JPS60255962A - Heat treating apparatus - Google Patents

Heat treating apparatus

Info

Publication number
JPS60255962A
JPS60255962A JP11259684A JP11259684A JPS60255962A JP S60255962 A JPS60255962 A JP S60255962A JP 11259684 A JP11259684 A JP 11259684A JP 11259684 A JP11259684 A JP 11259684A JP S60255962 A JPS60255962 A JP S60255962A
Authority
JP
Japan
Prior art keywords
zinc vapor
zinc
furnace
pressure
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11259684A
Other languages
Japanese (ja)
Inventor
Koichi Ozawa
小澤 宏一
Kenji Kawate
賢治 川手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP11259684A priority Critical patent/JPS60255962A/en
Publication of JPS60255962A publication Critical patent/JPS60255962A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To suppress the dezincing reaction from an alloy and to improve the productivity by providing a zinc vapor analyzer, a zinc vapor controller, etc., and maintaining at all times the zinc vapor pressure in a furnace for heat treating the zinc alloy to the saturated state. CONSTITUTION:A heat treating apparatus consists of the zinc vapor analyzer 4 for measurig the zinc vapor pressure of the atmosphere in the heat treating furnace 10, the zinc vapor controller 7, a zinc vapor supplying source 8, and a protecting gas supplying source 1. Said controller 7 controls the zinc vapor quantity supplied into the furnace 10 by he output of said analyzer 4. Said source 1 supplies the gas of a fixed pressure for preventing oxidation of the zinc in the furnace 10 through a pressure control valve 2.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、黄銅中の亜鉛が熱処理中に蒸発俳るいわゆる
、脱亜鉛反応を防止づる熱処理方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a heat treatment method for preventing the so-called dezincification reaction in which zinc in brass evaporates during heat treatment.

[従来の技術] 一般に、WI台金材料は、所定の機械的性質を与えたり
、結晶粒度の調整を行って硬さ及び弾性等の機械的性質
、材料の成形性、疲労特性、時期割れ傾向等が、その熱
処理の条件に左右されるところが大きいので、種々の熱
処理が1)ねれ(いる。
[Prior Art] In general, WI base metal materials are provided with predetermined mechanical properties or by adjusting the grain size to improve mechanical properties such as hardness and elasticity, material formability, fatigue properties, and tendency to crack during time. etc. are greatly influenced by the conditions of the heat treatment, so various heat treatments are used.

ところが、特に黄銅材料のように、亜鉛量の多い合金を
約400〜450℃以上で加熱しC熱処理づると、その
材料の表面が銅色に変色、即ち、Redsta 1nす
る。前記Red stainは、材料表面からの亜鉛の
蒸発速度が、材料内部の拡散速度より大rあることに基
くものであり、川砂的には、第2図の特性図が示す様に
なる。
However, when an alloy containing a large amount of zinc, such as a brass material, is heated above about 400 to 450 DEG C. and subjected to C heat treatment, the surface of the material changes to a copper color, that is, becomes Redsta 1n. The red stain is based on the fact that the rate of evaporation of zinc from the surface of the material is greater than the rate of diffusion inside the material, and as for river sand, the characteristic diagram in FIG. 2 shows this.

第2図は70/ 30黄銅を800゜Cぐ脱亜鉛処押し
た場合の試料断面における亜鉛製電分布図く『熱処理J
14巻6号、伊藤勲著、「黄銅の脱亜鉛現象」から)を
示づものである。図において、(a)1よ処理時間が4
時間経過した場合の分布状態、(b)1、L 8v1間
、(C)i.tl:2R間、( d ) i,l 1 
6 1ks 間、(e)は20時間経過した場合の分布
状態を示づものである。脱亜鉛は経時的変化に伴い、第
2図の矢印の様に、表面亜鉛濃度が減少していくことが
判る。また、黄銅の脱亜鉛は表面力目ら20μ程度の深
さまでの領域では拡散速度が速く、亜鉛の移動が蒸発速
度に近い速度で行われていることが判る。前記領域はu
pの黄銅に伯の元素を添加すると、元素の種□類によっ
てその程麿は様々であるが、一般に脱亜鉛促進効果があ
るとされている。
Figure 2 shows the zinc electrical distribution diagram in the sample cross section when 70/30 brass is dezincified at 800°C.
Vol. 14, No. 6, Isao Ito, "Dezincification Phenomenon of Brass"). In the figure, (a) the processing time is 1 and the processing time is 4.
Distribution state over time, (b) between 1 and L 8v1, (C) i. tl: between 2R, (d) i, l 1
6 1ks, and (e) shows the distribution state after 20 hours. It can be seen that as dezincing progresses over time, the surface zinc concentration decreases as indicated by the arrow in Figure 2. In addition, it can be seen that the diffusion rate of brass dezincification is high in a region from the surface force to a depth of about 20 μm, and the movement of zinc occurs at a rate close to the evaporation rate. The area is u
It is generally said that when an element of P is added to brass of P, it has the effect of promoting dezincification, although the degree of addition varies depending on the type of element.

