JPS60255132A - Apparatus for denitrating reaction - Google Patents

Apparatus for denitrating reaction

Info

Publication number
JPS60255132A
JPS60255132A JP59110488A JP11048884A JPS60255132A JP S60255132 A JPS60255132 A JP S60255132A JP 59110488 A JP59110488 A JP 59110488A JP 11048884 A JP11048884 A JP 11048884A JP S60255132 A JPS60255132 A JP S60255132A
Authority
JP
Japan
Prior art keywords
gas
ammonia
bowl
reactor
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59110488A
Other languages
Japanese (ja)
Inventor
Masao Ota
大田 雅夫
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP59110488A priority Critical patent/JPS60255132A/en
Publication of JPS60255132A publication Critical patent/JPS60255132A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To mix uniformly ammonia and to increase the denitration efficiency in an apparatus for denitrating reaction by introducing the gaseous mixture of ammonia into the upstream part of the reactor, making the gas to be received on the inside surface of a bowl-shaped instrument and providing a catalytic layer to the rear flow of the bowl-shaped instrument. CONSTITUTION:Gaseous mixture charged with ammonia is introduced into the upstream of a reactor 1 and introduced into the reactor through a gas introducing pipe 2 and a gas guiding pipe 3 together with the gas to be treated. The gas to be treated is injected from the tip port of the gas guiding pipe and allowed to collide against a bowl-shaped instrument 4 and the gas is reversely flowed upward to be flowed to the upper part of the reactor and advanced to the space part of the reactor while causing turbulent flow. Ammonia is uniformly mixed into the gas and thereafter reached to a catalytic layer 5 and converted into nitrogen and water by means of denitrating reaction and discharged from a gas discharging pipe 6.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明の脱硝反応装置は、窒素酸化物含有の排ガスをア
ンモニヤ(NHs)接触還元法による脱硝装置に係ル、
特に排ガスとアンモニヤとが好適に混合する反応装置に
関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The denitrification reaction device of the present invention relates to a denitrification device using an ammonia (NHs) catalytic reduction method for exhaust gas containing nitrogen oxides.
In particular, the present invention relates to a reaction device in which exhaust gas and ammonia are suitably mixed.

〔発明の背景〕[Background of the invention]

近年、ボイラや化学プラント晦から排出されるガス中の
鼠素酸化物(NOx)k低減除去する脱硝方法として、
乾式脱硝方法であるアンモニヤによる選択接触還元法が
大規模に実用されている。
In recent years, denitrification methods have been used to reduce and remove nitric oxide (NOx) from gases emitted from boilers and chemical plants.
Selective catalytic reduction using ammonia, which is a dry denitrification method, has been put into practice on a large scale.

被処理ガス中のNOx濃度は燃焼ガスの場合数lO〜数
100 ppmであるが、硝酸関連プラントの排ガスの
場合には数11000pp〜数チにも達することがある
The NOx concentration in the gas to be treated is from several 10 to several 100 ppm in the case of combustion gas, but can reach several 11,000 pp to several hundreds of ppm in the case of exhaust gas from a nitric acid-related plant.

排ガス中のNOxとアンモニヤとの接触還元脱硝はNO
xとアンモニヤを均一に混合して触媒により窒素と水に
変えることで、NOxとアンモニヤとの反応モル比はN
Ox成分のうち一酸化窒素(No)のリッチな排ガスで
は略々l:1であるが、二酸化窒素(NOl)のリッチ
な排ガスではl:1.5〜2.0で、排ガスに対して注
入するアンモニヤ量は増大するものの、被処理ガスの排
処理ガスに対しては1%以下といり極めて低い濃度とな
っている。脱硝反応を量論的に進めるには触媒層に至る
迄にNOxとアンモニヤを均一に混合することが必要条
件である。
Catalytic reduction denitrification between NOx in exhaust gas and ammonia
By uniformly mixing x and ammonia and converting it into nitrogen and water using a catalyst, the reaction molar ratio of NOx and ammonia is reduced to N
For exhaust gas rich in nitrogen monoxide (No) among Ox components, the ratio is approximately l:1, but for exhaust gas rich in nitrogen dioxide (NOl), the ratio is l:1.5 to 2.0. Although the amount of ammonia increased, the concentration of ammonia in the exhaust gas to be treated is less than 1%, which is extremely low. In order for the denitrification reaction to proceed stoichiometrically, it is necessary to uniformly mix NOx and ammonia up to the catalyst layer.

