JPS60254978A - Color solid-state image pickup device - Google Patents

Color solid-state image pickup device

Info

Publication number
JPS60254978A
JPS60254978A JP59111327A JP11132784A JPS60254978A JP S60254978 A JPS60254978 A JP S60254978A JP 59111327 A JP59111327 A JP 59111327A JP 11132784 A JP11132784 A JP 11132784A JP S60254978 A JPS60254978 A JP S60254978A
Authority
JP
Japan
Prior art keywords
color
color difference
difference signal
signal
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59111327A
Other languages
Japanese (ja)
Other versions
JPH0832052B2 (en
Inventor
Akihiro Kono
明啓 河野
Shinichi Teranishi
信一 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59111327A priority Critical patent/JPH0832052B2/en
Priority to DE8585303861T priority patent/DE3584582D1/en
Priority to EP85303861A priority patent/EP0164255B1/en
Publication of JPS60254978A publication Critical patent/JPS60254978A/en
Priority to US07/147,604 priority patent/US4845548A/en
Publication of JPH0832052B2 publication Critical patent/JPH0832052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

PURPOSE:To eliminate the occurrence of a vertical color error at the sharp vertical contour part of an achromatic picture plane by employing such a color filter array that color difference signals obtained from respective horizontal lines to achromatic color light of reference lighting color temperature are nearly zero. CONSTITUTION:The 1st and the 3rd horizontal picture elements l1, l3, l5, and l7 have color filters Mg' and G' with transmission characteristics shown in a graph (a), and the 1st color difference signal C1 modulated by Mg' and G' is C1=R+B-G; and the spectral transmission characteristics of the color filters Mg'and G' are so determined that C1 is zero when white irradiated at reference lighting color temperature is picked up. Further, the 1st horizontal picture element arrays l1 and l5 and the 3rd horizontal picture element arrays l3 and l7 are so formed that color filters C are 180 deg. out of phase. The 2nd and the 4th horizontal picture element arrays l2, l4, l6, and l8 have color filters Cy' and Ye' with transmission characteristics shown in a graph (b) corresponding to respective picture elements. The 2nd color difference signal modulated by the color filters Cy' and Ye' is C2=B-R. Then, the spectral transmission characteristics of the color filters Cy' and Ye' are so determined as well as the color filters Mg' and G' that the C2 is zero to white irradiated at reference lighting color temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明状固体撮像素子を用いたカラー撮像用固体撮像装
置に関するものであるG (従来技術とその問題点) 固体撮像素子の1種であるインターツイン転送CCD撮
像素子(以下XL−CCD撮像素子と略記する。)は第
1図に模式的平面図に示すように、水平方向と垂直方向
に規則的配列され、た絵素1と、絵素1で光電変換され
て蓄積された信号電荷を垂直方向に転送する垂直COD
レジスタ2および水平方向に転送する水平CODレジス
タ3と、出力部4で構成されている0図中の矢印は信号
電荷の転送方向を示している0 IL−CCD撮像素子は絵素に蓄積された信号電荷をフ
レーム周期で読み出すフレーム蓄積動作とフィールド周
期で読み出すフィールド蓄積動作の2種類の読み出し動
作が行なえる。フィールド蓄積動作はフレーム蓄積動作
に比較して蓄積時間が半分で1+残像感が小さい0この
ために、フィールド蓄積動作の単板カラー撮像装置の開
発が進められている0以下で説明する従来のカラー撮像
装置も本発明による力2−撮像装置もフィールド蓄積動
作である。第2図はフィールド蓄積動作を模式的に示し
ている・ここで水平絵素列に順番にある列よ’) Is
、 It 、 ls−・・・・・、le、・・・・・と
名付ける口奇数フィールドにおいてはまず2. 、2.
 、1・、18.・・・・・に対応する絵素よシ信号電
荷が垂直CODレジスタ2へ転送され、次に垂直CCD
レジスタ2の転送動作によって1絵素分信号電荷は転送
され、さらに1.。
Detailed Description of the Invention (Industrial Field of Application) This relates to a solid-state imaging device for color imaging using the solid-state imaging device according to the present invention (Prior Art and its Problems) A type of solid-state imaging device As shown in the schematic plan view of FIG. 1, the inter-twin transfer CCD image sensor (hereinafter abbreviated as XL-CCD image sensor) is arranged regularly in the horizontal and vertical directions, and has a picture element 1 and a picture element 1. Vertical COD that vertically transfers signal charges photoelectrically converted and accumulated in element 1
It consists of a register 2, a horizontal COD register 3 that transfers in the horizontal direction, and an output section 4.The arrow in the figure indicates the direction of signal charge transfer.0The IL-CCD image sensor has a signal charge accumulated in the picture element. Two types of read operations can be performed: a frame accumulation operation in which signal charges are read out in a frame period, and a field accumulation operation in which signal charges are read out in a field period. Compared to frame storage operation, field accumulation operation takes half the accumulation time 1 + has a small afterimage feeling 0 For this reason, the development of single-chip color imaging devices using field accumulation operation is progressing. Both the imaging device and the force 2-imaging device according to the invention are field storage operated. Figure 2 schematically shows the field accumulation operation.
, It, ls-..., le,..., first, 2. , 2.
,1.,18. The signal charge corresponding to the picture element is transferred to the vertical COD register 2, and then the vertical CCD
The signal charges for one picture element are transferred by the transfer operation of register 2, and further 1. .