しかし、前記添加元素をM,とした場合にtよ、500
℃以下のときに限り、脱亜鉛効果がなくなる点を指摘し
た論文(同誌)もあるが、材料にM を添加ずる手間が
必要とされ、更に、M,添加による材質変化及び機械的
強度に実用上の問題があった。
However, when the additive element is M, t is 500
There is also a paper (in the same journal) that points out that the dezincing effect disappears only when the temperature is below ℃, but it requires the effort of adding M to the material, and furthermore, it is difficult to put it into practical use due to the change in material properties and mechanical strength due to the addition of M. I had the above problem.

そこで、現在では、微酸化性ガス中で熱処理して黄銅表
面に緻密な酸化被膜を作り、この酸化被膜によって亜鉛
の蒸発を防ぎ、冷却後酸洗いによって酸化被膜を除去し
ているのが一般的である。
Therefore, it is now common practice to heat-treat the brass surface in a slightly oxidizing gas to create a dense oxide film on the brass surface, prevent the evaporation of zinc, and then remove the oxide film by pickling after cooling. It is.

[発明が解決しようどする問題点1 しかし、この種の酸化被膜を形成する方法では、黄銅表
面に酸化被膜を形成する工程及び酸化被膜を除去する工
程が付加され、正常の工程より6酸化被膜形成工程及び
酸化被膜除去工′程の2工程付加されることになり、生
産性が好ましくなかった。
[Problem to be Solved by the Invention 1] However, in this type of method for forming an oxide film, a step of forming an oxide film on the brass surface and a step of removing the oxide film are added. Two steps, a forming step and an oxide film removal step, were added, which resulted in unfavorable productivity.

[発明の課題] そこで、本発明は、材料の黄銅の組織を変えることなく
、脱亜鉛反応を抑制して熱処理でさる方法の提供をその
目的とするものである。
[Problem of the Invention] Therefore, an object of the present invention is to provide a method for suppressing the dezincification reaction by heat treatment without changing the structure of the brass material.

[問題点を解決するための手段1 本発明の脱亜鉛反応を防止づる熱処理方法及び熱処理装
置は、炉内雰囲気の亜鉛の蒸気圧を81測する亜鉛蒸気
分析計と、前記亜鉛蒸気分析計の出力を得て、亜鉛蒸気
供給量を制DI+−!lる亜鉛蒸気コントローラと、前
記炉内へ亜鉛蒸気を供給する亜鉛蒸気供給源と、前記炉
内に亜鉛の酸化を防止づる一定圧力のガス、例えば、H
2或いはCOを供給する保護ガス供給源、または、保護
ガス供給源、炉内雰囲気の圧力比pH2/pl−120
、或いはpCO/pCO2のいずれかを検知する分析8
1、前記plー12/plー120,或いはpCO/[
)CO2分析計の出力を得て、保護ガスの前記炉内供給
色を決定する保護ガスコントローラ、または、ガス濃度
コントローラからなるものである。
[Means for Solving the Problems 1] The heat treatment method and heat treatment apparatus for preventing the dezincification reaction of the present invention include a zinc vapor analyzer that measures the vapor pressure of zinc in the furnace atmosphere; Obtain output and control zinc vapor supply amount DI+-! a zinc vapor controller, a zinc vapor source for supplying zinc vapor into the furnace, and a gas at a constant pressure, such as H
2 or a protective gas supply source that supplies CO, or a pressure ratio of the protective gas supply source and the atmosphere in the furnace pH2/pl-120
, or analysis to detect either pCO/pCO2 8
1, the above pl-12/pl-120, or pCO/[
) It consists of a protective gas controller or a gas concentration controller that obtains the output of the CO2 analyzer and determines the color of the protective gas supplied into the furnace.

