JPS60255601A - Method of chlorination in molten salt bath - Google Patents

Method of chlorination in molten salt bath

Info

Publication number
JPS60255601A
JPS60255601A JP10829584A JP10829584A JPS60255601A JP S60255601 A JPS60255601 A JP S60255601A JP 10829584 A JP10829584 A JP 10829584A JP 10829584 A JP10829584 A JP 10829584A JP S60255601 A JPS60255601 A JP S60255601A
Authority
JP
Japan
Prior art keywords
chloride
molten salt
salt bath
metal
chlorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10829584A
Other languages
Japanese (ja)
Inventor
Michio Nanjo
南條 道夫
Akiyoshi Kato
加藤 明美
Masayuki Kudo
正行 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP10829584A priority Critical patent/JPS60255601A/en
Publication of JPS60255601A publication Critical patent/JPS60255601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To increase a reaction rate in a molten salt bath, by adding a metal whose higher chloride has strong chlorinating power or its chloride to the molten salt bath. CONSTITUTION:As a method to increase a reaction rate in a molten salt bath, a metal whose higher chloride has strong chlorinating power, such as Fe, Cr, Nb, Ta, Sn, V, Cu, or its chloride is added to the molten salt bath. By the addition, the reaction rate is extremely increased, it is considered that the rise in the reaction rate is due to a catalytic chlorinating reaction caused by the metal chloride besides direct chlorination with a chlorinating agent such as a chlorine gas, etc. In a catalytic reaction with a chlorine gas, an iron chloride is shown as an example, the chlorine gas is absorbed in the catalytic chloride as shown in the formula I and II, and spread in the whole bath, so lessening of chlorine gas bubbles as carried out conventionally is not required.

Description

【発明の詳細な説明】 どの金属成分を塩素化する方法に関する。[Detailed description of the invention] Concerning how to chlorinate which metal components.

更に詳しくは、溶融塩浴塩素化法において目的とする金
属成分を塩素化し得る高級塩化物を形成可能な金属、又
はその塩化物を塩素化触媒として溶融塩浴に添加するこ
とを特徴とする方法である。
More specifically, in the molten salt bath chlorination method, a metal capable of forming a higher chloride capable of chlorinating the target metal component, or a chloride thereof, is added to the molten salt bath as a chlorination catalyst. It is.

NaCI−KCI共晶塩などの溶融塩浴中で金属含有物
を塩素化して金属塩化物を得る方法は、反応熱による局
部加熱がなく温度抑制が容易であるため種々の金属の塩
素化に試みられている。(例えば、南條、日本鉱業会、
昭和56年度春季大会講演要旨集P243 ) この溶融塩浴において、一般的には、反応速度を大きく
する為には、原料金属成分を微粉砕して浴中に懸濁させ
る必要がある。しかし、微粉砕では懸濁が困難な原料も
あり、又、懸濁しても塩素ガス等の塩素化剤と原・料と
の接触を良くする為には、機械的な撹拌などの装置的な
工夫が必要であるなど必ずしも好゛ましい方法ではない
The method of obtaining metal chlorides by chlorinating metal-containing substances in a molten salt bath such as NaCI-KCI eutectic salt has been attempted for the chlorination of various metals because there is no local heating due to reaction heat and temperature control is easy. It is being (For example, Nanjo, Japan Mining Association,
1981 Spring Conference Lecture Abstracts P243) In this molten salt bath, in order to increase the reaction rate, it is generally necessary to finely grind the raw metal components and suspend them in the bath. However, some raw materials are difficult to suspend when finely pulverized, and even if they are suspended, it is necessary to use equipment such as mechanical stirring to improve the contact between the chlorinating agent such as chlorine gas and the raw materials. This is not necessarily a desirable method as it requires some ingenuity.

本発明者らは、溶融塩浴での反応速度を大きくする為の
方法を鋭意検討した結果、その金属の高級塩化物が強い
塩素化力をもつ金属、たとえば、Fe。
As a result of intensive study on methods for increasing the reaction rate in a molten salt bath, the present inventors found that the higher chloride of the metal has a strong chlorinating power, such as Fe.

Cr1Nb, Ta, Sn, V 、 Cu 又は、
そレラノ塩化物を溶融塩浴に添加することにより反応速
度が飛躍的に増大することを見出し本発明を完成した。
Cr1Nb, Ta, Sn, V, Cu or
The present invention was completed by discovering that the reaction rate was dramatically increased by adding solerano chloride to a molten salt bath.