1m s z、 tl!7 e・・・・・に対応する絵
素よシ信号電荷が垂直CODレジスタ2へ転送される。
1m s z, tl! 7 The signal charge of the picture element corresponding to e... is transferred to the vertical COD register 2.

この結果6゜t4e t6e zs v・・・・・に対
応する絵素の信号電荷はそれぞれII a 1m e 
le e 11 e・・・・・に対応する絵素の信号電
荷と垂直CODレジスタ2内で加算される0加え合わさ
れたle + le g 13+ 14 、15 + 
Is g jt +lee・・・・・の信号電荷をそれ
ぞれ一水平ラインの信号とする0偶数フイールドにおい
ては垂直CODレジスタ2内で加え合わせる水平絵素列
の絵素の組み合わせをl*+ 1m −1a +1m 
、 le +lr s・・・・・に変える◎このように
垂直方向に隣接する2つの水平絵素列の組み合わせをフ
ィールド毎に変えることによりイインターレース動作を
行なっている0以上述べたIL−CCD撮像素子を用い
てカラー撮像を行なりには色フィルタによって被写体の
色分解像を形成し、この色分解像をIL−CCD撮像素
子で撮像し、IL−CCD撮像素子の出力信号を信号処
理することによって色信号や輝度信号を得ている0 とのようなフィールド蓄積動作で単板カラー撮像装置を
実現する方法として1983年3月のテレビジ冒ン学会
方式・回路研究会技術報告Tl1lBS87−3、TE
B887−6において第3図に示すような色フィルタの
色配列が提案されている。図においてYe 、 Cy 
、 Mg 、 Gはそれぞれ黄、シアン、マゼンタ、緑
の色フィルタを示す0黄の色フィルタは赤と緑の光な透
過し、シアンの色フィルタは青と緑の光を透過し、マゼ
ンタは赤と青の光を透過する。
As a result, the signal charges of the picture elements corresponding to 6゜t4e t6e zs v... are II a 1m e
The signal charge of the picture element corresponding to le e 11 e... and the 0 added in the vertical COD register 2 le + le g 13 + 14 , 15 +
In the 0-even field, where each signal charge of Is g jt +lee is a signal for one horizontal line, the combination of picture elements in the horizontal picture element row to be added in the vertical COD register 2 is l*+ 1m -1a +1m
, le +lr s... ◎In this way, interlace operation is performed by changing the combination of two vertically adjacent horizontal pixel columns for each field.0 IL-CCD imaging as described above. To perform color imaging using a color filter, a color-separated image of a subject is formed by a color filter, this color-separated image is captured by an IL-CCD image sensor, and the output signal of the IL-CCD image sensor is subjected to signal processing. A method of realizing a single-chip color image pickup device using field storage operation such as 0 that obtains color and luminance signals is described in the March 1983 Technical Report of the Methods and Circuits Study Group of the Television Television Society, Tl1lBS87-3, TE.
B887-6 proposes a color arrangement of color filters as shown in FIG. In the figure, Ye, Cy
, Mg, and G indicate yellow, cyan, magenta, and green color filters, respectively. A yellow color filter transmits red and green light, a cyan color filter transmits blue and green light, and magenta transmits red light. and transmits blue light.

