JPS60255739A - Production of 1,2,4,5-tetramethylbenzene - Google Patents

Production of 1,2,4,5-tetramethylbenzene

Info

Publication number
JPS60255739A
JPS60255739A JP59109507A JP10950784A JPS60255739A JP S60255739 A JPS60255739 A JP S60255739A JP 59109507 A JP59109507 A JP 59109507A JP 10950784 A JP10950784 A JP 10950784A JP S60255739 A JPS60255739 A JP S60255739A
Authority
JP
Japan
Prior art keywords
zsm
catalyst
methanol
tetramethylbenzene
xylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59109507A
Other languages
Japanese (ja)
Other versions
JPH0478623B2 (en
Inventor
Hiroshi Ishida
浩 石田
Hitoshi Nakajima
斉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Utilization of Light Oil
Original Assignee
Research Association for Utilization of Light Oil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Utilization of Light Oil filed Critical Research Association for Utilization of Light Oil
Priority to JP59109507A priority Critical patent/JPS60255739A/en
Publication of JPS60255739A publication Critical patent/JPS60255739A/en
Publication of JPH0478623B2 publication Critical patent/JPH0478623B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound economically, by using fine particle of crystalline aluminosilicate having specific silica/alumina ratio as a catalyst in the vapor-phase methylation of xylene and/or 1,2,4-trimethylbenzene with methanol. CONSTITUTION:Xylene and/or 1,2,4-trimethylbenzene is methylated with methanol in vapor phase to obtain 1,2,4,5-tetramethylbenzene useful as an intermediate of pyromellitic acid (a raw material of polyimide resin). In the above process, crystalline alumino-silicate fine powder having a silica/alumina ratio of >=20, preferably >=30 and an average particle diameter of <=1mum, preferably <=0.5mum, e.g. ZSM-5, ZSM-11, ZSM-12, etc., especially ZSM-5, is used as the catalyst. The objective compound can be produced in high selectivity suppressing the deactivation of the catalyst.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱可塑性あるbは耐熱性樹脂であるポリイ
ミド樹脂の原料となるピロメリット酸の中間原料として
有用な1.2,4,5−テトラメチルベンセンの製造法
に関するもので、キシレンおよび/または1.2.4−
トリメチルベンゼンをメタノールを用いて気相メチル化
する際K、触媒としてシリカ/アルミナモル比が20以
上の微粒子状結晶性アルミノシリケート金剛いること全
特徴とする1 、2,4.5−テトラメチルベンゼンの
製造法に関する本のである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the use of 1,2,4,5, which is useful as an intermediate raw material for pyromellitic acid, which is a raw material for polyimide resin, which is a heat-resistant plastic and is a heat-resistant resin. -Regarding the production method of tetramethylbenzene, xylene and/or 1.2.4-
When trimethylbenzene is gas-phase methylated using methanol, a fine particulate crystalline aluminosilicate with a silica/alumina molar ratio of 20 or more is used as a catalyst. This is a book about manufacturing methods.

(従来の技術) 1.2,4.5−テトラメチルベンセンを製造する方法
としては、現在、接触改質油からの直接濃縮、晶析分離
する方法や、トリメチルベンゼンを不均化する方法、あ
るいはトリメチルベンゼン全メチル化する方法等が知ら
れている。
(Prior art) Currently, methods for producing 1,2,4,5-tetramethylbenzene include methods of direct concentration and crystallization separation from catalytic reformed oil, methods of disproportionation of trimethylbenzene, Alternatively, a method of total methylation of trimethylbenzene is known.

接触改質油からの直接濃縮、晶析分離する方法は、改質
油中に含まれる1、2,4.5−テトラメチルベンゼン
の濃度が低いために、多大のコストがかかり経済的でな
い。
Direct concentration and crystallization separation from catalytic reformed oil requires a large amount of cost and is not economical because the concentration of 1,2,4.5-tetramethylbenzene contained in the reformed oil is low.

