water path, and the cooling water locally cools the end gas zone of the combustion chamber. That is. 【Example】

以下、本発明の一実施例を図面に基づいて具体的に説明
する。 j゛ 第1図において、エンジン冷却水とエアコン冷 111
媒の全体の糸路について説明すると、図中符@1はエン
ジン本体であり、このエンジン本体1内部の冷却水通路
2がサー[スタンド3.ラジェータ4およびウォータポ
ンプ5に連通して主冷却水系路6を構成する。ウォータ
ポンプ5の吐出側は更に冷媒による専用の冷却水#lF
7.エンジン本体1内で第2図のように燃焼室8のエン
ドガスゾーン9の近傍を通る分離冷却水通路10.およ
び上記主冷却水系路6のラジェータ入口側に連通して副
冷却水光路11を構成づる。 また、エンジン本体1によりベルト伝達手段12を介し
て駆動されるコンプレッサ13が、ラジェータ4の前方
のコンデンサ14.レシーバ15.膨張弁16、車室内
のエバポレータ11に連通して主冷媒系路18を構成す
る。ぞして、この主冷媒系路18の膨゛ 張弁1Gの入
口側から分岐して、ソレノイド弁19゜膨張弁20.冷
却水槽7の内部に中間空気槽21を介して設置されるエ
バポレータ22.85よび主冷媒系路18のコンプレッ
サ13の入口側に連通して副冷媒系路23を構成する。 更に、所定のスロワ1間度聞度以上でオン覆るスロット
ルスイッチ24.車室内が所定の温度以上になるとオン
づる温度スイッチ25を有し、温度スイッチ25で′動
作づるリレー26がコンプレッサ13の電磁クラッチ2
7とバッテリー28側に接続し、且つリレー26からス
ロットルスイッチ24で動作づるリレー29を介してソ
レノイド弁19に接続する。 次いで、このように構成された分離冷iJ]装置の動作
について説明4ると、エンジン運転時に主冷却水はつA
−タポンブ5によりエンジン本体1の冷却水通路2とラ
ジェータ4の間を循環して、エンジン本体1の主要部を
冷M−する。また、ウォータポンプ5から吐出する主冷
却水の一部の副冷却水は冷却水槽7.エンジン本体1の
分−1冷却水通路10を流れ、ラジェータ4の入II(
′−主冷却水に合流する。 そこで、車室内が所定の調度1ス下で温度スイッチ25
がオー)し−でいる場合は、リレー2Gもオフし゛で電
磁クラッチ27が切断して″1ンブレッナ13は停丑す
る。そのため、エアコン不使用状態になって冷媒は主冷
媒系路18.副冷媒に路23のどちらの糸路にも流れな
くなり、エバポレータ22では何等作用ゼず、これによ
り上記主冷却水系路6.副冷却水系路11の冷却水温度
が等しくなる。 一方、単室内が所定の温度に達して、温度スイッチ25
により電磁クラッチ21が接続してコンプレッサ13が
エンジン本体1によりベルト伝達手段12を介して駆動
すると、エアコン使用状態になる。 そして、コンプレッサ13で圧縮された主冷媒はコンデ
ンサ14にて冷却層により冷賀されて液化し、レシーバ
15を通過後膨張弁16で急減圧され、車室内のエバポ
レータ17で熱した空気により気化して再びコンプレッ
サ13に至るのであり、このエバポレータ17での冷媒
気化の際に車室内の冷房を行う。 ここで、上記エアコン使用時にスロットル開度が/JX
、さ、くてスロットルスイッチ24がオフづ−る場合は
、リレー29もオ不してソレノイド弁19が非通電によ
り閉じるため、副冷媒系路23には冷媒が流れなくなっ
てエバポレータ22は何等作用しない。従繁 って、こ
の場合は上述のように副冷却水の温度が主冷却水と等し
く、特別な冷却は行わない。 これに対し、所定のスロットル開度以上になっ。 てスロットルスイッチ24がオンすると、リレー29も
オンしてソレノイド弁19が開く。そこで、下記主冷媒
の一部の副冷媒が副冷媒系路23に分岐し、膨張弁20
で減圧した後にエバポレータ22に入って気化し、コン
プレッサ13の・入口で主冷媒と合iづるように流れる
。このため、エバボレー、夕22での冷媒気化に伴って
冷却水槽7の冷却水がエンジン本体1の分離冷却水通路
10を流“れることで、燃焼室8のエンドガスゾーン9
がエンジン本体1の他の部分に比べて特に冷却されるこ
とになり、こうしてノッキングの発生が抑制される。 なお、上述のようにエアコン不使用時はノッキング抑制
の対策が行われないので、点火時期はノックセンサに基
づいてリタード制御され、このためトルク特性は第3図
の曲線aのようにピーク値を抑えたものになる。しかる
にエアコン使用時はノッキング抑制の対策がなされてノ
ック限界が拡 ′″″rao’r゛@”z″″jl!]
(]J9−“1′″)/l> t、1 (’a°゛、1
1これにより実用回転域では第3図の曲lbのよう 遥
にトルクアップして、上述の場合に比べてトルク差が非
常に小さくなる。 【発明の効果] 以上の実施例から明らかなように、本発明によれば、エ
アコン、ノックセンサを装備した車両のエンジンにおい
て、エア」ン使用時のフッ4:ングを生じ易い高負荷運
転の場合に、燃焼室エンドガスゾーンの冷却によりノッ
キングの発生が抑えられてノック限界を拡大するので、
エンジンし・ルクは向上し、且つコンプレッサ負荷に伴
うトルク低下は補償されて、エンジン性能、燃費が良く
なる。 :[アコン用冷媒の一部を利用して冷却するので、動作
のタイミングをとり易く、冷却効果が大きい。 この場合に冷却水を中間空気槽を介して間接冷却するの
で、冷媒の温度が」一つ過ぎることはない。 エアコン使用と不使用時の実用回転域でのトルク差が少
ないので、ユーザーは違和感をいだくことなくフィーリ
ングも良くなる。
Hereinafter, one embodiment of the present invention will be specifically described based on the drawings. j゛In Figure 1, engine cooling water and air conditioner cooling 111
To explain the entire thread path of the medium, the mark @1 in the figure is the engine body, and the cooling water passage 2 inside the engine body 1 is connected to the servo [stand 3. A main cooling water system passage 6 is configured in communication with the radiator 4 and water pump 5. The discharge side of the water pump 5 is further supplied with dedicated cooling water #lF using refrigerant.
