JPS602558A - Control of tension of strip - Google Patents

Control of tension of strip

Info

Publication number
JPS602558A
JPS602558A JP11042983A JP11042983A JPS602558A JP S602558 A JPS602558 A JP S602558A JP 11042983 A JP11042983 A JP 11042983A JP 11042983 A JP11042983 A JP 11042983A JP S602558 A JPS602558 A JP S602558A
Authority
JP
Japan
Prior art keywords
strip
tension
signal
speed
back electromotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11042983A
Other languages
Japanese (ja)
Inventor
Kazuaki Yamamoto
和明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11042983A priority Critical patent/JPS602558A/en
Publication of JPS602558A publication Critical patent/JPS602558A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/182Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in unwinding mechanisms or in connection with unwinding operations
    • B65H23/185Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in unwinding mechanisms or in connection with unwinding operations motor-controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/195Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in winding mechanisms or in connection with winding operations
    • B65H23/198Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in winding mechanisms or in connection with winding operations motor-controlled (Controlling electrical drive motors therefor)

Landscapes

  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Abstract

PURPOSE:To keep the tension of a strip at a constant value by maintaining the speed of said strip in proportion to the reverse electromotive potential of a direct current motor which drives a winder for winding and unwinding of said strip. CONSTITUTION:The invention relates to a control method for the tention of a strip wherein the tension of said strip is kept at a constant value by maintaining the speed V of said strip in proportion to the reverse electromotive potential of a direct current motor 18 which drives a winder 16 for winding and unwinding said strip, the tension of said strip is kept at a constant value in such a way that the reverse electromotive potential signal Ea is obtained from the terminal potential signal of the armature of a direct current motor and the resistance potential decrease signal of said armature, the speed signal of said strip is obtained by multiplying the rotation speed signal of a roller 12 by the proceeding rate or the receding rate which can be defined from the potential decrease rate and the tension of said strip, and the field current Ib of said direct current motor is controlled so that the speed signal of said strip may be maintained in proportion to said reverse electromotive potential signal.

Description

【発明の詳細な説明】 本発明は、ストリップ張力の制御方法に係り、特に、ス
トリップの速度と、ストリップの巻取り、又は、巻戻し
用の巻取機を駆動する直流電動機での逆起電圧とを、比
例関係に保つことによって、ストリップ張力を一定に維
持するストリップ張力の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling strip tension, and in particular to a method for controlling strip tension and a back electromotive force in a DC motor that drives a winder for winding or unwinding a strip. This relates to a method of controlling strip tension in which the strip tension is maintained constant by maintaining a proportional relationship.

一股にストリップ張力は、巻取機駆動用の直流電動機の
逆起電圧をストリップの搬送速度(以下単にストリップ
速度と称す。)に一致させると、該直流電動機の電機子
電流で表される。この関係を利用した制御を、巻取機の
逆起電圧制御と呼んCいる。
The strip tension is expressed by the armature current of the DC motor for driving the winder, when the back electromotive voltage of the DC motor for driving the winder is matched with the strip conveyance speed (hereinafter simply referred to as strip speed). Control using this relationship is called winder back electromotive voltage control.

即ち、この逆起電圧制御を簡単に説明すると、巻取張力
(=ストリップ張力)F(kg)は、その時点での巻取
半径をr(m)とづると、巻取モーメントFXrが直流
電動機の発生トルクl−m(kg−■)に等しくなる筈
であるから、(1)式のように書ける。
That is, to briefly explain this back electromotive force control, the winding tension (= strip tension) F (kg) is defined as the winding radius at that point r (m), and the winding moment FXr is the DC motor. It should be equal to the generated torque l-m (kg-■), so it can be written as equation (1).