トリメチルベンゼンを不均化する方法に関しては、シリ
カアルミナ、モルデナイトあるいはフォージャサイト屋
ゼオライトを触媒として用いる方法が報告されている(
特公昭50−15778号)。
Regarding the method of disproportionation of trimethylbenzene, a method using silica alumina, mordenite, or faujasite zeolite as a catalyst has been reported (
Special Publication No. 50-15778).

しかしながら、この方法では、不均化活性が低く、触媒
の活性低下が著しいという欠点を有している。
However, this method has the disadvantage that the disproportionation activity is low and the activity of the catalyst is significantly reduced.

また、トリメチルベンゼンをメチル化する方法に関して
は、一般に塩化アルミニウム等のルイス酸触媒を用いる
液相法が知られているが、活性が低いことや装置の腐食
環の問題を有している。
Regarding the method of methylating trimethylbenzene, a liquid phase method using a Lewis acid catalyst such as aluminum chloride is generally known, but this method has problems of low activity and corrosion rings in the equipment.

一方、1,2.4− )リメチルベンゼンを気相におい
てメタノールでメチル化する方法に関しては、触媒とし
てZSM−5または四塩化ケイ素で処理したZSM−5
を用いる方法が提案されている〔特開昭59−3985
6号、日本化学会第49春期年会予稿集2Q10,59
0(1984))。
On the other hand, for the method of methylating 1,2.4-)limethylbenzene with methanol in the gas phase, ZSM-5 or ZSM-5 treated with silicon tetrachloride as a catalyst was used.
A method using
No. 6, Proceedings of the 49th Spring Annual Meeting of the Chemical Society of Japan 2Q10, 59
0 (1984)).

(発明が解決しようとする問題点) 1.2.4− )リメチルベンゼンを気相においてメタ
ノールでメチル化する前記従来法は、他の従来法に比べ
れば、活性選択性の点で大きく改良されているが、触媒
活性の経時的劣化は速く、工業的製法としては満足する
ものではなかった。
(Problems to be solved by the invention) 1.2.4-) The conventional method of methylating remethylbenzene with methanol in the gas phase has been greatly improved in terms of activity selectivity compared to other conventional methods. However, the catalytic activity deteriorated quickly over time and was not satisfactory as an industrial production method.

(問題を解決するための手段) 本発明者らは、前記活性低下の問題を解決すべく鋭意検
討を重ねた結果、触媒としてシリカ/アルミナモル比が
20以上の微粒子状結晶性アルミノシリケートを用いる
と、活性低下が非常圧小さく、しかも、高い選択率で1
.2,4.5−テトラメチルベンゼンを製造できること
を見い出し、本発明を完成するに至った。
(Means for Solving the Problem) As a result of intensive studies to solve the problem of the above-mentioned activity reduction, the present inventors found that using a particulate crystalline aluminosilicate with a silica/alumina molar ratio of 20 or more as a catalyst. , the decrease in activity is extremely small, and the selectivity is high.
.. It was discovered that 2,4,5-tetramethylbenzene can be produced, and the present invention was completed.

すなわち、本発明は、キシレンおよび/l 7tFi1
.2.4− )リメチルベンゼンをメタノールを用いて
気相メチル化して1,2,4.5−テトラメチルベンゼ
ンを製造する際に5触媒としてシリカ/アルミナモル比
が20以上の微粒子状結晶性アルミノシリケートを用い
ることを特徴とする1、2,4.5−テトラメチルベン
ゼンの製造法に関するものである。
That is, the present invention provides xylene and /l 7tFi1
.. 2.4-) Particulate crystalline alumina with a silica/alumina molar ratio of 20 or more as a catalyst when producing 1,2,4.5-tetramethylbenzene by gas-phase methylation of remethylbenzene using methanol. The present invention relates to a method for producing 1,2,4,5-tetramethylbenzene characterized by using a silicate.