このような色フィルタ配列で前記したフィールド蓄積動
作における各水平ラインの信号は、第3図に記したごと
く水平絵素列に順番にある列よりzlt z、 # 4
 e・・・・・18.・・・・・と名付けると、置数フ
ィールドではl+ + It t Im + 4 m・
間偶数フィールドでは4 + 4 e /a + Is
 e・・・・・の信号電荷で構成さRはそれぞれ青信号
、緑信号、赤信号を示し、比率ti:1:1とした0図
に示す′ように各水平ラインの信号はB+暑 G+Bの
輝度信号成分に水平方向2絵素を周期とする色差信号の
変調成分(:a(G ) cosvtと(B ’iG)
 cos wtが交互に一水平ライン毎に重畳されてい
る。ただしWは2絵素の周期に相当する角周波数である
口すなわち2m+2.の出力信号8(11+1m)と/
s+4の出力信号8 (js+ja )は次式で示され
る08(1t+1z)=(B+2G+R−B cosw
t+Rcoswt )/2+(B十叶R−1−Bcoa
wt+Rcos wt−Gcoswt )/2−(1) 841m+ 14 )+=(B+2G+R−Bcosw
t+Rcoswt )/2十(B+G+R−Bcosw
t−Rcoswt+Gcomwt )/2−(2) (1)、 (2)式を整理すると次式となる。
With such a color filter arrangement, the signal of each horizontal line in the field accumulation operation described above is zlt z, # 4 from the horizontal picture element columns in order, as shown in FIG.
e・・・・・・18. If you name it as ..., in the numeric field it becomes l+ + It t Im + 4 m・
In the even field, 4 + 4 e /a + Is
It is composed of signal charges of e..., and R indicates a blue signal, a green signal, and a red signal, respectively, and the ratio ti: 1:1. The luminance signal component has a modulation component of the color difference signal with a period of two pixels in the horizontal direction (:a(G) cosvt and (B'iG)
cos wt are alternately superimposed on each horizontal line. However, W is the angular frequency corresponding to the period of two picture elements, that is, 2m+2. output signal 8(11+1m) and/
The output signal 8 (js+ja) of s+4 is expressed by the following formula: 08(1t+1z)=(B+2G+R-B cosw
t+Rcoswt)/2+(BtokanoR-1-Bcoa
wt+Rcos wt-Gcoswt)/2-(1) 841m+14)+=(B+2G+R-Bcosw
t+Rcoswt)/20(B+G+R-Bcosw
t-Rcoswt+Gcomwt)/2-(2) When formulas (1) and (2) are rearranged, the following formula is obtained.

8(4+44)=B4G+R−(B−+G)coswt
 (4)式(s)t (4)のB十暑G十Rを輝度信号
として、また変調成分R+G、B−+oを第5図に示す
ごとく直交する2つの色差信号として用いれば例えばN
T80カラーテレビジ■ン信号が構成される。また偶数
フィールドの場合もS(4+/slは8(/。
8(4+44)=B4G+R-(B-+G)coswt
(4) Equation (s)t If B00G0R in (4) is used as a luminance signal and the modulation components R+G and B-+o are used as two orthogonal color difference signals as shown in FIG.
A T80 color television signal is constructed. Also, in the case of an even field, S(4+/sl is 8(/.

+l、)と、s(4+js)はS(Z、+Z、)と同一
で置数フィールドと同様に信号が構成される。第6図拡
単板式カラー撮像装置の概略構成図である口上述したよ
うにして得られた色フィルタ5が設けられたIL−CC
D撮像素子6の出力信号は変調成分を除去するためにロ
ーパスフィルタ7を介して輝度信号Yを得、また水平方
向に2絵素の繰シ返し周期に相当する周波数を中心周波
数とするバンドパスフィルタ11で変調成分を分離し検
波器12で検波しRJrG、 B=+Gの色差信号を得
る0また、これら色差信号は狭帯域ローパスフィルタ9
とゲイン切換回路10を通して得た狭帯域輝度信号を用
い、各色差信号と同一水平ラインの輝度成分によってホ
ワイトバランス回路13で補正をしIH遅延線14とI
H切換回路15によって順次色差信号を同時変換し平衡
変調回路16で直角2相変調した後混合回路8で輝度信
号Yと混合しNT8(Jシーテレビジ1ン信号管得る。
+l,) and s(4+js) are the same as S(Z, +Z,), and the signal is constructed in the same way as the numeric field. FIG. 6 is a schematic configuration diagram of an enlarged single-plate color imaging device IL-CC provided with the color filter 5 obtained as described above
The output signal of the D image sensor 6 is passed through a low-pass filter 7 to obtain a luminance signal Y in order to remove modulation components, and is also filtered by a bandpass whose center frequency is a frequency corresponding to the repetition period of two picture elements in the horizontal direction. The modulated components are separated by the filter 11 and detected by the detector 12 to obtain color difference signals of RJrG, B=+G.0 These color difference signals are also processed by the narrow band low-pass filter 9.
Using the narrowband luminance signal obtained through the gain switching circuit 10, the white balance circuit 13 corrects each color difference signal and the luminance component of the same horizontal line, and the IH delay line 14 and I
The color difference signals are sequentially and simultaneously converted by the H switching circuit 15, quadrature two-phase modulated by the balanced modulation circuit 16, and then mixed with the luminance signal Y by the mixing circuit 8 to obtain NT8 (J CTV TV 1 signal tube).