F = Tm/、r−−−(1) 一方、直流電動機の電機子端子電圧を■(volt入電
機子電流をIa (A)、その内部抵抗をR(Ω)、電
機子回転数をN(回/5ec)、界磁電流I[(A)に
よって生じる磁束をφ(wb)とづれば、直流電動機の
発生トルクTn+(kg−m)、逆起電圧[:a (v
olt)は、周知の如く、定vik+、k 2を用いて
、(2)(3)(4)式のように出ける。
F = Tm/, r---(1) On the other hand, the armature terminal voltage of the DC motor is (times/5ec), the magnetic flux generated by the field current I[(A) is expressed as φ(wb), the generated torque Tn+(kg-m) of the DC motor, the back electromotive force [:a (v
olt) can be obtained as shown in equations (2), (3), and (4) using the constants vik+ and k2, as is well known.

Tl1l=に+φIa−−−、(2> Ea = V−IaR−−−(3) = k2φN・・・・(4) ここで、巻取機のその時点での回転数を1)(回/se
c )とすれば、nは電機子回転数Nに比例づるから、
定数に3を用いて(5)式のように書くことかでき、又
ストリップ速度v (m /sec )は(6)式のよ
うに占けることから(7)(8)式が成立づる。
Tl1l = +φIa---, (2> Ea = V-IaR---(3) = k2φN...(4) Here, the number of rotations of the winding machine at that point is 1) (times/ se
c), since n is proportional to the armature rotation speed N,
It can be written as equation (5) using 3 as a constant, and since the strip speed v (m/sec) can be calculated as shown in equation (6), equations (7) and (8) hold true.

n=kaN・・・・・・(5) V ヨ 2πrn争Φ・争番・(6) −2πrk3N・・・(7) r = v/2yrk 3N−・(8)(1)式に(2
>(4)<8)式の関係を代入Jると(9)式のように
なる。
n=kaN・・・・・・(5) V yo 2πrn contest Φ・Contest number・(6) −2πrk3N・・・(7) r=v/2yrk 3N−・(8) In equation (1), (2
Substituting the relationship in equations >(4)<8) yields equation (9).

F−1−m/r −1く 1 φ la / (V /27rk 3 N
>=k + X (Ea /k 2 N )X Ia 
/ (V /27rk 3N)=2k 1k 37r/
k 2 xEa /v X Ia・・・(9) ここで逆起電圧Eaとストリップ速度Vとが比例関係に
あるとづると、(1o)式のように書けることから(9
)式は(11)式のように甫くことができる。
F-1-m/r -1ku 1 φ la / (V /27rk 3 N
>=k + X (Ea /k 2 N)X Ia
/ (V /27rk 3N) = 2k 1k 37r/
k 2 xEa /v
) can be expressed as equation (11).

Ea/V=ka (k<は定数)−−−(10)F−2
k l k 3π/k 2 Xk、 4 X 1a=K
Ia (Kは定数)−−−−−−(11)この(10)
(11,)式は、逆起電圧Eaをストリップ速度Vに追
随させて比例関係を保つように−4ると、ストリップ張
力Fは、電機子電流1aに比例した任意の大きさに制御
可能であるこ七を意味している。逆起電圧制御とはこの
関係を利用したものである。
Ea/V=ka (k< is a constant)---(10)F-2
k l k 3π/k 2 Xk, 4 X 1a=K
Ia (K is a constant)---(11) This (10)
Equation (11,) shows that if the back electromotive force Ea is made to follow the stripping speed V to maintain a proportional relationship -4, the strip tension F can be controlled to an arbitrary magnitude proportional to the armature current 1a. It means seven. Back electromotive force control utilizes this relationship.

従来の逆起電圧制御方式を採用したストリップ張力の制
御方法にあっては、ストリップ速度■を検出するl〔め
に、なるべく検出誤差が少くなるように、ストリップと
のスリップが少なく、最もストリップ速度を反映してい
ると思われる圧延ロールの回転速度、特に巻取機に一番
近いスタンドの圧延ロールの回転速度を検出し、その周
速度にあるゲインを乗することによってめるようにして
いl〔。
In the strip tension control method that employs the conventional back electromotive voltage control method, in order to detect the stripping speed, the stripping speed must be set to the lowest possible value with less slip on the strip and with as little detection error as possible. It can be determined by detecting the rotational speed of the rolling roll, which is thought to reflect [.