本発明に用いられる結晶性アルミノシリケートは、シリ
カ/アルミナモル比が20以上、好ましくは30以上の
高シリカのものである。これらの結晶性アルミノシリケ
ートとしては、例えば、モーピルオイル社の開発し*z
 SM−5(%願昭57−228283号)%ZSM−
11(%開詔54−52699号)、ZSM−12(%
開昭55−158118号)等が挙げられるが、特に好
ましいのはZSM−5である。
The crystalline aluminosilicate used in the present invention is a high silica one with a silica/alumina molar ratio of 20 or more, preferably 30 or more. Examples of these crystalline aluminosilicates include those developed by Mopil Oil Co., Ltd.*z
SM-5 (%Gan Sho 57-228283)%ZSM-
11 (% Kaiyaku No. 54-52699), ZSM-12 (%
158118), and ZSM-5 is particularly preferred.

さらに本発明に用いられる結晶性アルミノシリケートは
、微粒子状である必要がある。ここで言う微粒子状とは
、電子顕微鏡により観測される一次粒子の平均粒子径が
1μm以下、好ましくは0.5μm以下の本のである。
Furthermore, the crystalline aluminosilicate used in the present invention needs to be in the form of fine particles. The term "fine particles" as used herein refers to particles whose primary particles have an average particle diameter of 1 μm or less, preferably 0.5 μm or less, as observed by an electron microscope.

粒子径が1μmより大きい場合には、触媒の活性低下が
大きく、例えば、固定床で反応を行った場合、数時間で
活性は約半分に低下してしまう。それに対して、粒子径
が1μm以下、特に0.5μm以下の微粒子状のものを
用いると、活性は数十時間はとんど低下しない。このよ
うな事実は、これまで予想されなかった驚くべき知見で
ある。
When the particle size is larger than 1 μm, the activity of the catalyst is greatly reduced. For example, when the reaction is carried out in a fixed bed, the activity is reduced to about half in a few hours. On the other hand, when fine particles with a particle size of 1 μm or less, especially 0.5 μm or less are used, the activity hardly decreases for several tens of hours. This fact is a surprising and hitherto unexpected finding.

微粒子状の結晶性アルミノシリケートが活性低下が少な
い理由は不明であるが、次のように考えられる。本発明
における1、2,4.5−テトラメチルベンゼンは分子
径が大きく、狭い結晶性アルミノシリケートの細孔中よ
シ細孔外の酸点て生成しやすい。結晶が微粒子状になる
と、全酸点に対する細孔外の酸点の割合が増大するため
、触媒寿命が延びると考えられる。比較のために、平均
粒子径が1μm以下とそれより大きいH−ZSM−5の
全酸点に対する細孔性酸点の割合を表1に示す。
Although the reason why fine particulate crystalline aluminosilicate exhibits less decrease in activity is unknown, it is thought to be as follows. The 1,2,4,5-tetramethylbenzene used in the present invention has a large molecular diameter and is easily generated at acid sites inside and outside the narrow pores of crystalline aluminosilicate. When the crystals become fine particles, the ratio of acid sites outside the pores to the total acid sites increases, which is thought to extend the catalyst life. For comparison, Table 1 shows the ratio of porous acid sites to the total acid sites of H-ZSM-5 with an average particle size of 1 μm or less and larger than that.

ただし、測定は500CKおけるピリジン(全酸点)4
−メチルキノリン(細孔性酸点)の不可逆吸着量よ請求
めた。
However, the measurement is pyridine (total acid points) 4 at 500CK.
-The amount of irreversible adsorption of methylquinoline (porous acid sites) was claimed.

表 1 本発明にをける微粒子状結晶性アルミノシリケートは、
通常、全酸点に対する細孔性酸点の割合が0.07以上
、好ましくは0.1以上のものである。
Table 1 The particulate crystalline aluminosilicate according to the present invention is
Usually, the ratio of porous acid sites to total acid sites is 0.07 or more, preferably 0.1 or more.

このような微粒子状の結晶性アルミノシリケートt−製
造する方法としては、例えば、100〜120Cの比較
的低温で高速攪拌下に結晶化させる方法が用いられる。
As a method for producing such fine-particle crystalline aluminosilicate, for example, a method of crystallization at a relatively low temperature of 100 to 120 C and under high speed stirring is used.