従来、混合方法として次のような方法が行なわ、れてい
る。大容量ボイラ排ガス用脱硝装置の如き大規模装置の
場合、大量の処理ガスを通過させるので圧力損失が大き
な問題となり、従ってバッフルプレートに充填物による
ガス混合方式は採ることができなく、反応器上流のガス
導管に多数のノズル口を単に設けてアンモニヤを注入す
る方法が広く採用されている。このとき必要とするアン
モニヤ濃度が数10〜数100 ppmであって、通常
予めlO%程度に空気又は窒素で希釈したアンモニヤが
用いられる。また、中小規模脱硝装置の場合、処理ガス
量が比較的少ないことによって、幾分か圧力損失を伴う
ガス輸送方法、及び充填塔、バッフルプレート、更にベ
ンチュリ等によるガス混合方法が採用される。しかし装
置の大型化、複雑化、及び系統ラインの圧力損失の増大
に伴い動力費等が増加する。特に、特殊な脱硝プロセス
では、被処理ガス量増力口が不利な場合があり、希釈剤
を低減した高濃度のアンモニヤガスを使用することが必
要となる。
Conventionally, the following methods have been used as mixing methods. In the case of large-scale equipment such as denitrification equipment for large-capacity boiler exhaust gas, pressure loss becomes a big problem because a large amount of process gas passes through it. A widely used method is to simply provide a large number of nozzle ports in a gas pipe and inject ammonia. The ammonia concentration required at this time is several tens to several hundred ppm, and ammonia that has been diluted in advance with air or nitrogen to about 10% is usually used. Furthermore, in the case of small- to medium-sized denitrification equipment, since the amount of gas to be processed is relatively small, a gas transportation method that involves some pressure loss, and a gas mixing method using a packed tower, baffle plate, venturi, etc. are adopted. However, as the equipment becomes larger and more complex, and the pressure loss in the system line increases, power costs and the like increase. In particular, in special denitrification processes, the intensifier for the amount of gas to be treated may be disadvantageous, and it is necessary to use highly concentrated ammonia gas with reduced diluent.

しかし上記混合方法には次のような不利な問題がある。However, the above mixing method has the following disadvantages.

アンモニヤを多数のノズル口から排ガスに導入しても充
分に均一に混合することが難しい。
Even if ammonia is introduced into the exhaust gas through multiple nozzle ports, it is difficult to mix it sufficiently and uniformly.

また、反応器内の触媒層上部空間にアルミナやシリカ等
製の粒子又はラシヒリング等を充填してカス混合させる
場合、アンモニヤは接触分解面積が大きく分解が進み、
触媒層に至る迄に損失する。
In addition, when the space above the catalyst layer in the reactor is filled with particles made of alumina, silica, etc. or Raschig rings, etc. to mix the residue, ammonia has a large catalytic cracking area and decomposition progresses.
It is lost until it reaches the catalyst layer.

また、処理ガスの流量が変動する場合、特に流量が減少
する場合、反応装置内の各部位のカス流速が低下しアン
モニヤの混合効率が低下する。
Further, when the flow rate of the processing gas fluctuates, especially when the flow rate decreases, the flow rate of the waste at each site within the reaction apparatus decreases, and the mixing efficiency of ammonia decreases.

処理ガス中でアンモニヤが完全々均一混合に達(3) せずに触媒層中での均一混合に依存することはアンモニ
ヤの有効利用朋が低下する。つまり触媒は犬な9小なり
アンモニヤ分解活性を有し、不均一混合で生じる過剰分
のアンモニヤは触媒層で無効に分解されNOxと反応し
々い。この為にアンモニヤ有効度を高めるためには、ど
うしても触媒層−\至る迄に排ガス中のNOxとアンモ
ニヤとを均一に混合させることが必要である。このよう
な必要に対して複雑な構造を採らず、しかも装置系統の
圧力損失を低く押えて、少量のアンモニヤを良好に処理
ガスに混合する装置が要望されている。
Relying on uniform mixing in the catalyst layer without achieving complete homogeneous mixing of ammonia in the process gas (3) reduces the effective utilization of ammonia. In other words, the catalyst has an ammonia decomposition activity of about 9 or less, and the excess ammonia generated by heterogeneous mixing is ineffectively decomposed in the catalyst layer and reacts with NOx. Therefore, in order to increase the effectiveness of ammonia, it is necessary to uniformly mix NOx in the exhaust gas and ammonia up to the catalyst layer. In response to these needs, there is a need for an apparatus that does not require a complicated structure, suppresses pressure loss in the apparatus system, and can mix a small amount of ammonia into the processing gas well.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の欠点を除き、アン
モニヤ接触還元反応装置で窒素酸化物を含む処理ガスと
アンモニヤとを予じめ均一に混合し、脱硝反応全効率よ
く行なうことができる脱硝反応装置を提供することにあ
る。
The object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a denitrification system that enables ammonia to be uniformly mixed in advance with a processing gas containing nitrogen oxides in an ammonia catalytic reduction reaction apparatus, thereby allowing the denitrification reaction to be carried out with high overall efficiency. The purpose of the present invention is to provide a reactor.