ところで、このような各単一水平ラインで色差信号が形
成されるようなカラーカメラ方式では本来垂直色誤差が
tlとんど発生し表いという特徴がある。しかしながら
llX3図に示し九色フィルタ配列では垂直方向−絵素
毎に白、黒が繰シ返すよう垂直方向の繰シ返し周波数を
持った被写体全撮像した場合は非常に大きな垂直色誤差
が発生する。これは各水平ラインの信号は隣接する垂直
方向2絵素で独立に空間的にサンプリングして得た信号
電荷が加算されたものでアル、各水平ラインが一水平絵
素列の信号で構成されていないことによる。
By the way, in a color camera system in which a color difference signal is formed on each single horizontal line, a vertical color error occurs almost every time tl. However, with the nine-color filter array shown in Figure ll . This means that the signal on each horizontal line is the sum of signal charges obtained by spatially sampling independently from two adjacent pixels in the vertical direction, and each horizontal line is composed of the signal of one horizontal pixel row. Due to not having done so.

すなわちフレーム蓄積のごとく各年−の水平絵素列で各
水平ラインの信号が構成される場合は、各水平ラインの
信号に対するサンプリング点は単一絵素であシ、垂直方
向にどのような繰夛返し周波数の被写体が入射しても各
水平ラインの信号構成は全く変化することは無い口その
ため、たとえ無彩色光時に発生する色差信号をホワイト
バランス補正回路で各水平ラインの輝度信号で補償して
も、その補償が被写体のパターンによって変化すること
は全くなく垂直色誤差を生じること社無い。
In other words, when the signal of each horizontal line is composed of horizontal pixel columns from each year, as in the case of frame accumulation, the sampling point for the signal of each horizontal line is a single pixel, and the number of repetitions in the vertical direction is The signal composition of each horizontal line does not change at all even if an object with a repeating frequency is incident. Therefore, even if the color difference signal generated under achromatic light is compensated for by the luminance signal of each horizontal line using a white balance correction circuit. However, the compensation does not change at all depending on the pattern of the object, and no vertical color error occurs.

一方、第3図に示した色フィルタ配列によるフィールド
蓄積動作では垂直方向に隣接する2つの水平絵素列の信
号電荷を加算した結果として各水平ラインの信号を得て
いるため、例えば隣接する2つの水平絵素列の一方が黒
となるような場合には各水平ラインから得られる色差信
号及び輝度信号は光が入射している一方の単−水平絵素
列で構成される信号となシ、色差信号自身大きな誤差を
生じるのみならず無彩色光時に発生する色差信号を輝度
信号によつて補正するホワイトバランス補正も大きな誤
差を生じ許容しがたい垂直色誤差が発生する。このよう
に、従来のフィールド蓄積動作で各水平ラインから色差
信号を得る方式では、隣接する2つの水平絵素列間で垂
直相関の無いよう表シャープな垂直輪郭部や垂直方向に
一絵素毎に輝度差があるような繰シ返しパターンでは大
きな垂直色誤差が避けられなかった。
On the other hand, in the field accumulation operation using the color filter array shown in FIG. When one of the two horizontal pixel rows is black, the color difference signal and luminance signal obtained from each horizontal line become the signal composed of the single horizontal pixel row on which light is incident. Not only does the color difference signal itself cause a large error, but also white balance correction, which uses a luminance signal to correct the color difference signal generated under achromatic light, also causes a large error, resulting in an unacceptable vertical color error. In this way, in the conventional method of obtaining color difference signals from each horizontal line using field accumulation, sharp vertical contours or vertical lines are created for each pixel in the vertical direction so that there is no vertical correlation between two adjacent horizontal pixel columns. Large vertical color errors are unavoidable in repeating patterns where there is a difference in brightness.