また、本発明に用いられる結晶性アルミノシリケートは
、各種カチオンでイオン交換して触媒として用いられる
が、好ましいのは、プロトン、周期律表上の■a族、■
b族、■族、希土類族の金属イオンであシ、特に好まし
いのはプロトンである。
In addition, the crystalline aluminosilicate used in the present invention is used as a catalyst after ion exchange with various cations, but preferred are protons, group (a) on the periodic table,
Metal ions of Group B, Group II, and rare earth metals are preferred, and protons are particularly preferred.

本発明におけるキシレンおよび/または1.2,4−)
!Jメ?ルベンゼン/メタノールモル比a o、o 1
〜100の範囲、好ましくは0.1〜10の範囲である
。また、これらの原料は、そのまま導入しても、窒素、
水素等で希釈して導入してもよいが、水素で希釈するこ
とが好ましい。
Xylene and/or 1,2,4-) in the present invention
! J-me? Rubenzene/methanol molar ratio a o, o 1
-100, preferably 0.1-10. In addition, even if these raw materials are introduced as is, nitrogen,
Although it may be introduced after being diluted with hydrogen, it is preferable to dilute with hydrogen.

本発FIAKおける反応温度は200〜5oaC。The reaction temperature in this FIAK is 200 to 5 oaC.

好ましくは250〜400Cの温度範囲で行なわれる。Preferably, the temperature range is 250 to 400C.

本発明は、常圧または加圧で行なわれ、反応方式は固定
床、流動床等を用いた流通反応方式が好ましい。
The present invention is carried out under normal pressure or increased pressure, and the reaction method is preferably a flow reaction method using a fixed bed, a fluidized bed, or the like.

(発明の効果) 後記実施例および比較例から明らかなように、本発8A
Kよれは、触媒の活性低下が非常に小さく、高い選択率
で1.2,4.5−テトラメチルベンゼンを製造するこ
とができる。
(Effect of the invention) As is clear from the examples and comparative examples described later, the present invention 8A
With K-twist, the decrease in catalyst activity is very small and 1,2,4,5-tetramethylbenzene can be produced with high selectivity.

(実施例) 実施例1 Qブランドケイ酸塩水溶液(EiiO,: 29,9重
量%)150Fに、10重量−水酸化テトラブルビルア
ンモニウム水溶液120fを加え、さらに硫酸アルミニ
ウム〔ム4(son)s・113H10)4Fと水40
2を加えて10分間攪拌した。その後、その溶液を強攪
拌しながら20重量−硫酸を滴下し、p)111に調整
して均質なゲルを得た。このグルを攪拌機付1tオート
クレーブに入れ、110Cで5日間、200rpmの回
転数で攪拌しながら結晶化させた。
(Example) Example 1 To Q brand silicate aqueous solution (EiiO,: 29.9% by weight) 150F was added 120F of a 10% by weight tetrabulbyl ammonium hydroxide aqueous solution, and further aluminum sulfate [M4(son)s] was added.・113H10) 4F and water 40
2 was added and stirred for 10 minutes. Thereafter, 20% by weight of sulfuric acid was added dropwise to the solution while stirring the solution to adjust the p) to 111 to obtain a homogeneous gel. This glue was placed in a 1 ton autoclave equipped with a stirrer and crystallized at 110C for 5 days with stirring at a rotational speed of 200 rpm.

得られた生成物を濾過、洗浄、120Cで5時間乾燥後
、sooに’で8時間空気中で焼成してX線回折分析を
行った。その結果、この生成物はZSM−5と同定され
九。
The obtained product was filtered, washed, dried at 120C for 5 hours, and then calcined in air for 8 hours at 120C, and subjected to X-ray diffraction analysis. As a result, this product was identified as ZSM-5.

さらに、この結晶を1N塩化アンモニウム水溶液で6D
C,24時間イオン交換した後、濾過、洗浄、乾燥し、
500Cで5時間焼成してプロトン型とした。
Furthermore, this crystal was added to 6D with 1N ammonium chloride aqueous solution.
C. After ion exchange for 24 hours, filter, wash, dry,
It was fired at 500C for 5 hours to form a proton type.