〔発明の概要〕[Summary of the invention]

本発明は、窒素酸化物含有ガスにアンモニヤ會注入した
混合ガスを導入するガス導入管が反応器(g ) (4) 状器がその内側面で受けるように配設され、前記椀状器
の後流部に触媒層が内蔵されている脱硝反応装置である
In the present invention, a gas introduction pipe for introducing a mixed gas obtained by injecting ammonia into a nitrogen oxide-containing gas is disposed so as to be received by the reactor (g) (4) on the inner surface of the bowl-shaped vessel; This is a denitration reactor with a built-in catalyst layer in the downstream section.

前記臀応装置において、窒素酸化物含有ガスとアンモニ
ヤとの混合ガスはガス導入管の断面積よυ大きい断面積
を有する反応器に導入されてガス流速が低下し圧力損失
が小となる部位に椀状器が配設され、ガス導入管からの
噴出ガス流が椀状器の内側に当り一時的に逆行してアン
モニヤが均一にガス中に混合された後、触媒層に進み反
応する。
In the reactor, the mixed gas of the nitrogen oxide-containing gas and ammonia is introduced into the reactor having a cross-sectional area υ larger than the cross-sectional area of the gas introduction pipe, and the gas is introduced into the reactor where the gas flow rate is reduced and the pressure loss is reduced. A bowl-shaped vessel is provided, and the gas flow ejected from the gas inlet pipe hits the inside of the bowl-shaped vessel and temporarily flows backward to uniformly mix ammonia into the gas, and then advances to the catalyst layer where it reacts.

尚、ガス導入管が反応器内に延長されてガスガイド管が
形成され、このガスガイド管の口部を受けるように椀状
器を設けると、アンモニヤのガス混合が良好である。
Note that if the gas introduction pipe is extended into the reactor to form a gas guide pipe, and a bowl-shaped container is provided to receive the mouth of the gas guide pipe, the ammonia gas can be mixed well.

また、アンモニヤの分解を多少許しても触媒層の上部空
間部にアルミナ又はシリカ製充填物が混合ガスの圧力損
失許容範囲内に充填されると、アンモニヤのガス混合に
とって好ましい。
Further, even if some decomposition of ammonia is allowed, it is preferable for the ammonia gas mixture to be filled with an alumina or silica filler in the upper space of the catalyst layer within the permissible pressure loss range of the mixed gas.

尚、触媒として耐火物担体に白金属、鉄等を担(6) 持し次もの、活性炭にバナジウム、銅等を担持したもの
、特殊な結晶構造の酸化鉄等が用いられる。
As a catalyst, catalysts such as a refractory carrier carrying a platinum metal, iron, etc. (6), activated carbon carrying vanadium, copper, etc., iron oxide with a special crystal structure, etc. are used.

反応は次式のようで、 6 No +4 NH3→5 Ng + 6 HgO又
は 2NO+2NHs+O→2Nm+3HtO゛窒素酸化物
は接触還元され窒素、水に生成する。
The reaction is as follows: 6 No + 4 NH3→5 Ng + 6 HgO or 2NO+2NHs+O→2Nm+3HtO゛Nitrogen oxides are catalytically reduced to produce nitrogen and water.

〔発明の実施例〕[Embodiments of the invention]

実施例1 本発明の脱硝反応装置の一例を第1図に示す。 Example 1 An example of the denitrification reaction apparatus of the present invention is shown in FIG.