しかしながら、実際のストリップ速度は、圧下率、摩擦
係数、材料等によって変り(巻取機に於ては先進率、巻
戻機に於ては後進率に相当)、ストリップの張力制御に
於て特に加減速時等の過渡状態の際に大きな張力外乱と
なっていた。
However, the actual stripping speed varies depending on the rolling reduction rate, friction coefficient, material, etc. (equivalent to the advance rate in the winder and the backward rate in the unwinder), and especially in strip tension control. Large tension disturbances occurred during transient conditions such as acceleration and deceleration.

本発明は、このような従来の問題点に着目してなされた
ものであって、ストリップ゛速度を正確に検出して本来
の逆起電圧制御を行い、ストリップのより正確な張力制
御を可能とづることをその目的としている。
The present invention has been made by focusing on these conventional problems, and enables more accurate tension control of the strip by accurately detecting the strip speed and controlling the original back electromotive force. Its purpose is to write.

本発明は逆起電圧制御方式を用いたストリップ張力の制
御方法に於て、 直流電動機の電機子端子電圧信号と電機子抵抗電圧降下
信号とから逆起電圧信号をめ、圧延ロールの回転速度信
号に、圧下率及びストリップ張力などにり決まる先進率
又は後進率を乗算してストリップ速度信号をめ、 該ストリップ速度fg号と前記逆起電圧信号とが、比例
関係を保つように、前記直流電動機の界磁電流を制御し
て、ストリップ張力を一定に維持づることとして上記目
的を達成したものである。
The present invention provides a strip tension control method using a back electromotive voltage control method, in which a back electromotive voltage signal is obtained from an armature terminal voltage signal of a DC motor and an armature resistance voltage drop signal, and a rotational speed signal of a rolling roll is obtained. is multiplied by an advance rate or a backward rate determined by the rolling reduction rate and strip tension, etc. to obtain a strip speed signal, and the DC motor is controlled so that the strip speed fg and the back electromotive voltage signal maintain a proportional relationship. The above object is achieved by controlling the field current of the strip to maintain a constant strip tension.

以下図面に基いて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below based on the drawings.

第1図に、本発明方法の一実施例が採用された、ストリ
ップ張力の制御装置の一例を示す。
FIG. 1 shows an example of a strip tension control device in which an embodiment of the method of the present invention is adopted.

圧延機10の圧延ロール12を出たストリップ14は、
巻取機16に速度Vにて巻き取られる。
The strip 14 leaving the rolling roll 12 of the rolling mill 10 is
It is wound up at a speed V by a winding machine 16.

巻取機16を駆動覆る直流電動機18は、電流制御され
ており、電機子電流1aは所定の値を維持し−Cいる。
The DC motor 18 that drives the winder 16 is current-controlled, and the armature current 1a is maintained at a predetermined value -C.

尚、201よりイリスタ電源装置である。Note that 201 is an Iristor power supply device.

ここに於て逆起電圧Eaは、前述(3)式に基きめられ
る。即ち、まず並列抵抗22の端子で電機子端子電圧V
を検出し、直列抵抗(又はシャント抵抗)24の端子で
電機子電流Iaを検出覆る。そしてこの電機子電流1a
に電機子の内部抵抗R相当分を乗算器26にて乗算して
電機子抵抗電圧降下IaRをめ、両電圧信号V及びIa
Rを加算器28にて付き合わせをしてV−IaRを算出
して逆起電圧Eaをめるものである。
Here, the back electromotive force Ea is based on the above-mentioned equation (3). That is, first, the armature terminal voltage V at the terminal of the parallel resistor 22
The armature current Ia is detected at the terminal of the series resistor (or shunt resistor) 24. And this armature current 1a
is multiplied by the armature's internal resistance R in the multiplier 26 to obtain the armature resistance voltage drop IaR, and both voltage signals V and Ia
The adder 28 adds R and calculates V-IaR to calculate the back electromotive force Ea.