このような垂直色誤差は有彩色、無彩色の被写体をとわ
ず発生するが、有彩色画面での一水平ラインの色相変化
は視覚上はとんど気にならないのに対し1本来色付きの
無い無彩色画面に対する色付は視覚上許容しがたい欠点
とじて認められ、その改善が望まれている。
Such vertical color errors occur regardless of whether the subject is chromatic or achromatic, but while a change in hue in one horizontal line on a chromatic screen is visually unnoticeable, Coloring on an otherwise achromatic screen is recognized as a visually unacceptable defect, and its improvement is desired.

(本発明の目的) 本発明は以上に述べた従来の欠点な大幅に軽減し、少な
くとも無彩色画面のシャープな垂直輪野部での垂直色誤
差の発生の無い力2−固体撮像装置な提供することにあ
る口 (発明の構成) 少なくと本固体撮像素子と前記固体撮像素子の各絵素゛
に対応し、水平及び垂直方向に配列された複数個の色フ
ィルタを備えたカラー固体撮像装置において、第1.第
3の水平絵素列からは第1の色差信号が一定絵素数周期
で変調された信号として得られ、第2.第4の水平絵素
列からは第2の色差信号が第1の色差信号と同−絵素数
周期で得られ、かつ第3.第4の水平絵素列から得られ
る第1.第2の色差信号の一方が第1.第2の水平絵素
列から得られる第1.第2の色差信号と1800位相が
異なるように配列した色フィルタ列管垂直方向に第1.
第2.第3.第4と4絵素の繰シ返し周期で順次配列し
、さらに各色フィルタは所定の基準照明色温度による1
00%輝度レベル無彩色一様被写体撮像時に前記第1.
第2の各色差信号及び、第1と第2の水平絵素列の各色
差信号を加算して得られる第3の色差信号及び、第3と
第4の水平絵素列の各色差信号を加算して得られる第4
の色差信号の各残留色差信号成分による搬送色信号振巾
が、最大搬送色信号振巾の25−以下となる透過率特性
を持たせてなることt−特徴とする固体撮像装置が得ら
れる〇 (発明の概要) 本発明は上記の構成をとることによシ従来技術の欠点を
解決した0本発明では垂直方向に隣接する2つの水平絵
素列の信号電荷を加算して得られる各水平ラインでの色
差信号が基準照明色温度での無彩色被写体撮像時に零と
なる完全な色差信号形式であると同時に、各水平絵素列
での色信号変調成分が無彩色光時にも零と々る完全な色
差信号形式となる色フィルタ配列とすることによシ、−
水平ラインの信号として加算される隣接する垂直方向2
水平絵素列の一方の信号が無くうるようなシャープな垂
直輪郭部となる水平ラインでの偽色差信号とホワイトバ
ランス補正誤差の発生を防止し、視覚上置も障害となる
無彩色画面での垂直色誤差を防止したものである。
(Objective of the present invention) The present invention provides a solid-state imaging device which greatly reduces the above-mentioned drawbacks of the conventional technology and eliminates the occurrence of vertical color errors at least in the sharp vertical ring area of an achromatic screen. Particularly (Structure of the Invention) In a color solid-state imaging device including at least the present solid-state imaging device and a plurality of color filters arranged in the horizontal and vertical directions corresponding to each picture element of the solid-state imaging device. , 1st. The first color difference signal is obtained from the third horizontal picture element column as a signal modulated with a constant picture element number period, and the second... A second color difference signal is obtained from the fourth horizontal pixel column at the same period of the number of picture elements as the first color difference signal, and the third . The first .obtained from the fourth horizontal pixel column. One of the second color difference signals is one of the second color difference signals. The first .obtained from the second horizontal pixel array. The first color filter array tube is arranged vertically so that the second color difference signal has a phase difference of 1800 degrees.
Second. Third. The 4th and 4th picture elements are arranged sequentially at a repeating period, and each color filter is arranged at a predetermined standard illumination color temperature.
00% brightness level When photographing an achromatic uniform subject, the first.
Each second color difference signal, a third color difference signal obtained by adding each color difference signal of the first and second horizontal picture element columns, and each color difference signal of the third and fourth horizontal picture element columns. The fourth value obtained by adding
A solid-state imaging device is obtained, which has a transmittance characteristic such that the carrier color signal amplitude due to each residual color difference signal component of the color difference signal is 25 − or less of the maximum carrier color signal amplitude. (Summary of the Invention) The present invention solves the drawbacks of the prior art by adopting the above configuration. In the present invention, each horizontal It is a perfect color difference signal format in which the line color difference signal becomes zero when imaging an achromatic object at the standard illumination color temperature, and at the same time, the color signal modulation component in each horizontal pixel row remains zero even when achromatic light is used. By using a color filter array that provides a complete color difference signal format, −
Adjacent vertical direction 2 added as horizontal line signal
This prevents the occurrence of false color difference signals and white balance correction errors on horizontal lines where the signal on one side of the horizontal pixel row has a sharp vertical contour that may be lost, and prevents the occurrence of false color difference signals and white balance correction errors on achromatic screens where visual overlay can also be a hindrance. This prevents vertical color errors.