反応器1は内径100關、長さ300mmの円筒形の竪
形であり、その頂部に内径2o11mlのガス導入管2
が設けられ、ガス導入管2は反応器l内に延長され長さ
50iueのガスガイド管3を形成している。ガスガイ
ド管3からのガス噴出を受けるように外形60i11.
深さ50關、肉厚2闘の石英製ルツボ型椀状器4がその
内側面をガスガイド管3に向はガスガイド管30部と椀
状器4底との距離20困の位置に配設されている。椀状
器4の後流部、即ち反応器lの底部から59mの位置に
触媒層5が設けられ、触媒層5が20メツシユの触媒支
持金網6上に5〜1oメツシユのゼオライト系触媒を5
011の層高に充填される。反応器lの底部にガス排出
管7が設けられる。尚、椀状器以外の機器は5US30
4で作られている。
The reactor 1 has a cylindrical vertical shape with an inner diameter of 100 mm and a length of 300 mm, and a gas introduction pipe 2 with an inner diameter of 2 o 11 ml is installed at the top of the reactor.
A gas introduction pipe 2 is extended into the reactor 1 to form a gas guide pipe 3 having a length of 50 iue. The outer shape is 60i11. so as to receive the gas jet from the gas guide pipe 3.
A crucible-shaped bowl-shaped vessel 4 made of quartz with a depth of 50 mm and a wall thickness of 2 mm is placed with its inner surface facing the gas guide pipe 3 at a distance of 20 mm between the gas guide pipe 30 and the bottom of the bowl-shaped vessel 4. It is set up. A catalyst layer 5 is provided at the downstream part of the bowl-shaped vessel 4, that is, at a position 59 m from the bottom of the reactor 1, and the catalyst layer 5 has a zeolite catalyst of 5 to 1 o mesh on a catalyst support wire mesh 6 of 20 mesh.
Filled to a layer height of 011. A gas discharge pipe 7 is provided at the bottom of the reactor l. In addition, equipment other than bowl-shaped vessels is 5US30
It is made of 4.

前記反応装置を使用して脱硝反応を行なった。A denitrification reaction was carried out using the above reaction apparatus.

反応器1を電気炉に入れ器壁外部温度を440 ’Cに
制御した。N Ox 2000 ppm 、 Oa 2
0 %、H2O3%、残9N2の合成ガスにNHsを注
入してNH3濃度40oOppmになるように混合し、
この被処理ガスを反応器1にガス導入管2、ガスガイド
管3によって10 l/minの割合で導入した。
Reactor 1 was placed in an electric furnace, and the external temperature of the vessel wall was controlled at 440'C. NOx 2000 ppm, Oa 2
0% H2O, 3% H2O, and the remaining 9N2 synthesis gas was injected with NHs and mixed so that the NH3 concentration was 40oOppm.
This gas to be treated was introduced into the reactor 1 through a gas introduction pipe 2 and a gas guide pipe 3 at a rate of 10 l/min.

被処理ガスはガスガイド管の先端口から噴出し椀状器4
に当り、ガスは上向きに逆流して反応器lの上方に流れ
て反応器l空間部に乱流しながら進み、アンモニヤは被
処理ガス中に均一に混合され、その後で接触還元触媒層
5に至9脱硝反応により窒素、水となり、ガス排出管6
がら排出した。
The gas to be treated is ejected from the tip of the gas guide pipe into a bowl-shaped vessel 4.
At this time, the gas flows backwards upward, flows above the reactor L, and advances into the reactor L space in a turbulent flow, and the ammonia is uniformly mixed into the gas to be treated, and then reaches the catalytic reduction catalyst layer 5. 9 The denitrification reaction results in nitrogen and water, and the gas discharge pipe 6
I threw it all out.

この操作で生じた排出ガス中のNoX及びアンモニヤを
分析したところ、夫々3 ppm以下で、NOx除去率
が99.8%以上であった。
Analysis of NoX and ammonia in the exhaust gas produced by this operation revealed that each was 3 ppm or less, and the NOx removal rate was 99.8% or more.

比較例1 実施例1の装置において、ガスガイド管3及び椀状器4
を堆りはずした装置を使用し、実施例1と同様に脱硝操
作を行なった。その結果、排出ガス中のNOxは140
 ppmで、NOx除去率は93%であった。尚、供試
触媒はアンモニヤの接触分解活性が高く、排出ガス中の
アンモニヤは3ppm以下であった。
Comparative Example 1 In the apparatus of Example 1, the gas guide pipe 3 and the bowl-shaped vessel 4 were
The denitrification operation was performed in the same manner as in Example 1 using the equipment in which the denitrification was removed. As a result, NOx in the exhaust gas was 140
ppm, the NOx removal rate was 93%. The test catalyst had high ammonia catalytic cracking activity, and the ammonia content in the exhaust gas was 3 ppm or less.