[作用] 炉内雰囲気に黄銅の無酸化熱処理をずべく保護ガス、例
えば、CO+CO2+N2またはト12」−HO+N2
を供給し、加熱前の材料表面の光沢を維持し、かつ、脱
亜鉛及び浸亜鉛が生じ易い任意の一定圧力の雰囲気とす
る。
[Function] A protective gas such as CO+CO2+N2 or HO+N2 is added to the furnace atmosphere to prevent non-oxidation heat treatment of the brass.
is supplied to maintain the gloss of the surface of the material before heating, and to create an atmosphere at an arbitrary constant pressure that facilitates dezincification and galvanization.

黄銅の亜鉛の蒸発は、その周囲に亜鉛蒸気圧が飽和状態
にあれば、亜鉛の蒸発は生じ難くなることから、前記任
意の圧力条件下の炉内の亜鉛の蒸気を亜鉛蒸気分析計で
炉内の亜鉛蒸気の含有量を計測し、蒸気圧設定部で予め
設定された亜鉛の飽和蒸気圧以上の値と、前記亜鉛蒸気
分析計の出力との差を検出し、その差に応じて亜鉛蒸気
供給源のバルブを制御して炉内に不足蒸気母を供給する
The evaporation of zinc from brass is difficult if the zinc vapor pressure in the surrounding area is saturated. The zinc vapor content is measured, and the difference between the value above the saturated zinc vapor pressure set in advance in the vapor pressure setting unit and the output of the zinc vapor analyzer is detected, and the zinc vapor content is measured according to the difference. Control the valve of the steam supply source to supply insufficient steam into the furnace.

したがって、炉内は常に亜、鉛の飽和蒸気圧状態にあり
、脱亜鉛を防止した状態で熱処理することができる。
Therefore, the inside of the furnace is always in a saturated vapor pressure state of zinc and lead, and heat treatment can be performed while preventing dezincification.

なお、前記圧力を一定にする手段は、調圧弁によって炉
内の圧力が減じたとぎ、減じた圧力に相当する圧力を供
給する方法、或いは、炉に設置した圧力計によって保護
ガスの供給量を制御づる方法等のいずれを用いてもよい
。勿論、圧力を一定にする他の方法を用いてもよい。
The means for keeping the pressure constant is a method of supplying a pressure equivalent to the reduced pressure when the pressure in the furnace is reduced by a pressure regulating valve, or a method of controlling the supply amount of protective gas with a pressure gauge installed in the furnace. Any method such as control may be used. Of course, other methods of keeping the pressure constant may also be used.

[発明の実施例] 次に、本発明の実施例について図を用いて説明する。[Embodiments of the invention] Next, embodiments of the present invention will be described using figures.

第1図は本発明の第一実施例を示づ説明図である。図に
おいて、炉10及び類10内に配設された台12は周知
の構造を有しており、炉10は熱電対等の湿度検出器1
4によって検出された温度に基き、温度設定部16で設
定された温度になるようヒータ11の電流をIn1ll
する電流制御部15を制御する温度コントローラ17に
よって、特定の炉内温度に設定されている。この秤の温
度コントローラ17についても周知の炉の温度制御vi
置が使用できる。叩ら、本発明を実施するための炉10
の構造及びその温度コントローラ17については、本実
施例に記載していない周知の熱処理炉の技術が使用でき
ることを意味する。
FIG. 1 is an explanatory diagram showing a first embodiment of the present invention. In the figure, a furnace 10 and a stand 12 disposed in a class 10 have a well-known structure, and the furnace 10 has a humidity detector 1 such as a thermocouple.
Based on the temperature detected by 4, the current of the heater 11 is adjusted to the temperature set by the temperature setting unit 16.
A specific furnace temperature is set by a temperature controller 17 that controls a current control section 15. The temperature controller 17 of this scale is also a well-known furnace temperature control vi.
location can be used. Furnace 10 for carrying out the invention
This means that the well-known heat treatment furnace technology not described in this embodiment can be used for the structure and its temperature controller 17.

保護ガス供給源1は、熱処理する黄銅材料13の表面の
酸化を防止づ−るCO或いはH2ガスを含むもので、熱
処理炉に供給する圧ツノ盆石づるしのである。具体的に
は、保護ガスとしてco+c。
The protective gas supply source 1 contains CO or H2 gas that prevents oxidation of the surface of the brass material 13 to be heat treated, and is a pressure horn stone supply source supplied to the heat treatment furnace. Specifically, CO+C as a protective gas.