この反応速度の増大は、塩素ガス等の塩素化剤による直
接的塩素化の他に、添加した金属の塩化物による触媒的
な塩素化反応が伴う為であると考えられる。
This increase in reaction rate is thought to be due to the fact that, in addition to direct chlorination using a chlorinating agent such as chlorine gas, a catalytic chlorination reaction occurs using the added metal chloride.

次に、本発明を詳細に述べる。Next, the present invention will be described in detail.

本発明における塩素ガスによる触媒反応を鉄及びクロム
の塩化物を例にとって示すと次のようになる。(式中H
は原料中の目的金属、mは係数)鉄の場合 mFecJt3+H= H(Jll +mFec12 
・’ (1)IllFec4 +II+/2CJ2 =
 ml’ec4−(2)m+(2) H+ m/2Cj
!2= Hclm−(3)クロムの場合 mcrcJ!、、+H= MCI!III +mCrC
Jz ・(1)’mCrC4+ m/2C孟、、 = 
mcrcj!3・(2)’(1)’+(2)’ H+ 
m/2CJ!、= HC口・(3)’このような触媒反
応は、これまで水溶液系又は有機溶媒系において知られ
ているが、金属の塩素化反応のような高温反応に用いら
れた例はない。
The catalytic reaction using chlorine gas in the present invention will be explained below using chlorides of iron and chromium as examples. (H in the formula
is the target metal in the raw material, m is the coefficient) In the case of iron, mFecJt3 + H = H (Jll + mFec12
・' (1) IllFec4 +II+/2CJ2 =
ml'ec4-(2)m+(2)H+ m/2Cj
! 2= Hclm-(3) mcrcJ for chromium! ,,+H=MCI! III +mCrC
Jz ・(1)'mCrC4+ m/2Cmeng,, =
mcrcj! 3・(2)'(1)'+(2)' H+
m/2CJ! , = HC port (3)' Although such catalytic reactions have been known in aqueous systems or organic solvent systems, there are no examples of them being used in high-temperature reactions such as metal chlorination reactions.

一般的な乾式の高温塩素化反応において、このような触
媒的塩化物を添加しても、ずぐに気化損失するとともに
、溶媒が存在しない為に触媒塩化物の移動が円滑に行な
はれず触媒作用をほとんど示さない。
In a typical dry high-temperature chlorination reaction, even if such a catalytic chloride is added, it will quickly vaporize and be lost, and the absence of a solvent will prevent smooth movement of the catalytic chloride, resulting in a loss of catalyst. It shows almost no effect.

一方、本発明において、溶融塩浴中に溶解した触媒塩化
物の蒸気圧は一般的に溶融塩浴中のモル分率に比例して
小さくなり、該塩化物の沸点以上においても気化損失が
少なく充分に使用できるとともに該塩化物の溶融塩浴中
での移動も速やかに行なはれ充分に触媒作用を発揮する
ことができる。
On the other hand, in the present invention, the vapor pressure of the catalyst chloride dissolved in the molten salt bath generally decreases in proportion to the mole fraction in the molten salt bath, and vaporization loss is small even at temperatures above the boiling point of the chloride. It can be used satisfactorily, and the chloride moves quickly in the molten salt bath, so that it can sufficiently exhibit its catalytic action.

溶融塩浴としてHa(J 、にCλなどを用いた場合に
は添加塩化物と複塩を作るなどして更に蒸気圧が小さく
なるため、より高温で触媒として用いることができる。
When Ha(J, Cλ, etc.) is used as the molten salt bath, the vapor pressure is further reduced by forming a double salt with the added chloride, so it can be used as a catalyst at higher temperatures.

本発明においては、反応系に吹込んで用いる塩素化剤、
例えば塩素含有ガスが前記(1) 、(2)式のように
触媒塩素化物に吸収され浴全体に広がる為、従来のよう
に塩素ガス気泡を小さくする為の装置的な工夫を必要と
しない。
In the present invention, the chlorinating agent used by blowing into the reaction system,
For example, since the chlorine-containing gas is absorbed by the chlorinated catalyst and spreads throughout the bath as shown in equations (1) and (2) above, there is no need for any equipment improvements to reduce the size of chlorine gas bubbles as in the conventional method.

本発明において、塩素化触媒として添加する触媒の形態
は、金属、低級塩化物、あるいは高級塩化物のいずれで
も良い。金属あるいは低級塩化物として添加された場合
でも、その添加物は塩素化剤により塩素化されて高am
化物となり触媒作用を示す。
In the present invention, the catalyst added as a chlorination catalyst may be in the form of a metal, a lower chloride, or a higher chloride. Even when added as a metal or lower chloride, the additive is chlorinated by a chlorinating agent and has a high
It becomes a chemical substance and exhibits catalytic action.