7. Separated cooling water passage 10. which passes in the vicinity of the end gas zone 9 of the combustion chamber 8 within the engine body 1 as shown in FIG. A sub-cooling water optical path 11 is formed by communicating with the radiator inlet side of the main cooling water system path 6. Further, a compressor 13 driven by the engine body 1 via a belt transmission means 12 is connected to a condenser 14 in front of the radiator 4 . Receiver 15. The expansion valve 16 communicates with the evaporator 11 in the vehicle interior to form a main refrigerant system path 18. Then, the main refrigerant line 18 branches from the inlet side of the expansion valve 1G to a solenoid valve 19 and an expansion valve 20. The evaporator 22.85 installed inside the cooling water tank 7 via the intermediate air tank 21 communicates with the inlet side of the compressor 13 of the main refrigerant system 18 to form a sub-refrigerant system 23. Furthermore, the throttle switch 24 is turned on when the throttle level is equal to or higher than a predetermined throttle level. It has a temperature switch 25 that turns on when the temperature inside the vehicle exceeds a predetermined value.A relay 26 that is activated by the temperature switch 25 connects the electromagnetic clutch 2 of the compressor
7 and the battery 28 side, and is connected to the solenoid valve 19 via a relay 29 operated by the relay 26 and the throttle switch 24. Next, we will explain the operation of the separated cooling iJ device configured in this way.4 When the engine is running, the main cooling water is
- Cooling water is circulated between the cooling water passage 2 of the engine body 1 and the radiator 4 by the tap pump 5 to cool the main parts of the engine body 1. Also, some of the main cooling water discharged from the water pump 5 is supplied to a cooling water tank 7. It flows through the cooling water passage 10 of the engine main body 1 and enters the radiator 4 (
′- Joins the main cooling water. Therefore, when the temperature inside the vehicle is 1 step below the specified level, the temperature switch 25 is turned off.
1), the relay 2G is also turned off, the electromagnetic clutch 27 is disconnected, and the engine 13 is stopped. Therefore, the air conditioner is not in use and the refrigerant is transferred to the main refrigerant line 18. The refrigerant no longer flows into either of the paths 23 and has no effect on the evaporator 22, so that the cooling water temperatures in the main cooling water system path 6 and the sub-cooling water system path 11 become equal. temperature switch 25 is reached.
When the electromagnetic clutch 21 is connected and the compressor 13 is driven by the engine body 1 via the belt transmission means 12, the air conditioner is in use. The main refrigerant compressed by the compressor 13 is cooled and liquefied by the cooling layer in the condenser 14, and after passing through the receiver 15, the pressure is rapidly reduced by the expansion valve 16, and then vaporized by the heated air in the evaporator 17 inside the vehicle. The refrigerant then reaches the compressor 13 again, and when the refrigerant is vaporized in the evaporator 17, the interior of the vehicle is cooled. Here, when using the above air conditioner, the throttle opening is /JX
When the throttle switch 24 is turned off, the relay 29 is also turned off and the solenoid valve 19 is closed due to de-energization, so that no refrigerant flows into the sub-refrigerant line 23 and the evaporator 22 has no effect. do not. Conventionally, in this case, as mentioned above, the temperature of the sub-cooling water is equal to that of the main cooling water, and no special cooling is performed. On the other hand, when the throttle opening exceeds the predetermined value. When the throttle switch 24 is turned on, the relay 29 is also turned on and the solenoid valve 19 is opened. Therefore, a part of the sub-refrigerant of the main refrigerant described below is branched to the sub-refrigerant line 23, and the expansion valve 20