−1−N 或いはH+HO+N2ガスが使用さ2 2 
2 2 れる。前記CO+Co2+N2或イi、tH2+l−1
20十N2ガスは調圧弁2を介して炉10に尋ぎ、熱処
理炉内の雰囲気を常に保護ガスで充満さけた状態とづる
ものである。
-1-N or H+HO+N2 gas is used 2 2
2 2 will be. The CO+Co2+N2 or i, tH2+l-1
The 200 N2 gas is supplied to the furnace 10 through the pressure regulating valve 2, so that the atmosphere inside the heat treatment furnace is constantly filled with protective gas.

次に、本実施例の黄銅の熱処理方法の動作を説明する。Next, the operation of the brass heat treatment method of this embodiment will be explained.

熱処理炉10内に保護ガス供給源1から保護ガスを導き
、炉内を保護ガス雰囲気とした状態で、黄銅材料13の
熱処理温度を上昇し、検出器3の出力を得て、亜鉛蒸気
分析計4で亜鉛ガスの含有量を開側する。任意の圧力下
にお4Jる潤度−亜鉛蒸気圧特性が、予め亜鉛蒸気圧設
定部6に設定されているから、温度検出器14の出力に
よって、選択された亜鉛飽和蒸気圧が蒸気圧制御部5に
出力され、そこで、両者の差をとり、その差に応じてり
・−ボモータ等の駆動手段を介してバタフライバルブ9
の開度を制御し、亜鉛蒸気供給源8から炉10へ亜鉛蒸
気を供給する。即ち、亜鉛蒸気分析44で得た亜鉛蒸気
の値に対して、亜鉛蒸気1」設定部6及び蒸気圧制御部
5からなる亜鉛蒸気=1ントローラ7は常に炉内雰囲気
の亜鉛蒸気圧を飽和蒸気圧に設定する。
A protective gas is introduced from the protective gas supply source 1 into the heat treatment furnace 10, and while the furnace is in a protective gas atmosphere, the heat treatment temperature of the brass material 13 is increased, the output of the detector 3 is obtained, and the zinc vapor analyzer is 4 to open the zinc gas content. Since the moisture-zinc vapor pressure characteristic of 4J under an arbitrary pressure is set in advance in the zinc vapor pressure setting section 6, the selected zinc saturated vapor pressure is controlled by the output of the temperature detector 14. There, the difference between the two is taken and the butterfly valve 9 is outputted to the butterfly valve 9 via a driving means such as a motor or the like.
Zinc vapor is supplied from the zinc vapor supply source 8 to the furnace 10 by controlling the opening degree of the zinc vapor supply source 8 . That is, with respect to the value of zinc vapor obtained in the zinc vapor analysis 44, the zinc vapor=1 controller 7 consisting of the setting section 6 and the vapor pressure control section 5 always adjusts the zinc vapor pressure in the furnace atmosphere to saturated vapor. set to pressure.

本実施例は、亜鉛の酸化を防止する保冷ガスを供給する
保護ガス供給′&1ど、類10内の亜鉛の含有かを亜鉛
蒸気分析計で検出して、検出した亜鉛の含有mに応じて
、亜鉛蒸気供給源8から熱処理炉10内へ供給する亜鉛
蒸気の量を制御する亜鉛蒸気コントローラ7で構成され
るものであるから、常に黄銅を亜鉛の飽和蒸気圧の状態
下で熱処理でき、材料の黄銅からの脱亜鉛を最小限に留
めることができる。
This example uses a zinc vapor analyzer to detect the presence of zinc in Class 10, such as protective gas supply '&1, which supplies cold gas to prevent zinc oxidation. , the zinc vapor controller 7 controls the amount of zinc vapor supplied from the zinc vapor supply source 8 into the heat treatment furnace 10, so brass can always be heat treated under the saturated vapor pressure of zinc, and the material Dezincing from brass can be kept to a minimum.

第3図は本発明の第二実施例を示づ説明図である。FIG. 3 is an explanatory diagram showing a second embodiment of the present invention.