実施例1と本比較例との結果から、本発明の脱硝反応装
置はアンモニヤの混合が極めて均一に行なわれ、脱硝反
応が速かに行なわれることが明白である。
From the results of Example 1 and this comparative example, it is clear that in the denitration reaction apparatus of the present invention, ammonia is mixed extremely uniformly, and the denitration reaction is performed quickly.

実施例2 実施例1において、反応器の長さを20011Iに変え
触媒層上の空間部長さを200uから100龍に短くし
た以外は実施例1と同様な操作条件で脱硝試験をした。
Example 2 A denitrification test was conducted under the same operating conditions as in Example 1, except that the length of the reactor was changed to 20011I and the length of the space above the catalyst layer was shortened from 200u to 100u.

その結果、排出ガス中のNoXは23 ppmであった
。反応器内のアンモニヤ混合部の容積を172にしても
NOx除去率が98.9係であり、本発明装置によって
高いNOX除去率が達せられた。
As a result, NoX in the exhaust gas was 23 ppm. Even when the volume of the ammonia mixing section in the reactor was set to 172, the NOx removal rate was 98.9, indicating that a high NOx removal rate was achieved by the apparatus of the present invention.

実施例3 実施例2において、椀状器と触媒層との空間部にシリカ
製ラシヒリング(直径5 s+i+ ) f充填した以
外は実施例1−と同様な操作条件で脱硝試験した。
Example 3 In Example 2, a denitrification test was conducted under the same operating conditions as in Example 1, except that a silica Raschig ring (diameter 5 s+i+) was filled in the space between the bowl-shaped container and the catalyst layer.

その結果、排出ガス中のNOxは5 PPM以下で、N
Ox除去率は99,7%であった。ラシヒリングのよう
な補助具を用うることによシアンモニャの混合は一層良
好となり、実施例1の反応器を小型化した本実施例でも
同等の脱硝効率が得られた。
As a result, NOx in exhaust gas was less than 5 PPM, and N
The Ox removal rate was 99.7%. By using an auxiliary tool such as a Raschig ring, mixing of cyanmonya was improved, and even in this example, which is a smaller reactor than that of Example 1, the same denitrification efficiency was obtained.

実施例4 実施例1において、ガスガイド管(口径20鴎)の長さ
を検討する為、長さを0.10.3o、70、及びl 
OOIllに変え、口径に対し長さの比をθ〜5にした
。尚、ガスガイド管先端と椀状器底との距離は長さ0,
10.30Illl+の場合は夫々70.60.4 Q
 mmで、長さ70.100龍の場合は何れも20闘で
あった。実施例1と同様な操作条件で脱硝試験したとこ
ろ、その結果は何れもNOx除去率が98%以上であっ
た。
Example 4 In Example 1, in order to examine the length of the gas guide pipe (caliber 20), the lengths were set to 0.10.3o, 70, and l.
It was changed to OOIll, and the length to diameter ratio was set to θ~5. The distance between the tip of the gas guide tube and the bottom of the bowl is 0,
10.30Illll+ is 70.60.4 respectively Q
In the case of a dragon with a length of 70.10 mm, the length was 20 in all cases. When a denitration test was conducted under the same operating conditions as in Example 1, the NOx removal rate was 98% or higher in all of the results.

実施例5 実施例1において、反応器内径100關に対しガスガイ
ド管口径を検討する為、ガスガイド管の口径′t−l0
130、及び50關に変え、ガスガイド管口径に対し反
応器内径の比?O,1〜0.5にした。尚、椀状器の口
径をガスガイド管口径】0.30、及び5Qi+i+に
対し夫々30.50、及び7Qu+、深さは何れも50
Nmのものを用いた。実施例1と同様な操作条件で脱硝
試験し、その結果NOx除去率は何れも98%以上であ
った。
Example 5 In Example 1, in order to examine the gas guide tube diameter for the reactor inner diameter of 100 mm, the gas guide tube diameter 't-l0
130 and 50, and the ratio of the reactor inner diameter to the gas guide pipe diameter? O, 1 to 0.5. In addition, the diameter of the bowl-shaped vessel is 0.30, and 30.50 and 7Qu+ for 5Qi+i+, respectively, and the depth is 50 for both.
Nm was used. A denitrification test was conducted under the same operating conditions as in Example 1, and the NOx removal rate was 98% or higher in all cases.