触媒として添加する金属又はその塩化物の量は、溶融塩
浴中に1101%以上であれば充分であるが、触媒の気
化損失などがない条件では、5■01%以上添加するこ
とが好ましい。
It is sufficient that the amount of the metal or its chloride added as a catalyst is 1101% or more in the molten salt bath, but it is preferably added in an amount of 5101% or more under conditions where there is no vaporization loss of the catalyst.

本発明における反応温度は、触媒の高級塩化物が目的金
属を塩素化できる温度であれば良いが、触媒として用い
る高級塩化物が熱分解しやすくなる温度(FeCj13
では約300度c 、CrC4では約600度C)以上
で触媒作用がもっとも有効にはたらく。
The reaction temperature in the present invention may be a temperature at which the higher chloride used as a catalyst can chlorinate the target metal, but it may be set at a temperature at which the higher chloride used as a catalyst is easily thermally decomposed (FeCj13
The catalytic action is most effective at temperatures above 300 degrees Celsius for CrC4 and about 600 degrees Celsius for CrC4.

又、触媒塩化物の沸点より非常に高い温度で反応させる
場合には触媒の気化損失を防ぐ為に触媒濃度を薄くする
ことが好ましい。
Further, when the reaction is carried out at a temperature much higher than the boiling point of the catalyst chloride, it is preferable to reduce the catalyst concentration in order to prevent loss of catalyst by vaporization.

本発明において、塩素化される金属又は、金属含有物質
などの金属成分としては、触媒として用いる高級塩化物
により塩素化され得るものであれば良く、例えば、粗金
属、合金、金属硫化物などの金属化合物、金属スクラッ
プ、又、廃触媒のようなセラミックスとの混合物などが
あげられる。
In the present invention, the metal to be chlorinated or the metal component such as a metal-containing substance may be any metal as long as it can be chlorinated by the higher chloride used as a catalyst, such as crude metals, alloys, metal sulfides, etc. Examples include metal compounds, metal scraps, and mixtures with ceramics such as waste catalysts.

又、溶融塩浴として用いる成分は、周期率表筒■族(L
i、Na、に、など)及び第1I族(140,Ca、 
Baなど)の金属塩化物又はフッ化物などであり、これ
らを単味で、又は、混合塩として用いる。
In addition, the components used as the molten salt bath are those in periodicity group Ⅰ (L
i, Na, Ni, etc.) and Group 1I (140, Ca,
These are metal chlorides or fluorides of Ba, etc.), and these are used alone or as a mixed salt.

次に実施例で本発明を更に詳述する。Next, the present invention will be explained in further detail with reference to Examples.

実施例I LiCJ : KCオニBaCj2= 5:38ニア(
mol比)の混合塩化物1oo重量部に対して、FeC
島 12.4重量部を添加した溶融塩浴を用い、4〜1
0s■の金属Si粒(Si:98X以上)を400度c
、C12ガス流1100*I /sin。
Example I LiCJ: KC Oni BaCj2 = 5:38 Near (
FeC
Using a molten salt bath containing 12.4 parts by weight of
0s ■ metal Si grains (Si: 98X or more) at 400 degrees C
, C12 gas flow 1100*I/sin.

A「ガス流量100m1/winの条件で第一図に示し
た装置により塩素化した結果、Siの塩素化速度は4Q
/hrであり、冷却器に得られた生成物はわずかに黄色
味をもつ3iC&であった。
A: As a result of chlorination using the equipment shown in Figure 1 at a gas flow rate of 100 m1/win, the chlorination rate of Si was 4Q.
/hr, and the product obtained in the condenser was 3iC& with a slight yellow tinge.

又、Fe塩化物の溶融塩浴からの気化損失は1z以下で
あった。
Further, the vaporization loss of Fe chloride from the molten salt bath was 1z or less.

比較例1 実施例1と周一の混合塩化物にFe化合物を添加せずに
、実施例1と同一の条件でSiを塩素化した結果その塩
素化速度はO,13g/hrであった。又、溶融塩浴を
用いずにSiのみを第一図の装置に充填して実施例1と
同温疾、同ガス流量で塩素化した結果、塩素化速度はi
、 1g/hrであった。
Comparative Example 1 Si was chlorinated in the mixed chlorides of Example 1 and Shuichi under the same conditions as in Example 1 without adding an Fe compound, and the chlorination rate was O, 13 g/hr. In addition, as a result of filling only Si into the apparatus shown in Figure 1 without using a molten salt bath and chlorinating at the same temperature and gas flow rate as in Example 1, the chlorination rate was i.
, 1 g/hr.