(実施例) 以下本発明の実施例について図面を用いて説明する。第
7図は本発明の一実施例の固体撮像装置における色フィ
ルタの色配列と絵素の相互関係を示す模式的部分平面図
である。複数の絵素lが水平方向と垂直方向に規則的に
配置されている。各絵素l上には色フィルタが形成され
ている。水平絵素列にある列よシ順番に/1#l!2#
4・・・・・、E8゜・・・・・と名付ける。第1と第
3の水平絵素列である2、 、 23および1..1.
は第8図(a)に示すような透過特性を持つMg’、 
G’で変調される第1の色差信号成分であるC3は第9
図(a)に示すととく几、Bが正、Gが負の01=R十
B−Gの色差信号となる。
(Example) Examples of the present invention will be described below with reference to the drawings. FIG. 7 is a schematic partial plan view showing the mutual relationship between the color arrangement of color filters and picture elements in a solid-state imaging device according to an embodiment of the present invention. A plurality of picture elements l are regularly arranged in the horizontal and vertical directions. A color filter is formed on each picture element l. In order of the rows in the horizontal picture element row/1#l! 2#
Name it 4..., E8゜... The first and third horizontal picture element rows 2, , 23 and 1. .. 1.
is Mg' with transmission characteristics as shown in Fig. 8(a),
C3, which is the first color difference signal component modulated by G', is the ninth color difference signal component.
In particular, as shown in FIG. 3A, the color difference signal is 01=R+B-G, where B is positive and G is negative.

(R,G、Bは単に色成分を示す。) Mg’、 G’
の色フィルタの分光透過特性は基準照明色温度3200
°にで照明された白を撮像した時にCI が零となるよ
うに、撮像レンズ、赤外カットフィルタ撮像素子等すべ
ての光学系の蚕素の分光特性を考慮し設計する必要があ
ル、本実施例では、O/aフィルタはG成分の透過率を
極力上げ、白バランスはMgZ色フィルタのG成分の透
過率で合わせる設計としている〇 第9図(a)は3200°に照明の白を撮像した時のC
1色差信号の波長に対するレスポンス特性であシ、この
積分値は零であ13.3200°に照明の無彩色光では
第1の色差信号C8は零であることを示している0また
第1の水平絵素列である11p16と第3の水平絵素列
であるtset’rとは第1の色差信号CIの位相が1
80°異なるように第7図に示すごとく色フィルタの配
列¥1−180°変えである。
(R, G, and B simply indicate color components.) Mg', G'
The spectral transmission characteristics of the color filter are based on the reference illumination color temperature of 3200
It is necessary to consider the spectral characteristics of silkworms in all optical systems such as the imaging lens and infrared cut filter imaging device when designing the CI so that the CI becomes zero when capturing a white image illuminated at In the example, the O/a filter is designed to increase the transmittance of the G component as much as possible, and the white balance is designed to match the transmittance of the G component of the MgZ color filter. 〇 Figure 9 (a) shows the white of the illumination at 3200°. C when imaged
This is the response characteristic to the wavelength of the first color difference signal, and this integral value is 0, which indicates that the first color difference signal C8 is zero in the achromatic light of illumination at 13.3200°. The phase of the first color difference signal CI is 1 between the horizontal picture element column 11p16 and the third horizontal picture element column tset'r.
As shown in Fig. 7, the color filter arrangement is changed by 1-180 degrees so that the color filters differ by 80 degrees.