After being depressurized, it enters the evaporator 22 where it is vaporized and flows together with the main refrigerant at the inlet of the compressor 13. Therefore, the cooling water in the cooling water tank 7 flows through the separate cooling water passage 10 of the engine body 1 as the refrigerant vaporizes in the Eva volley and the evening 22, thereby causing the end gas zone 9 of the combustion chamber 8 to flow.
The engine body 1 is particularly cooled compared to other parts of the engine body 1, and the occurrence of knocking is thus suppressed. As mentioned above, when the air conditioner is not in use, no measures are taken to suppress knocking, so the ignition timing is retard-controlled based on the knock sensor, and as a result, the torque characteristics do not reach the peak value as shown in curve a in Figure 3. It becomes something restrained. However, when using an air conditioner, measures have been taken to suppress knocking, and the knock limit has been expanded.
(]J9-"1'")/l> t, 1 ('a°゛, 1
1. As a result, in the practical rotation range, the torque is greatly increased as shown in curve lb in Figure 3, and the torque difference is much smaller than in the case described above. Effects of the Invention As is clear from the above embodiments, according to the present invention, in the engine of a vehicle equipped with an air conditioner and a knock sensor, high load operation that is likely to cause huffing when air is used is possible. In this case, cooling of the end gas zone of the combustion chamber suppresses the occurrence of knocking and expands the knock limit.
Engine torque is improved, and the decrease in torque due to compressor load is compensated for, resulting in improved engine performance and fuel efficiency. : [Since a part of the air conditioner refrigerant is used for cooling, it is easy to time the operation and the cooling effect is large. In this case, since the cooling water is indirectly cooled through the intermediate air tank, the temperature of the refrigerant never exceeds one point. Since there is little difference in torque in the practical rotation range when the air conditioner is used and when it is not used, the user does not feel any discomfort and has a better feeling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の一実施例を示す全体の回路
図、第2図は一部の回路の場所を示す断面図、第3図は
トルク特性図である。 1・・・エンジン本体、4・・・ラジェータ、6・・・
主冷却水系路、7・・・冷却水槽、9・・・エンドガス
ゾーン、10・・・分離冷却水通路、11・・・副冷却
水光路、18・・・主冷媒系路、19・・・ソレノイド
弁、23・・・副冷媒系路、24・・・スロットルスイ
ッチ、25・・・湿度スイッチ、2B。 2θ・・・リレー、27・・・電磁クラッチ。 特許出願人 富士重工業株式会社 代理人 弁理士 小 槙 信 浮 量 弁理士 村 井 進
FIG. 1 is an overall circuit diagram showing one embodiment of the device according to the present invention, FIG. 2 is a sectional view showing the locations of some of the circuits, and FIG. 3 is a torque characteristic diagram. 1...Engine body, 4...Radiator, 6...
Main cooling water system path, 7... Cooling water tank, 9... End gas zone, 10... Separated cooling water passage, 11... Sub-cooling water optical path, 18... Main refrigerant system path, 19... - Solenoid valve, 23... Sub-refrigerant system path, 24... Throttle switch, 25... Humidity switch, 2B. 2θ...Relay, 27...Electromagnetic clutch. Patent applicant: Fuji Heavy Industries Co., Ltd. Agent: Patent attorney: Makoto Komaki, Ukiyo Patent attorney: Susumu Murai