この結晶の螢光X線分析よ請求め九Sin、 /Al4
0゜モル比Fi70であった。また、走査型電子顕微鏡
によプ観測した一次粒子の平均粒子径は0.08μmで
あった。
I request a fluorescent X-ray analysis of this crystal./Al4
The molar ratio Fi was 70. Further, the average particle diameter of the primary particles observed with a scanning electron microscope was 0.08 μm.

この微粒子状のH−28M−5i触媒として用い、メタ
キシレンとメタノールからの気相メチル化反応を次のよ
うな反応条件で行った。
Using this particulate H-28M-5i catalyst, a gas phase methylation reaction from meta-xylene and methanol was carried out under the following reaction conditions.

メタキシレン/メタノール/ atモル比=−1/1/
1,5WH8V (メタキシレン/メタノール基準) 
= 5,4hr−’反応温度:!+00tl:’% 圧
力ニ6に9/cI1反応開始後、1〜20時間の成績を
表2に示す。
Meta-xylene/methanol/at molar ratio = -1/1/
1,5WH8V (meta-xylene/methanol standard)
= 5,4hr-'Reaction temperature:! +00tl:'% Pressure 6 to 9/cI1 Results from 1 to 20 hours after the start of the reaction are shown in Table 2.

表 2 X キシレン転化率・・・・・・m−メキシンから0O
−2p−への異性化への転化率は含まない。
Table 2 X xylene conversion rate...00 from m-mexine
Conversion rate to isomerization to -2p- is not included.

実施例2 実施例1で用い九のと同じ微粒子状)[−Z 8 M−
5を用いて、1,2.4−トリメチルベンゼンとメタノ
ールからの気相メチル化反応を下記の条件で行った。
Example 2 The same fine particle form as used in Example 1) [-Z 8 M-
A gas phase methylation reaction from 1,2,4-trimethylbenzene and methanol was carried out using No. 5 under the following conditions.

1.2.4−トリメチルベンゼン/メタノール/If、
=1/2/4WH8V(1,2,4−)リメチルベンゼ
ン+メタノール基準)=35hr−’ 反応温度:zaoC,圧力ニ 10kg/al反応開始
後、1〜20時間の成績を表3に示す。
1.2.4-trimethylbenzene/methanol/If,
= 1/2/4WH8V (1,2,4-)limethylbenzene + methanol standard) = 35 hr-' Reaction temperature: zaoC, pressure 10 kg/al After the start of the reaction, the results from 1 to 20 hours are shown in Table 3. .

表 5 の異性化への転化率は含まない。Table 5 Does not include the conversion rate to isomerization.

実施例5 Qグランドケイ酸塩水溶液200yに10重量%水酸化
テトラプロピルアンモニウム水溶液1502を加え、さ
らに硫酸アルミニウムCA4(SO2)s・18H,O
) 10 fと水502を加えて10分間攪拌した。さ
らに、この溶液に20重量%硫酸を滴下し、 I)H1
0,5Vc@整して均質なゲルを得た。このゲルを攪拌
機付1tオートクレーブに入れ、120Cで7日間、1
100rpの回転数で攪拌しながら結晶化させた。
Example 5 10% by weight tetrapropylammonium hydroxide aqueous solution 1502 was added to 200y of Q ground silicate aqueous solution, and further aluminum sulfate CA4(SO2)s・18H,O
) 10 f and water 502 were added and stirred for 10 minutes. Furthermore, 20% by weight sulfuric acid was added dropwise to this solution, and I) H1
A homogeneous gel was obtained by adjusting 0.5Vc@. This gel was placed in a 1 ton autoclave equipped with a stirrer and heated at 120C for 7 days.
Crystallization was carried out while stirring at a rotational speed of 100 rpm.

得られた生成物t濾過、洗浄、120Cで6時間乾燥後
、5oaCで8時間空気中で焼成してX線回折分析を行
った。その結果、この生成物はZSM−5と同定された
The obtained product was filtered, washed, dried at 120 C for 6 hours, and then calcined in air at 5 oaC for 8 hours and subjected to X-ray diffraction analysis. As a result, this product was identified as ZSM-5.