一方、第2と第4の水平絵素列である11g1+および
2..2.は第8図(b)に示すような透過特性を持つ
Cy’、 Ye’の色フィルタが1絵素毎に形成されて
いる。このCY’s Ye’で変調される第2の色差信
号成分であるC1は第9図(b)に示すごと< CY’
 ey、/に共通に含まれるG成分を除いた信号成分で
あるBとBの差信号でCt=B−4の色差信号となるo
(B、Rは単に色成分を示す口)Cy′、Ye′の色フ
ィルタの分光透過特性はMg’、 G’と同様に320
0嘔照明の白に対してC3が零となるように設計する必
要があシ、本実施例では3200°に照明では撮像素子
、赤外カットフィルタ等を考慮してもB成分がB成分よ
り多くなるためYe’フィルタは従来使用しているYe
よシ赤成分の透過重金低下させることによ)白バランス
を合わせる設、町としている0第9図(b)は3200
°に照明の口管撮像した時のC,色差信号の波長に対す
るし丙穫へ特性であル、この積分値も01色差信号同様
零で3200°に照明の無彩色光では第2の色差信号C
2も零であることを示している0また、この第2の色差
信号C!が変調される第2と第4の水平絵素列であるj
!#Z4y/、 、 /、は第7図に示すごとく同一色
フィルタ配列で、よって色差信号C3はそれぞれの水平
絵素列で同相である・ 以上のような色フィルタ配列によるカラー撮像素子によ
ってフィールド蓄積動作をすると前記したように、例え
ば置数フィールドではlr+lt +l!3+2..・
・・・・のように隣接する2つの水平絵素列が加算され
一水平ラインの信号として得られ、I!、 +/、の色
信号成分は第1と第2色差信号自と02が加算゛さ、れ
第3の色差信号C5とな、り 、 ts+t+はI!、
と180°位相が異なる第1の色差信号C8と第2の色
差信号C2が加算された第4の色差信号C1として得ら
れる。すなわち Cs =C+ + Cz=(R+ B G ) + (
B R) ・・・(5)Ca=Cs+Cz=−(R+B
 G)+(B−R)・・・(6)力る色差信号が得られ
る。このC3,C,の色差信号は加算されるそれぞれの
第1.第2の色差信号CI、c!が無彩色光時零となり
ているため当然加算した結果も零となシ各水平ラインの
色差信号C1,C4も無彩色光時零となる0なお、式(
5)t (6)のR,G、Bは説明を簡単にするため、
信号の色成分のみを示している。
On the other hand, the second and fourth horizontal pixel columns 11g1+ and 2. .. 2. Cy' and Ye' color filters having transmission characteristics as shown in FIG. 8(b) are formed for each pixel. C1, which is the second color difference signal component modulated by this CY's Ye', is expressed as <CY' as shown in FIG. 9(b).
The difference signal between B and B, which is a signal component excluding the G component commonly included in ey, /, becomes a color difference signal of Ct=B-4.
(B and R simply indicate color components) The spectral transmission characteristics of the color filters for Cy' and Ye' are 320 as well as for Mg' and G'.
It is necessary to design so that C3 is zero for white under 0° illumination. Since the number of Ye' filters increases, the Ye' filter is
Figure 9 (b) is 3200.
When the mouth canal image is taken with illumination at 3200°, C, which is the characteristic for the wavelength of the color difference signal, is the same as the 01 color difference signal. C
2 also indicates that this second color difference signal C! are the second and fourth horizontal pixel columns that are modulated.
! #Z4y/, , /, have the same color filter arrangement as shown in Fig. 7, so the color difference signal C3 is in phase in each horizontal pixel column. Field accumulation is performed by the color image sensor with the above color filter arrangement. As mentioned above, for example, in the numeric field, lr+lt +l! 3+2. ..・
. . . Two adjacent horizontal picture element columns are added together to obtain one horizontal line signal, and I! , +/, the first and second color difference signals themselves and 02 are added together to form the third color difference signal C5, and ts+t+ is I! ,
A fourth color difference signal C1 is obtained by adding the first color difference signal C8 and the second color difference signal C2, which have a phase difference of 180 degrees. That is, Cs = C+ + Cz = (R+ B G ) + (
B R) ... (5) Ca=Cs+Cz=-(R+B
G)+(BR)...(6) A color difference signal is obtained. These C3, C, color difference signals are added to the respective first . Second color difference signal CI,c! is zero in achromatic light, so naturally the result of addition is also zero.The color difference signals C1 and C4 of each horizontal line are also zero in achromatic light.
5) R, G, and B in t (6) are as follows to simplify the explanation:
Only the color components of the signal are shown.