実施例6 実施例1において、椀状器口径とガスガイド管口径の関
係を検討する為、実施例5に用いた椀状器及び口径9Q
n+、深さ50顛の椀状器を使用し7、椀状器口径に対
するガスガイド管口径の比’に1.4〜4.5とした。
Example 6 In Example 1, in order to examine the relationship between the bowl diameter and the gas guide pipe diameter, the bowl shape and diameter 9Q used in Example 5 were used.
A bowl-shaped container with a depth of 50 mm was used, and the ratio of the diameter of the gas guide tube to the diameter of the bowl was set to 1.4 to 4.5.

実施例1と同様な操作条件で脱硝試験し、その結果NO
x除去率が何れも98%以上であった。
A denitrification test was conducted under the same operating conditions as in Example 1, and as a result, NO.
The x removal rate was 98% or more in all cases.

実施例7 実施例1において、椀状器の口径と深さとの関係を検討
する為、口径50tmの椀状器に対し深さを25.70
.及び10011Nのものを使用し、椀状器の口径に対
する深さの比を0.5〜2.0にした。
Example 7 In Example 1, in order to examine the relationship between the diameter of the bowl-shaped vessel and the depth, the depth was set to 25.70 mm for a bowl-shaped vessel with a diameter of 50 tm.
.. and 10011N were used, and the depth to diameter ratio of the bowl-shaped vessel was set to 0.5 to 2.0.

実施例1と同様な操作条件で脱硝試験し、その結果NO
x除去率が何れも98%以上であった。
A denitrification test was conducted under the same operating conditions as in Example 1, and as a result, NO.
The x removal rate was 98% or more in all cases.

実施例8 実施例2において、ガスガイド管の先端の絞υ効果を検
討する為、ガスガイド管口径20鰭を先端に向って口径
10flに絞り、実施例】と同様な操作条件で脱硝試験
し、その結果、排出ガス中のNOxが3 ppm以下、
NOx除去率が99.8%でアンモニヤの混合が良好と
なったことが認められた。このことから許容圧力損失の
範囲内でガスガイド管の口径を絞り、ガス噴出速度を高
めることが本発明をより有効にすることを示すものであ
る。
Example 8 In Example 2, in order to examine the throttling effect at the tip of the gas guide tube, a gas guide tube with a diameter of 20 fins was narrowed to a diameter of 10 fl toward the tip, and a denitrification test was conducted under the same operating conditions as in Example. As a result, NOx in exhaust gas is 3 ppm or less,
It was found that the NOx removal rate was 99.8%, indicating that ammonia was mixed well. This shows that reducing the diameter of the gas guide pipe within the allowable pressure loss range and increasing the gas ejection speed makes the present invention more effective.

以上の実施例から、本発明の脱硝装置は被処理ガスの噴
出流を椀状器で受けることにより、アンモニヤの混合が
均一となり、脱硝反応が速に行なわれることがわかる。
From the above examples, it can be seen that in the denitrification apparatus of the present invention, by receiving the ejected flow of the gas to be treated in a bowl-shaped container, the ammonia is mixed uniformly and the denitrification reaction is carried out quickly.

また、椀状器やガスガイド管の寸法比について、椀状器
の口径と深さとの比0.5〜2.O,ガスガイド管の長
さと口径との比θ〜5、ガスガイド管口径と反応器内径
との比0.1〜0.5、椀状器口径とガスガイド管口径
との比1.4〜4.5の範囲のものを被処理ガス量、N
Ox濃度等に応じて適当に選べば、脱硝を効率よく行な
い得る。
Regarding the size ratio of the bowl-shaped vessel and the gas guide pipe, the ratio of the diameter of the bowl-shaped vessel to the depth is 0.5 to 2. O, the ratio of the length of the gas guide tube to the diameter θ ~ 5, the ratio of the diameter of the gas guide tube to the inner diameter of the reactor 0.1 to 0.5, the ratio of the diameter of the bowl-shaped vessel to the diameter of the gas guide tube 1.4 ~4.5 is the amount of gas to be treated, N
If it is selected appropriately depending on the Ox concentration, etc., denitrification can be performed efficiently.