さらに、この結晶11N塩化アンモニウム水溶液で60
C,24時間イオン交換した後、濾過、洗浄、乾燥し、
500Cで5時間焼成してプロトン型とした。
Furthermore, 60
C. After ion exchange for 24 hours, filter, wash, dry,
It was fired at 500C for 5 hours to form a proton type.

この生成物の螢光X線分析よ請求めたSiO,/A14
0.モル比は65であった。また、走査型電子顕微鏡に
よル観測された一次粒子の平均粒子径は0.3μmであ
った。
Fluorescent X-ray analysis of this product requested SiO,/A14
0. The molar ratio was 65. Further, the average particle diameter of primary particles observed using a scanning electron microscope was 0.3 μm.

この微粒子状H−ZSM−5を触媒として用い、メタキ
シレンとメタノールからの気相メチル化反応を次の反応
条件で行った。
Using this particulate H-ZSM-5 as a catalyst, a gas phase methylation reaction from meta-xylene and methanol was carried out under the following reaction conditions.

メタキシレ//メタノール/馬= 1 / 2 / 2
WH8V (メタキシレン+メタノール基準)−5hr
−’反応温度: 330C5圧力ニ4kg/cd反応開
始後、1〜20時間の成Mを表4に示す。
Metaxylene // methanol / horse = 1 / 2 / 2
WH8V (metaxylene + methanol standard) -5hr
-'Reaction temperature: 330C5 pressure 4 kg/cd Table 4 shows the reaction temperature for 1 to 20 hours after the start of the reaction.

表 4 比較例 実施例1と同じゲルを攪拌機付1tオートクレーブに入
れ、180Cで30時間、15 rpmの回転数で攪拌
しながら結晶化させた。
Table 4 Comparative Example The same gel as in Example 1 was placed in a 1 ton autoclave equipped with a stirrer and crystallized at 180 C for 30 hours with stirring at a rotation speed of 15 rpm.

得られた生成物を濾過、洗浄、120Cで5時間乾燥後
、500Gで8時間空気中で焼成してX線回折分析を行
なった。その結果、この生成物はZSM−5と同定され
た。
The obtained product was filtered, washed, dried at 120C for 5 hours, then calcined in air at 500G for 8 hours, and subjected to X-ray diffraction analysis. As a result, this product was identified as ZSM-5.

さらに、これを実施例1と同様にイオン交換を行い、プ
ロトン型とした。
Furthermore, this was subjected to ion exchange in the same manner as in Example 1 to obtain a proton type.

この生成物の螢光X線分析よりめたs r O,/A!
40.モル比は65であった。また、走査型電子顕微鏡
により観測した一次粒子の平均粒子径は3μmであった
Fluorescent X-ray analysis of this product revealed that s r O,/A!
40. The molar ratio was 65. Further, the average particle diameter of the primary particles observed using a scanning electron microscope was 3 μm.

このH−ZSM−5を触媒として用いて実施例1と同じ
条件でメタキシレンとメタノールからの気相メチル化反
応を行った。
Using this H-ZSM-5 as a catalyst, a gas phase methylation reaction from meta-xylene and methanol was carried out under the same conditions as in Example 1.

反応開始後、1〜20時間の成績を表5に示す。Table 5 shows the results from 1 to 20 hours after the start of the reaction.

表 5Table 5

Claims (2)

【特許請求の範囲】[Claims] (1) キシレンおよび/ま九は1,2,4− )リメ
チルベンゼンをメタノールを用いて気相メチル化して1
,2,4.5−テトラメチルベンゼンを製造する際に1
触媒としてシリカ/アルミナモル比が20以上の微粒子
状結晶性アルミノシリケートを用いることを特徴とする
1、2,4.5−テトラメチルベンゼンの製造法。
(1) Xylene and 1,2,4-)limethylbenzene are methylated in the gas phase using methanol.
, 1 when producing 2,4.5-tetramethylbenzene.
1. A method for producing 1,2,4.5-tetramethylbenzene, characterized in that a particulate crystalline aluminosilicate having a silica/alumina molar ratio of 20 or more is used as a catalyst.
(2) 結晶性アルミノシリケートがZSM−5である
特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the crystalline aluminosilicate is ZSM-5.
JP59109507A 1984-05-31 1984-05-31 Production of 1,2,4,5-tetramethylbenzene Granted JPS60255739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59109507A JPS60255739A (en) 1984-05-31 1984-05-31 Production of 1,2,4,5-tetramethylbenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109507A JPS60255739A (en) 1984-05-31 1984-05-31 Production of 1,2,4,5-tetramethylbenzene