一方、ストリップ速度Vは次のようにしてめる。即ち、
まずパルス発信器(PLO)30で圧延ロール12の回
転速度に応じたパルスを発生させ、パルスカウンタ32
で適宜のデジタル/アナログ変換をしてこれを電圧信号
vrとづる。ついで、先進率設定器34で、所定の先進
率設定値fsを、この回転速度信号vrに乗算器37に
て乗算してめるものである。この先進率設定値fsは、
例えば、次式に示づような31and and F o
rdの式の近似式から算出することができる。
On the other hand, the strip speed V is determined as follows. That is,
First, a pulse generator (PLO) 30 generates a pulse corresponding to the rotational speed of the rolling roll 12, and a pulse counter 32
After performing appropriate digital/analog conversion, this is referred to as a voltage signal vr. Next, an advanced rate setter 34 multiplies this rotational speed signal vr by a predetermined advanced rate set value fs in a multiplier 37. This advanced rate setting value fs is
For example, 31 and F o as shown in the following formula
It can be calculated from an approximate expression of the expression of rd.

[:先進率 T:圧下率 μ:摩擦係数 h :出側板厚(mm) R′二偏平ロール径(作) [f:前方張力(kg/■イ) Lb:後方張力(kg/■() Kp:変形抵抗(kg / i() ストリップの張力制御は次のようにして行われる。まず
、上記のようにしてめた逆起電圧Eaとストリップ速度
■相当の各信号にそれぞれ適当な比測定数分を乗算器3
6.38にて乗算し、加算器40で両者の付ぎ合わせを
行う。ストリップ速度v及び張力Fが安定している時は
、逆起電圧制御装置42には偏差ε=Oが入力され、界
磁電流制御装置44を介して、所定の界磁電流■[が界
磁用サイリスタ電源46から直流電動VA18の界磁」
イル48に流れるように制御される。
[: Advance ratio T: Reduction ratio μ: Friction coefficient h: Output side plate thickness (mm) R' double flat roll diameter (made) [f: Front tension (kg/■a) Lb: Backward tension (kg/■ ()) Kp: Deformation resistance (kg/i()) Strip tension control is performed as follows.First, measure the appropriate ratio of each signal corresponding to the back electromotive force Ea obtained above and the strip speed. Multiplier 3 for minutes
6.38, and the adder 40 joins the two together. When the stripping speed v and the tension F are stable, the deviation ε=O is input to the back electromotive force control device 42, and a predetermined field current Field of DC electric VA18 from thyristor power supply 46
The signal is controlled so that it flows to the file 48.

今、ストリップ速度■が例えば速くなった時は。Now, for example, when the strip speed ■ becomes faster.

ストリップ14はゆるみ、張力は小さくなる。この詩法
の作用がなされる。まずストリップ速度■の信号側が大
となるため、加算器40での付き合わせに偏差εが生じ
る。逆起電圧制御装@42ではその偏差εを解消づるよ
うに、界磁電流制御装置44を介して界磁用サイリスタ
電源46から界磁コイル48への供給界磁電流lfをよ
り大へと変える。その結果前記(2)式の関係に於て、
電機子電流1aば電流制御されているため、界磁コイル
48への界11電流Ifの増大に応じて磁束φが増大し
、逆起電圧Eaが増大され、常にEa/Vが比例関係を
保つようにフィードバックが掛ることになる。そしてこ
のEa /vが比例関係を保つ限り、(11)式の関係
によりストリップ張力Fは電機子電流1aに応じた一定
値に制御されるものである。
The strip 14 becomes loose and the tension is reduced. This poetic method works. First, since the signal side of the stripping speed ■ becomes large, a deviation ε occurs in the matching at the adder 40. The back electromotive voltage controller @42 increases the field current lf supplied from the field thyristor power supply 46 to the field coil 48 via the field current controller 44 so as to eliminate the deviation ε. . As a result, in the relationship of equation (2) above,
Since the armature current 1a is current-controlled, the magnetic flux φ increases in accordance with the increase in the field 11 current If to the field coil 48, and the back electromotive force Ea increases, so that Ea/V always maintains a proportional relationship. This will result in feedback. As long as this Ea/v maintains a proportional relationship, the strip tension F is controlled to a constant value according to the armature current 1a based on the relationship of equation (11).