実施例2 NaCIl :にcjl = 1:1 (mol比)の
混合塩ioo重量部にCrC426,5重量部を添加し
た溶融塩浴を用いて 750〜800度c、C4ガス流
量400m1/minで3Il1m以下の大きさの金属
クロムを第二図に示した装置により 45分間塩素化し
た時の平均塩素化速度は40(]/hrであり、更に1
20分間続けて塩素化した時の平均塩素化速度は501
/hrであった。反応の後半は浴中のクロム塩化物の濃
度が高くなり、塩化クロムの触媒作用が大きくなったも
のである。
Example 2 Using a molten salt bath in which 5 parts by weight of CrC was added to 10 parts by weight of a mixed salt of NaCl: to cjl = 1:1 (molar ratio), 3 Il 1 m at 750 to 800 degrees C and a C4 gas flow rate of 400 ml/min. When metallic chromium of the following size was chlorinated for 45 minutes using the apparatus shown in Figure 2, the average chlorination rate was 40(]/hr, and
The average chlorination rate when chlorinated for 20 minutes was 501.
/hr. In the latter half of the reaction, the concentration of chromium chloride in the bath increased, and the catalytic action of chromium chloride became stronger.

生成塩化クロムは2価と3価の混合物として溶融塩浴中
に溶解して残った。尚、最初に塩化クロムを添加しない
場合、塩素化速度が40g/hrに達するのに4〜5時
間を要した。
The produced chromium chloride remained dissolved in the molten salt bath as a divalent and trivalent mixture. Note that when chromium chloride was not added first, it took 4 to 5 hours for the chlorination rate to reach 40 g/hr.

実施例3 実施例2と同一の混合塩100重量部にCrC412,
5重量部を添加した溶融塩浴を用いて 77019 C
1Cj12ガス流量300m1/minで6〜10mm
の粒状N1を第二図に示した装置により塩素化した結果
Niの塩素化速度は 15.3(1/hrであった。
Example 3 CrC412, 100 parts by weight of the same mixed salt as in Example 2,
Using a molten salt bath containing 5 parts by weight of 77019C
6 to 10 mm at 1Cj12 gas flow rate of 300m1/min
As a result of chlorinating the granular N1 using the apparatus shown in Figure 2, the Ni chlorination rate was 15.3 (1/hr).

比較例2 CrCオ。を添加せずに実施例3と同一の条件でNiを
塩素化した結果、塩素化速度は1.55g/hrであっ
た。
Comparative Example 2 CrC. As a result of chlorinating Ni under the same conditions as in Example 3 without adding Ni, the chlorination rate was 1.55 g/hr.

【図面の簡単な説明】[Brief explanation of the drawing]

第一図、二図は本発明の一実施態様を示した図である。 第一図中1はガス導入口、2は反応管、3は電気炉、4
は溶融塩浴、5は冷却器、6は生成物、1は排ガス出口 第二図中1はガス導入口、2は反応管、3は電気炉、4
は溶融塩浴、5は原料、6は排ガス出口を夫々示す。 特許出願人東洋曹達工業株式会社 第一図 第二図 手続補正書 特許庁長官 志賀 学殿 昭和59年7月23日1、事
件の表示 昭和59年特許願第108295号 2 発明の名称 溶融塩浴塩化法 3 補正をする者 事件との関係 特許出願人 住所〒746山ロ県新南陽市大字富田4560番地4 
補正により増加する発明の数 5、補正命令の日付 自発補正 6 補正の対象 明細書 発明の詳細な説明の欄 1 補正の内容 「なはれ」を「なわれ」に訂正。 3)明細書 4ページ 9行 r HacJ Jを「11acオ」に訂正。 4)明細書 6ページ 8行 r =’5:38ニアJを[=55・3Bニア Jに訂
正。 以上
Figures 1 and 2 are diagrams showing one embodiment of the present invention. In Figure 1, 1 is the gas inlet, 2 is the reaction tube, 3 is the electric furnace, and 4
is a molten salt bath, 5 is a cooler, 6 is a product, 1 is an exhaust gas outlet, 1 is a gas inlet in Figure 2, 2 is a reaction tube, 3 is an electric furnace, 4
5 indicates a molten salt bath, 5 indicates a raw material, and 6 indicates an exhaust gas outlet. Patent Applicant: Toyo Soda Kogyo Co., Ltd. Figure 1 Figure 2 Procedural Amendment Commissioner of the Patent Office Gakudono Shiga July 23, 1981 1. Indication of the case 1989 Patent Application No. 108295 2. Name of the invention Molten salt bath Chloride Law 3 Relationship with the person making the amendment Patent applicant address 4560-4 Oaza Tomita, Shinnanyo City, Yamaro Prefecture 746
Number of inventions increased by amendment 5, date of amendment order voluntary amendment 6 Specification subject to amendment Column 1 for detailed explanation of invention Contents of amendment "Nahare" was corrected to "Naware". 3) Specification page 4 line 9 r HacJ J was corrected to "11ac O". 4) Specification page 6, line 8 r = '5:38 Near J was corrected to [=55.3B Near J. that's all