第1図で示した本発明の第一実施例との相3i仏・のみ
を述べる。第1図で示した第一実施例では、亜鉛の酸化
を防止する保護ガスを゛供給する手段どして、調圧弁2
を使用していたが、本実施例では、それを圧力制御系に
よって圧力制御するものである。なお、図において、第
1図と同一記号の1及び3〜17は第一実施例で用いた
ものと同一である。
Only the phase 3i of the first embodiment of the invention shown in FIG. 1 will be described. In the first embodiment shown in FIG. 1, the pressure regulating valve is
However, in this embodiment, the pressure is controlled by a pressure control system. In the figure, the same symbols 1 and 3 to 17 as in FIG. 1 are the same as those used in the first embodiment.

熱処理炉10内の圧力は、ブルドン管、ダイヤフラム、
ベローズ等からなる圧力検出器20を有する炉圧針21
で検出され、炉圧針21の出力は圧力コント0−524
を構成する炉圧制御部22、あらかじめ設定した炉圧設
定部23の設定圧力との差を炉圧制御部22で得て、−
炉圧制御部22の出力によって、周知の駆動手段を用い
てバルブ25の開度を制御し、類10内に保護ガス供給
源1から、亜鉛の酸化を防止するH 24−1120 
’ N 2或いはCO+COl−N2ガス等の保護ガス
を供給する。
The pressure inside the heat treatment furnace 10 is controlled by a Bourdon tube, a diaphragm,
Furnace pressure needle 21 having a pressure detector 20 made of bellows etc.
The output of the furnace pressure needle 21 is the pressure control 0-524.
The furnace pressure control unit 22 obtains the difference between the set pressure of the furnace pressure control unit 22 and the furnace pressure setting unit 23 that is set in advance, and -
The opening degree of the valve 25 is controlled using a well-known driving means according to the output of the furnace pressure control section 22, and the protective gas supply source 1 is used to prevent zinc oxidation in class 10 H24-1120
' Supply a protective gas such as N2 or CO+COl-N2 gas.

したがって、本実施例においては、飽和亜鉛蒸気圧のパ
ラメータである炉内の圧力を常に一定にi制御できるか
ら、脱亜鉛の農を少なくし、しかも、v1sx材料13
表面の酸化を防止することかできる。
Therefore, in this embodiment, since the pressure in the furnace, which is a parameter of the saturated zinc vapor pressure, can be controlled to be constant at all times, the amount of dezincing can be reduced, and the v1sx material 13
It can prevent surface oxidation.

更に、第4図は本発明の第三実施例を示す説明図である
Further, FIG. 4 is an explanatory diagram showing a third embodiment of the present invention.

第−実施例及び第三実施例との相違点のみを述べる。第
1図及び第3図で示した第−実施例及び第二実施例では
保護ガスの供給が熱処理炉か10内の圧力に委ねられる
ものであったが、第三実施例では、保護ガスの供給目的
であるp)12/pH20或いはpCO/pCO2の値
に基イーc ill ’mを行うものである。なお、図
において、f!1図と同一記号の1及び3〜17は第一
実施例で、25は第二実施例で用いたものと同一・であ
る。
Only the differences from the first and third embodiments will be described. In the first and second embodiments shown in FIGS. 1 and 3, the supply of protective gas was entrusted to the pressure inside the heat treatment furnace 10, but in the third embodiment, the supply of protective gas was The value of p) 12/pH 20 or pCO/pCO2, which is the purpose of supply, is subjected to a base e ill'm. In addition, in the figure, f! The same symbols 1 and 3 to 17 as in FIG. 1 are the first embodiment, and 25 is the same as that used in the second embodiment.

ガス検出部30によって類10内の汀カガスを検知し、
ガス分析計31で類10内のガスの分析を行う。前記ガ
スの分析は、亜鉛の酸化に影響のあるCO或いはN2の
割合を分析するもので、亜鉛を酸化させない条件として 保護ガスにCO+CO2+N2を用いたとき、pCO/
pCO2を、 保護ガスにH十H20+N2を用いたとき、p ト12
 /pH20を 、 検出する。
The gas detection unit 30 detects the gas within Class 10,
A gas analyzer 31 analyzes gases within class 10. The above gas analysis is to analyze the proportion of CO or N2 that affects the oxidation of zinc. When CO+CO2+N2 is used as a protective gas to prevent zinc oxidation, pCO/
pCO2, when H + H20 + N2 is used as a protective gas, pto12
/pH20 is detected.