尚、この実施例では各種演算の処理をアナログにて行っ
ているが、これをデジタルにて行うように(るのは熱論
自由である。ヌ、先進率設定値の算出については、各演
算要素をオンラインで実測検出するのが理想であるが、
各演算要素はづべてほぼ一定のものと見られるものであ
るため、先進率設定値がもともと補正のためのものであ
ることを考えれば、各圧延スケジュール前に設定可変と
さえして置けばオンラインで実測しなくてもよい。
In this embodiment, the processing of various calculations is done in analog, but it is possible to do it digitally. It is ideal to actually measure and detect online, but
Since each calculation element is considered to be almost constant, considering that the advanced rate setting value is originally for correction, it is only necessary to set it as a variable before each rolling schedule. There is no need to actually measure online.

又、本発明を巻戻し側に適用覆るとぎは、先進率でなく
後進率を用いるようにづるのは言うまでもない。
It goes without saying that when the present invention is applied to the rewinding side, the backward rate is used instead of the forward rate.

以上説明してぎた如く本発明によれば、ストリップ速度
を極めて正確に把握することができ、本来の逆起電圧制
御に基いて、ストリップ張力の正確な制御ができるもの
である。
As described above, according to the present invention, the strip speed can be determined extremely accurately, and the strip tension can be accurately controlled based on the original back electromotive force control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法の一実施例が採用された、逆起電
圧制御方式によるストリップの張力制御装置を示づ一部
概略断面図を含むブロック線図である。 F(kg)・・・巻取張力(−ストリップ張力)、rm
 <詰・m)・・・直流電動機の発生トルク、■(vo
lt)・・・電機子端子電圧、Ia (A)・・・電機
子電流、 1aR(’vo口)・・・電機子抵抗電圧降下、y (
m /sec )・・・ストリップ速度、V I” (
VOlt)・・・圧延ロールの回転速度相当の電圧信号
、 12・・・圧延ロール、 14・・・ストリップ、 16・・・巻取機、 18・・・直流電動機、 34・・・先進率設定器、 fs・・・先進率設定値。 代理人 高 矢 論 (ほか1名)
FIG. 1 is a block diagram including a partially schematic sectional view showing a strip tension control device based on a back electromotive force control method, in which an embodiment of the method of the present invention is adopted. F (kg)... Winding tension (-strip tension), rm
<Tsum・m)...Torque generated by a DC motor, ■(vo
lt)... Armature terminal voltage, Ia (A)... Armature current, 1aR ('vo 口)... Armature resistance voltage drop, y (
m/sec)...Strip speed, V I" (
VOlt)... Voltage signal equivalent to the rotational speed of the rolling roll, 12... Rolling roll, 14... Strip, 16... Winding machine, 18... DC motor, 34... Advanced rate setting equipment, fs...Advanced rate setting value. Agent Takaya Ron (and 1 other person)

Claims (1)