Claims (1)

【特許請求の範囲】 1) 溶融塩浴中で金属又は金属含有物質などの金属成
分を塩素化する方法において、該金属成分を塩素化し得
る高級塩化物を形成可能な金属、又はその塩化物を溶融
塩浴に添加することを特徴とする溶融塩浴塩化法 2)Fe、Cr、Nb、 Ta1Sn、 V 、 Cu
 又は、それらの塩化物のうち一種以上を溶融塩浴に添
加して塩素化を行なう特許請求の範囲第1項記載の方法
[Claims] 1) In a method of chlorinating a metal component such as a metal or a metal-containing substance in a molten salt bath, a metal capable of forming a higher chloride capable of chlorinating the metal component, or a chloride thereof, is used. Molten salt bath chlorination method characterized by adding to the molten salt bath 2) Fe, Cr, Nb, Ta1Sn, V, Cu
Alternatively, the method according to claim 1, in which chlorination is carried out by adding one or more of these chlorides to a molten salt bath.
JP10829584A 1984-05-30 1984-05-30 Method of chlorination in molten salt bath Pending JPS60255601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10829584A JPS60255601A (en) 1984-05-30 1984-05-30 Method of chlorination in molten salt bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10829584A JPS60255601A (en) 1984-05-30 1984-05-30 Method of chlorination in molten salt bath

Publications (1)

Publication Number Publication Date
JPS60255601A true JPS60255601A (en) 1985-12-17

Family

ID=14481058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10829584A Pending JPS60255601A (en) 1984-05-30 1984-05-30 Method of chlorination in molten salt bath

Country Status (1)

Country Link
JP (1) JPS60255601A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093893A (en) * 1973-12-11 1975-07-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093893A (en) * 1973-12-11 1975-07-26

Similar Documents

Publication Publication Date Title
JPH01168347A (en) Production of 3, 3, 3-trifluoropropene-1
US2469879A (en) Preparation of boron compounds
US4435379A (en) Process for treating chlorinated hydrocarbons
Wichers et al. Attack of refractory platiniferous materials by acid mixtures at elevated temperatures
Lerner Small-Scale Synthesis of Laboratory Reagents
US4125586A (en) Removal of AlCl3 from crude TiCl4 by addition of H2 O and NaCl
US3951648A (en) Process for recovering palladium, more particularly from alumina containing catalysts
US2689254A (en) Process of preparing the compound
JPS6191335A (en) Method for recovering platinum group metal
US3407031A (en) Process for the manufacture of inorganic chlorides
JPS60255601A (en) Method of chlorination in molten salt bath
GB777086A (en) Improvements in or relating to the production of phenylchlorosilanes
US3944647A (en) Recovering chlorine from the chlorination of titaniferous material
US2140549A (en) Preparation of 1, 1, 2-trichloroethane
CA1067518A (en) Process for the production of chlorofluorinated aliphatic ketones
US6036937A (en) Method for producing zinc bromide
McBee et al. Utilization of polychloropropanes and hexachloroethane
EP0007064B1 (en) Purification of ethylene dichloride
KR790001615B1 (en) Oxychlorination of methane
US3115527A (en) Process for the nitration of organic compound in gas phase
US4900521A (en) Process for purifying aluminum chloride
US3564066A (en) Fixed bed catalytic process for the preparation of trichloropropanes
JPS61233639A (en) 1,2-dichloroethane continuous cracking process
US4092370A (en) Process for producing tetrachloroethylene from tetrachloromethane using a molten salt catalyst
CN106582664A (en) Catalyst for production of tetrachloroethylene through dichloroethane oxychlorination as well as preparation method and application