ガス分析計31の出力は、ガス11度制御部32であら
かじめガスm度設定部33に設定された酸化防止設定値
と比較され、前記酸化防止設定値以上に類10内の保護
ガスの状態を維持するように、両者の差によって、周知
のバルブ駆動手段を介在させたバルブ25の開度を調節
する。なお、ガス濃度設定部33とガス濃度制御部32
は、保護ガス濃度コントローラ34を構成する。
The output of the gas analyzer 31 is compared with the oxidation prevention set value set in advance in the gas m degree setting part 33 by the gas 11 degree control section 32, and the state of the protective gas within Class 10 is determined to be higher than the oxidation prevention set value. Based on the difference between the two, the opening degree of the valve 25 is adjusted using a well-known valve driving means so as to maintain the position. Note that the gas concentration setting section 33 and the gas concentration control section 32
constitutes the protective gas concentration controller 34.

したがって、本実施例によれば、亜鉛の酸化防止に直接
関与するCO及びN2の含まれるυj合を検出すること
によって、保護ガスの圧力と酸化防止能力との関係を得
ることができ、常に炉内雰凹気を亜鉛の酸化防止状態下
にJ5 <ことができる。
Therefore, according to this embodiment, by detecting the υj mixture containing CO and N2, which are directly involved in preventing oxidation of zinc, the relationship between the pressure of the protective gas and the ability to prevent oxidation can be obtained. The internal atmosphere can be maintained under the condition of zinc oxidation prevention.

[発明の効果] 以上の様に、本発明は、熱処理炉内を保護ガス供給源か
ら供給される亜鉛の酸化を防止する保護ガス雰囲気とづ
ると共に、亜鉛の蒸気圧を計測する亜鉛蒸気分析計の出
力によって、亜鉛蒸気供給源から前記炉内へ亜鉛蒸気を
供給する亜鉛蒸気供給量をi!制御する亜鉛蒸気コント
ローうによって、前記炉内を常に亜鉛の飽和蒸気圧状態
どづるらのであるから、他の処理工程を付加ザることな
く、脱亜鉛を防止した状態で熱処理することができ、生
産性がよい。
[Effects of the Invention] As described above, the present invention creates a protective gas atmosphere in a heat treatment furnace that prevents oxidation of zinc supplied from a protective gas supply source, and also provides a zinc vapor analyzer that measures the vapor pressure of zinc. The amount of zinc vapor supplied from the zinc vapor source into the furnace is determined by the output of i! By controlling the zinc vapor, the inside of the furnace is always kept in a state of saturated zinc vapor pressure, so heat treatment can be carried out in a state where dezincification is prevented without adding other processing steps, Good productivity.

また、本発明は、脱亜鉛反応を抑制し−(熱処理するも
のであるから、材料の組織を変えることなく熱処理でき
、脱亜鉛により材料の結晶中に孔や亀裂が生じないから
、機械的強瓜に影響を与えることがない。
In addition, since the present invention suppresses the dezincification reaction and performs heat treatment, the heat treatment can be performed without changing the structure of the material, and since dezincification does not create pores or cracks in the crystals of the material, it increases mechanical strength. It has no effect on the melon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例を示′?i説明図、第2図
は脱亜鉛処理した場合の試料断面における亜鉛濃度分布
図、第3図は本発明の第二実施例を示?I説明図、第4
図は本発明の第三実施例を示す説明図である。 図中、 1・・・保護ガス供給源、 2・・・調圧弁、 4・・・亜鉛蒸気分析計、 7・・・亜鉛蒸気コントローラ、 8・・・亜鉛蒸気供給源、 10・・・熱処理炉、 21・・・炉圧針、 24・・・保護ガスコントローラ、 31・・・ガス分析S1. 34・・・ガス濃度コントローラ、 である。 なお、図中、同−符号及び同一記号は、同一・または相
当部分を示す。 特許出願人 大同特殊鋼株式会社 代理人 弁理士 樋口 武尚
FIG. 1 shows a first embodiment of the present invention. i Explanatory diagram, Figure 2 shows a zinc concentration distribution diagram in a cross section of a sample after dezincing treatment, and Figure 3 shows a second embodiment of the present invention. I explanatory diagram, 4th
The figure is an explanatory diagram showing a third embodiment of the present invention. In the figure, 1... protective gas supply source, 2... pressure regulating valve, 4... zinc vapor analyzer, 7... zinc vapor controller, 8... zinc vapor supply source, 10... heat treatment Furnace, 21... Furnace pressure needle, 24... Protective gas controller, 31... Gas analysis S1. 34...Gas concentration controller. In addition, in the figures, the same reference numerals and the same symbols indicate the same or equivalent parts. Patent applicant: Daido Steel Co., Ltd. Agent: Takehisa Higuchi