また、椀状器やガス導入管による圧力損失は配管系や触
媒層におけるよpも極めて小さく、ラシヒリング等を充
填してアンモニヤ混合を良くすることにより装置全小型
化できる。しかし、大量の処理ガスの場合、本装置の圧
力損失は無視できなく々p、圧力損失の許容範囲内で使
用できるが、好壕しくは処理ガス数万Nm’/h以下の
比較的小規模装置に適する。
In addition, the pressure loss due to the bowl-shaped vessel and the gas introduction pipe, as well as the piping system and the catalyst layer, is extremely small, and the entire apparatus can be downsized by filling it with a Raschig ring or the like to improve ammonia mixing. However, in the case of a large amount of processing gas, the pressure loss of this device cannot be ignored, and although it can be used within the permissible pressure loss range, it is preferable to use the processing gas on a relatively small scale of less than tens of thousands of Nm'/h. suitable for the device.

また、椀状器の形状は実施例でルツボ屋を使用したが、
一般に球面、放物面のような曲面、並びに多面形状、又
は底部が平板な器形状でもよい。
In addition, the shape of the bowl-shaped container used crucible shop in the example,
In general, it may be a curved surface such as a spherical surface or a paraboloid, a polygonal shape, or a vessel shape with a flat bottom.

またガスガイド管の形状も円管だけでなく長円筒、方形
、多角形等であっても採用しうろことは容易に類推され
る。これらの選択は反応器形状、椀状器支持金具等を含
めてガスガイド管の選択要因に基き決定する。尚、処理
ガス流量が減少するにつれ、椀状器の深さの深いものを
使用することがガス混合を有利にする。
Furthermore, it is easily inferred that the shape of the gas guide tube is not limited to a circular tube, but may also be an elongated cylinder, square, polygon, etc. These selections are determined based on the selection factors of the gas guide pipe, including the shape of the reactor, bowl-shaped vessel support fittings, etc. Note that as the process gas flow rate decreases, the use of a deeper bowl will benefit gas mixing.

〔発明の効果〕〔Effect of the invention〕

本発明はアンモニヤ選択還元法による脱硝反応装置であ
り、被処理ガスの噴出を受ける椀状器が設けられている
ので、アンモニヤが被処理カス中に完全に均一に混合さ
れて被処理ガス中に含まれるNOxが窒素カスに速に還
元され、脱硝反応を効率よく行なうことができる。
The present invention is a denitrification reaction apparatus using an ammonia selective reduction method, and is equipped with a bowl-shaped vessel that receives a jet of gas to be treated, so that ammonia is completely and uniformly mixed into the gas to be treated. The contained NOx is quickly reduced to nitrogen scum, and the denitrification reaction can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

本発明の脱硝反応装置を第1図に示す。 l・・・反応器、2・・・ガス導入管、3・・・ガスガ
イド管、4・・・椀状器、5・・・触媒層、6・・・触
媒支持金網、7・・・ガス排出管。 代理人 鵜 沼 辰 之 第1図
The denitrification reaction apparatus of the present invention is shown in FIG. l... Reactor, 2... Gas introduction pipe, 3... Gas guide pipe, 4... Bowl-shaped vessel, 5... Catalyst layer, 6... Catalyst support wire mesh, 7... Gas exhaust pipe. Agent Tatsuyuki Unuma Figure 1

Claims (1)

【特許請求の範囲】 (1) 窒素酸化物含有ガスにアンモニヤを注入した混
合ガスを導入するガス導入管が反応器上流部に設けられ
、前記ガス導入管からの噴出ガスを椀状器がその内側面
で受けるように配設され、前記椀状器の後流部に触媒層
が内蔵されていることを特徴とする脱硝反応装置。 (2、特許請求の範囲第1項において、前記ガス導入管
が前記反応器内に延長されてガスガイド管が形成され、
前記ガスガイド管の口部に前記椀状器が配設されている
ことを特徴とする脱硝反応装置。 (3)特許請求の範囲第1項及び第2項において、前記
椀状器が球面若しくは放物面状の曲面、又は多面形状で
あることを特徴とする脱硝反応装置。 (4)特許請求の範囲第1項乃至第3項において、前記
触媒層の上部空間部にアルミナ又はシリカ製充填物が充
填されていること全特徴とする脱硝反応装置。
[Scope of Claims] (1) A gas introduction pipe for introducing a mixed gas in which ammonia is injected into a nitrogen oxide-containing gas is provided in the upstream part of the reactor, and a bowl-shaped vessel receives the gas ejected from the gas introduction pipe. A denitrification reaction device, characterized in that a catalyst layer is disposed so as to be received on an inner surface thereof and is built in a downstream part of the bowl-shaped vessel. (2. In claim 1, the gas introduction pipe is extended into the reactor to form a gas guide pipe,
A denitrification reaction apparatus, characterized in that the bowl-shaped vessel is disposed at the mouth of the gas guide tube. (3) The denitrification reaction apparatus according to claims 1 and 2, wherein the bowl-shaped vessel has a spherical or parabolic curved surface, or a polyhedral shape. (4) A denitrification reaction apparatus according to any one of claims 1 to 3, characterized in that the upper space of the catalyst layer is filled with a filler made of alumina or silica.
JP59110488A 1984-05-30 1984-05-30 Apparatus for denitrating reaction Pending JPS60255132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110488A JPS60255132A (en) 1984-05-30 1984-05-30 Apparatus for denitrating reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110488A JPS60255132A (en) 1984-05-30 1984-05-30 Apparatus for denitrating reaction