【特許請求の範囲】 (1〉ストリップの速度と、ストリップの巻取り、又は
、巻戻し用の巻取機を駆動する直流電動機での逆起電圧
とを、比例関係に保つことによって、ストリップ張力を
一定に維持するストリップ張力の制御方法に於て、 前記直流電動機の電機子端子電圧信号と電機子抵抗電圧
降下信号とから逆起電圧信号をめ、圧延ロールの回転速
度信号に、圧■率及びストリップ張力などより決まる先
進率又は後進率を乗算してストリップ速度信号をめ、 該ストリップ速度信号と前記逆起電圧信号とが、比例関
係を保つように、前記直流電動機の界磁電流を制御して
、 ストリップ張力を一定に維持づることを特徴とするスト
リップ張力の制御方法。
[Claims] (1) By maintaining a proportional relationship between the speed of the strip and the back electromotive force in the DC motor that drives the winder for winding or unwinding the strip, the tension of the strip can be increased. In the method of controlling the strip tension to maintain constant the voltage, a back electromotive force signal is obtained from the armature terminal voltage signal of the DC motor and the armature resistance voltage drop signal, and the rotational speed signal of the rolling roll is and a forward rate or a reverse rate determined by the strip tension, etc. to obtain a strip speed signal, and control the field current of the DC motor so that the strip speed signal and the back electromotive voltage signal maintain a proportional relationship. A strip tension control method characterized by maintaining the strip tension constant.
JP11042983A 1983-06-20 1983-06-20 Control of tension of strip Pending JPS602558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11042983A JPS602558A (en) 1983-06-20 1983-06-20 Control of tension of strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11042983A JPS602558A (en) 1983-06-20 1983-06-20 Control of tension of strip

Publications (1)

Publication Number Publication Date
JPS602558A true JPS602558A (en) 1985-01-08

Family

ID=14535518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11042983A Pending JPS602558A (en) 1983-06-20 1983-06-20 Control of tension of strip

Country Status (1)

Country Link
JP (1) JPS602558A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900895A (en) * 1980-05-09 1990-02-13 Alloy Rods Global, Inc. Rectangular electrode
US5575435A (en) * 1991-09-26 1996-11-19 Sealed Air Corporation High speed apparatus for forming foam cushions for packaging purposes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900895A (en) * 1980-05-09 1990-02-13 Alloy Rods Global, Inc. Rectangular electrode
US5575435A (en) * 1991-09-26 1996-11-19 Sealed Air Corporation High speed apparatus for forming foam cushions for packaging purposes
US5679208A (en) * 1991-09-26 1997-10-21 Sealed Air Corporation High speed apparatus for forming foam cushions for packaging purposes

Similar Documents

Publication Publication Date Title
JPS58183554A (en) Method of controlling hoisting of material
JPS6129302B2 (en)
JPS602558A (en) Control of tension of strip
JPH0728598Y2 (en) Tape feed control device
JPH0648654A (en) Winding tension control device by inverter driving
JPS5964462A (en) Tension controller for winder
ES360412A1 (en) Maximum torque reel drive utilizing an inertia compensation and counter emf control
JPS6341139B2 (en)
JP3696811B2 (en) Speed / torque control device for tension control motor
JP2001058212A (en) Method and device for controlling tension of beltlike material
JPH0462982B2 (en)
JP2663428B2 (en) Tape diameter calculation device
JPS62127122A (en) Control method for winding tension
JPH01273612A (en) Method and device for controlling tension of winder and rewinder
JPS63115615A (en) Tension control method for strip and tension calculating device
JPS5919532Y2 (en) Cold rolling mill rewinding control device
JP2000184779A (en) Method for controlling dc electric motor for winder
JPS5854595B2 (en) Control device for commutatorless motor
JPH08203161A (en) Tape tension controller
JPH044046B2 (en)
JPS6083716A (en) Strip mill controlling method
JPS6153128B2 (en)
JPS63154593A (en) Tension control method and device for sheet-shaped material rewinding or winding machine
JPS6250203B2 (en)
JPH02165809A (en) Controller for speed detection roll for rolled strip