Claims (7)

【特許請求の範囲】[Claims] (1) 熱処理炉内雰囲気の亜鉛の蒸気圧を計測する亜
鉛蒸気分析計と、前記亜鉛蒸気分析計の出力によって前
記炉内へ亜鉛蒸気を供給する亜鉛蒸気供給源を制御する
亜鉛蒸気コントローラと、前記供給する亜鉛蒸気を発生
づ“る亜鉛蒸気供給源と、前記炉内に亜鉛の酸化を防止
する一定圧力のガスを調圧弁を介して供給する゛保護ガ
ス供給源からなることを特徴とする脱亜鉛反応を防止す
る熱処理装置。
(1) a zinc vapor analyzer that measures the vapor pressure of zinc in the atmosphere inside the heat treatment furnace; a zinc vapor controller that controls a zinc vapor supply source that supplies zinc vapor into the furnace based on the output of the zinc vapor analyzer; It is characterized by comprising a zinc vapor supply source that generates the zinc vapor to be supplied, and a protective gas supply source that supplies gas at a constant pressure to prevent oxidation of zinc into the furnace via a pressure regulating valve. Heat treatment equipment that prevents dezincification reactions.
(2) 熱処理炉内雰囲気の亜鉛の蒸気圧を開側する亜
鉛蒸気分析計と、前記亜鉛蒸気分析計の出力によって前
記炉内へ亜鉛蒸気を供給する亜鉛蒸気供給mを制御する
亜鉛蒸気コントローラと、前記供給する亜鉛蒸気を発生
する亜鉛蒸気供給源と、前記炉の圧力を計測する炉圧計
と、前記炉圧計の出力によって前記炉内へ亜鉛の酸化を
防止する保護ガスを供給する保護ガス供給ωを制tMI
′gる保護ガスコントローラと、前記供給する保護ガス
を発生する保護ガス供給源からなることを特徴とする脱
亜鉛反応を防止する熱処理装置。
(2) a zinc vapor analyzer that opens the zinc vapor pressure in the atmosphere inside the heat treatment furnace; and a zinc vapor controller that controls the zinc vapor supply m that supplies zinc vapor into the furnace based on the output of the zinc vapor analyzer. , a zinc vapor supply source that generates the zinc vapor to be supplied; a furnace pressure gauge that measures the pressure in the furnace; and a protective gas supply that supplies protective gas to prevent zinc oxidation into the furnace based on the output of the furnace pressure gauge. Control ω tMI
A heat treatment apparatus for preventing a dezincing reaction, comprising a protective gas controller that generates the protective gas, and a protective gas supply source that generates the protective gas to be supplied.
(3) 熱処理炉内雰囲気の亜鉛の蒸気圧を計測する亜
鉛蒸気分析計と、前記亜鉛蒸気分析計の出力によって前
記炉内へ亜鉛蒸気を供給する仙鉛蒸気供給争を制御する
亜鉛蒸気コントローラと、前記供給する亜鉛蒸気を発生
する亜鉛蒸気供給源と、前記炉内雰囲気中のガスを分析
するガス分析計と、前記ガス分析計の出力によって前記
炉内へ亜鉛の酸化を防止づ°る保護ガスを供給する保護
ガス供給量を制御するガス濃度コントローラと、前記供
給する保護ガスを発生する保護ガス供給源からなること
を特徴とする脱亜鉛反応を防止する熱処理装置。
(3) a zinc vapor analyzer that measures the vapor pressure of zinc in the atmosphere inside the heat treatment furnace; and a zinc vapor controller that controls the supply of zinc vapor to supply zinc vapor into the furnace based on the output of the zinc vapor analyzer. , a zinc vapor supply source that generates the supplied zinc vapor, a gas analyzer that analyzes gas in the atmosphere in the furnace, and a protection that prevents oxidation of zinc into the furnace by the output of the gas analyzer. A heat treatment apparatus for preventing a dezincing reaction, comprising a gas concentration controller that controls the amount of protective gas supplied, and a protective gas supply source that generates the protective gas.
(4) 前記保護ガスを、C0I−CO2+N2とづる
ことを特徴とする特許 または第2項または第3項に2載の脱亜鉛反応を防止す
る熱処理装置。
(4) A heat treatment apparatus for preventing the dezincing reaction described in the patent or item 2 or item 3, characterized in that the protective gas is C0I-CO2+N2.
(5) 前記保ytカスヲ、ト12+H2o+N2とす
ることを特徴とする特許 または第2項または第3項に記載の脱亜鉛反応を防止づ
る熱処理装置。
(5) A heat treatment apparatus for preventing the dezincing reaction as described in the patent or item 2 or 3, characterized in that the retention ratio is 12+H2o+N2.
(6) 前記ガス分析計を、炉内雰囲気の圧力比pCO
/pCO2の分析とすることを特徴とづる前記特fr請
求の範囲第4項に記載の脱亜鉛反応を防止する熱処理装
置。
(6) The gas analyzer is connected to the pressure ratio pCO of the furnace atmosphere.
5. The heat treatment apparatus for preventing the dezincification reaction according to claim 4, characterized in that the analysis is performed for /pCO2.
(7) 前記ガス分析計を、炉内雰囲気の圧力比pH2
/pH20の分析とづることを特徴とする前記特許請求
の範囲第5項に記載の脱亜鉛反応を防止する熱処理装置
(7) The gas analyzer is connected to the pressure ratio pH2 of the furnace atmosphere.
The heat treatment apparatus for preventing the dezincing reaction according to claim 5, characterized in that the analysis is carried out at pH 20.
JP11259684A 1984-05-31 1984-05-31 Heat treating apparatus Pending JPS60255962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11259684A JPS60255962A (en) 1984-05-31 1984-05-31 Heat treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11259684A JPS60255962A (en) 1984-05-31 1984-05-31 Heat treating apparatus