Claims (1)

【特許請求の範囲】[Claims] ラジェータを含む主冷却水、光路から分岐して燃焼室エ
ンドガスゾーンの近くを通る副冷却水光路と、車室側の
エアコン用主冷媒系路から分岐する副冷媒系路を有し、
エアコン使用時の所定のスロットル開度以上の場合に、
上記副冷媒系路により上記副冷却水光路の冷却水を冷却
して、燃焼室エンドガスゾーンの局部冷却を行うことを
特徴とするエンジンの分離冷却装置。 −
It has a main cooling water including a radiator, a sub-cooling water optical path branching from the optical path and passing near the combustion chamber end gas zone, and a sub-cooling water path branching from the main refrigerant path for the air conditioner on the passenger compartment side,
When the throttle opening is greater than the specified throttle opening when using the air conditioner,
A separate cooling device for an engine, characterized in that the cooling water in the sub-cooling water optical path is cooled by the sub-coolant system path to locally cool an end gas zone of a combustion chamber. −
JP11272884A 1984-05-31 1984-05-31 Separate cooling device for engine Pending JPS60256513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11272884A JPS60256513A (en) 1984-05-31 1984-05-31 Separate cooling device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11272884A JPS60256513A (en) 1984-05-31 1984-05-31 Separate cooling device for engine

Publications (1)

Publication Number Publication Date
JPS60256513A true JPS60256513A (en) 1985-12-18

Family

ID=14594050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11272884A Pending JPS60256513A (en) 1984-05-31 1984-05-31 Separate cooling device for engine

Country Status (1)

Country Link
JP (1) JPS60256513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011211A1 (en) * 1999-08-05 2001-02-15 Mitsuhiro Sano Cooling controller for internal-combustion engine
US6612271B2 (en) 2001-03-13 2003-09-02 Nippon Thermostat Co., Ltd. Cooling controller for internal-combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011211A1 (en) * 1999-08-05 2001-02-15 Mitsuhiro Sano Cooling controller for internal-combustion engine
US6481387B1 (en) 1999-08-05 2002-11-19 Nippon Thermostat Co., Ltd. Cooling controller for internal-combustion engine
US6612271B2 (en) 2001-03-13 2003-09-02 Nippon Thermostat Co., Ltd. Cooling controller for internal-combustion engine

Similar Documents

Publication Publication Date Title
US11364767B2 (en) Vehicle-mounted temperature controller
US11413931B2 (en) Vehicle-mounted temperature controller
US5899086A (en) Heat pump type air conditioning system for automotive vehicle
EP2098700B1 (en) Intake-air cooling device for internal combusion engine and automobile using the same
US11180000B2 (en) Vehicle-mounted temperature controller
US20110146266A1 (en) Device for cooling a coolant, circuit for charging an internal combustion engine, and method for cooling a substantially gaseous charging fluid for charging an internal combustion engine
JPH1134640A (en) Vehicle air conditioner
WO2011118483A1 (en) Operation method of heat pump-type vehicle air conditioning system
JP2000274838A (en) Freezing cycle having bypass pipe passage
EP2146854A2 (en) Air-conditioning system, in particular for a motor vehicle
US11241930B2 (en) Vehicle-mounted temperature controller
KR20200049648A (en) Device for an air conditioning system of a motor vehicle and method for operating the device
US7607313B2 (en) Vehicle HVAC system
JPS60256513A (en) Separate cooling device for engine
JP4263646B2 (en) Air conditioner for vehicles
JPS5833129B2 (en) Air conditioner with refrigerator
JPS61101660A (en) Fuel cooling device for motorcar
KR101427920B1 (en) Air conditioner system for vehicle
JPH11182478A (en) Screw type refrigerating machine
CN112212531A (en) Compressor cooling system and cooling method
JP3735338B2 (en) Refrigeration apparatus for vehicle and control method thereof
JPH11101514A (en) Refrigeration cycle
JPH05193347A (en) Air conditioner for vehicle
JP2021162002A (en) Intake air cooling system
JPH07301461A (en) Cooling cycle