Publications (2)

Publication Number Publication Date
JPS60255739A true JPS60255739A (en) 1985-12-17
JPH0478623B2 JPH0478623B2 (en) 1992-12-11

Family

ID=14512014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109507A Granted JPS60255739A (en) 1984-05-31 1984-05-31 Production of 1,2,4,5-tetramethylbenzene

Country Status (1)

Country Link
JP (1) JPS60255739A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939836A (en) * 1982-08-27 1984-03-05 Toyo Soda Mfg Co Ltd Preparation of 1,2,4,5-tetraalkylbenzene
JPS59155330A (en) * 1983-02-22 1984-09-04 Tateaki Yashima Preparation of durene
JPS60224643A (en) * 1984-04-23 1985-11-09 Idemitsu Kosan Co Ltd Production of durene

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939836A (en) * 1982-08-27 1984-03-05 Toyo Soda Mfg Co Ltd Preparation of 1,2,4,5-tetraalkylbenzene
JPS59155330A (en) * 1983-02-22 1984-09-04 Tateaki Yashima Preparation of durene
JPS60224643A (en) * 1984-04-23 1985-11-09 Idemitsu Kosan Co Ltd Production of durene

Also Published As

Publication number Publication date
JPH0478623B2 (en) 1992-12-11

Similar Documents

Publication Publication Date Title
US4002697A (en) Selective production of para-xylene
US5240892A (en) Small crystal ZSM-5, as a catalyst
EP2589573B1 (en) Zeolite production method
KR20070086050A (en) Method for the synthesis of zeolite beta with diethylentriamine
JPH01250332A (en) Production of p-ethylphenol
JP2001287911A (en) Zeolite mtt containing crystal and crystal aggregate having specific particle size and its use as straight-chain paraffin isomerization catalyst
WO1996020891A1 (en) Rare earth-zsm-5/zsm-11 cocrystalline zeolite
JPS6133236A (en) Activation of zeolite
JPH05201722A (en) Method for synthesizing zeolite beta
Suzuki et al. Zeolite synthesis in the system pyrrolidine-Na2O Al2O3 SiO2 H2O
EA001597B1 (en) Process for isomerization of alkylaromatic hydrocarbons
EP0842117B1 (en) Large crystal zsm-5, its synthesis and use
US5157185A (en) Alkylation of aromatics
EP0055913B1 (en) Preparation of a fluidisable methanol conversion catalyst
JP2002509477A (en) Alkylation catalyst and its application
JP2559066B2 (en) Method for synthesizing crystalline silicate ZSM-11
EP0152485A1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
FR2887246A1 (en) EUO STRUCTURAL TYPE ZEOLITE CONTAINING THE N, N-DIMETHYL-N, N-DI (3,3-DIMETHYLBUTYL) AMMONIUM CATION AND PROCESS FOR PREPARING THE SAME
JP2005139190A (en) Method for catalytically isomerizing aromatic compound
US20150273453A1 (en) Bismuth-modified molecular sieves and methods for preparing and using bismuth-modified molecular sieves
US5334781A (en) Process for the preparation of nitrobenzene
JPS6077125A (en) Preparation and manufacture of acid strength of zsm-12
EP0681869B1 (en) Process for preparing methylamines using a mordenite catalyst
JPS60255739A (en) Production of 1,2,4,5-tetramethylbenzene
CN108525650B (en) X/Silicalite-1 core/shell molecular sieve and preparation method thereof