Publications (1)

Publication Number Publication Date
JPS60255962A true JPS60255962A (en) 1985-12-17

Family

ID=14590692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11259684A Pending JPS60255962A (en) 1984-05-31 1984-05-31 Heat treating apparatus

Country Status (1)

Country Link
JP (1) JPS60255962A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935662A (en) * 1982-08-20 1984-02-27 Mitsubishi Electric Corp Method for preventing dezincification of alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935662A (en) * 1982-08-20 1984-02-27 Mitsubishi Electric Corp Method for preventing dezincification of alloy

Similar Documents

Publication Publication Date Title
US5385337A (en) Control system for a soft vacuum furnace
US5139584A (en) Carburization process
US5580398A (en) Method of forming passive oxide film based on chromium oxide, and stainless steel
US6224692B1 (en) Process for galvanizing a metal strip
Shen et al. Simultaneous oxidation and carburization of a Fe-9Cr alloy under different oxygen pressures at 800 C
JPH10226871A (en) Method and device for controlling atmosphere in heat treatment furnace
US4445945A (en) Method of controlling furnace atmospheres
US5207839A (en) Processes for the production of a controlled atmosphere for heat treatment of metals
US5772428A (en) Method and apparatus for heat treatment including H2 /H2 O furnace region control
JPS60255962A (en) Heat treating apparatus
US2459161A (en) Metal coating
US2886478A (en) Method and control apparatus for carburizing ferrous objects
US2231009A (en) Heat treating process
EP0024106B1 (en) Method of heat treating ferrous workpieces
US6955730B2 (en) Method for enhancing the metallurigcal quality of products treated in a furnace
Reeves Jr et al. Grain boundary penetration kinetics of nitrided type 304L stainless steel
Story et al. Effects of surface microstructure on selective oxidation morphology and kinetics in N2+ 5% H2 atmosphere with variable dew point temperature
JPS60258456A (en) Heat treatment of brass
Podobaev et al. Temperature and time effects on the acid corrosion of steel in the presence of acetylenic inhibitors
JP4092215B2 (en) Heat treatment furnace atmosphere control device
US5785773A (en) Process for avoiding stickers in the annealing of cold strip
JPS5839733A (en) Enhancing method for resistance of austenite stainless steel pipe to oxidation due to steam at high temperature
US2980415A (en) Apparatus for controlling case hardening action
JPS5980713A (en) Heat treatment of steel product accompanied by no decarburization
JPH0853712A (en) Control of distribution of dew point in continuous decarburize-annealing furnace