Publications (1)

Publication Number Publication Date
JPS60255132A true JPS60255132A (en) 1985-12-16

Family

ID=14537006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110488A Pending JPS60255132A (en) 1984-05-30 1984-05-30 Apparatus for denitrating reaction

Country Status (1)

Country Link
JP (1) JPS60255132A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812429A (en) * 1986-12-04 1989-03-14 Mitsubishi Jukogyo Kabushiki Kaisha Method for cleaning waste gas denitrating catalyst
EP0960650A1 (en) * 1998-05-11 1999-12-01 Haldor Topsoe A/S Mixing device
JP2008248391A (en) * 2001-12-03 2008-10-16 Ulvac Japan Ltd Mixer, and device and method for manufacturing thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812429A (en) * 1986-12-04 1989-03-14 Mitsubishi Jukogyo Kabushiki Kaisha Method for cleaning waste gas denitrating catalyst
EP0960650A1 (en) * 1998-05-11 1999-12-01 Haldor Topsoe A/S Mixing device
JP2008248391A (en) * 2001-12-03 2008-10-16 Ulvac Japan Ltd Mixer, and device and method for manufacturing thin film
KR100974848B1 (en) * 2001-12-03 2010-08-11 가부시키가이샤 알박 Mixer, and device and method for manufacturing thin-film

Similar Documents

Publication Publication Date Title
CN101337153B (en) Ultrasonic integrated desulfurization denitration demercuration method and device thereof
JPH08164324A (en) Electron beam-irradiated exaust gas treatment and device therefor
CA2347443A1 (en) Retrofit reactor including gas/liquid ejector and monolith catalyst
CN105148701A (en) Gas phase oxidization system, flue gas purification equipment using system and purification method thereof
KR20150054140A (en) Apparatus for treating exhaust gas using fine bubble ozone water and method for treating exhaust gas using the same
US20200116062A1 (en) Process and Apparatus for Reducing Nox Emissions
CN109603519A (en) A kind of SCR denitration system of boiler smoke
JPS60255132A (en) Apparatus for denitrating reaction
CN105130928B (en) The method for removing hydrogen peroxide legal system propylene oxide process gaseous mixture micro amount of oxygen
CN206082109U (en) Denitration reactor
CN106139852A (en) Benitration reactor
CN101927126B (en) Method for carrying out uncatalyzed direct oxidation treatment on gas containing nitric oxide by using Venturi oxidizer
CN111153415B (en) Capturing CO in urea catalytic hydrolysis generated gas 2 Is a device of (2)
CN202136913U (en) Pure oxygen medium blocking discharge desulfurization and denitration system in flue
CN204952626U (en) Gas cleaning equipment of gas -phase oxidation system and this system of application
KR100681161B1 (en) Apparatus for removing nitrogen oxides using peroxy radical and method thereof
CN217092820U (en) NOx-containing tail gas normal-temperature denitration device
CN205965476U (en) Oxidation absorb hypergravity SOx/NOx control system
CN208927934U (en) A kind of SCR equipment for denitrifying flue gas
CN101664633A (en) Method for removing nitrogen oxides in waste gas or flue gas
JPH0515739A (en) Supply device and decomposing catalyst for reducing agent for denitration
CN211987941U (en) Integrated smoke prevention, dust control, desulfurization and denitrification equipment
CN204841381U (en) SOx/NOx control integration system
CN212663179U (en) Acidic waste gas treatment system
JPS62262729A (en) Method for removing nitrogen oxide contained in exhaust gas