このように各水平ラインの色差信号が無彩色光時零でま
た各水平絵素列の色差信号も零であれば隣接する垂直2
水平絵素列で相関の無い無彩色被写体に対して各水平ラ
インの色差信号に誤差を生じることは無くまたホワイト
バランス補正も零であるためホワイトバランス補正誤差
も生じることがなく視覚上置も障害となる無彩色画面で
の垂直色誤差を防止出来る。これらのCIt CIt 
Caw C4の色差信号を模式的にベクトル図上に示す
と第10図に示すようになシC8はほぼB Yt C4
はほぼR−Yなる色差信号と等価な色差信号が得られる
In this way, if the color difference signal of each horizontal line is zero in achromatic light and the color difference signal of each horizontal pixel column is also zero, the adjacent vertical two
There is no error in the color difference signal of each horizontal line for uncorrelated achromatic subjects in the horizontal pixel array, and since the white balance correction is also zero, there is no white balance correction error, and the visual orientation is also impaired. Vertical color errors on achromatic screens can be prevented. These CIt CIt
When the color difference signal of Caw C4 is schematically shown on a vector diagram, as shown in Fig. 10, C8 is approximately B Yt C4
A color difference signal approximately equivalent to a color difference signal of RY can be obtained.

以上置数フィールドの場合について述べたが偶数フィー
ルドの場合も全く同様に6+l、からC4が、la +
 isからC1の色差信号を得ることが出来、垂直色誤
差も同様に防止出来る。
We have described the case of a numeric field above, but in the case of an even field, 6+l, to C4, la +
A color difference signal of C1 can be obtained from is, and vertical color errors can be similarly prevented.

以上の説明では各水平絵素列の各色差信号C1tC3が
無彩色光時に零となる理想的な場合について示したが、
実際には色フィルタや撮像素子の分光特性のばらつきに
よって常に理想的な零には確なずしもならない口しかし
、この場合、従来同様色差信号誤差とホワイトバランス
補正誤差が発生するが実際の視覚検討から基準色温度照
明による100%輝度レベルの無彩色で一様な被写体を
撮像した時の各残留色差信号による搬送色信号振巾と垂
直色誤差とを評価の結果から、例えばNT8C標準方式
で100%輝度カラーバーのCy(シアン)又はR(5
)の信号で与えられる最大搬送色信号振巾の15%以下
であれば垂直色誤差は#Iとんど気にならず、また25
チ以下であれば実用上十分許容出来ることが判明してお
シ、それぞれC1tC!ICm5CIの各色差信号の無
料色光時の色差信号の残留成分がこの範囲内であれば本
発明の効果が得られることになる。
In the above explanation, an ideal case has been described in which each color difference signal C1tC3 of each horizontal pixel column becomes zero under achromatic light.
In reality, due to variations in the spectral characteristics of color filters and image sensors, it is not always possible to reach the ideal zero. From the results of evaluation of the carrier color signal amplitude and vertical color error due to each residual color difference signal when an achromatic, uniform object at 100% luminance level is imaged using standard color temperature lighting, for example, with the NT8C standard method. 100% brightness color bar Cy (cyan) or R (5
) The vertical color error is hardly noticeable if it is less than 15% of the maximum carrier color signal amplitude given by the signal #I;
It has been found that C1tC and C1tC, respectively, are acceptable in practice if they are less than C1tC! If the residual component of each color difference signal of ICm5CI during free color light is within this range, the effects of the present invention can be obtained.

なお各単−の水平絵素列での色差信号の白バランス評価
は各単−の水平絵素列の信号を各水平ラインの信号とす
るフレーム蓄積動作で行逢えば最も正確に評価出来るが
、フィールド蓄積動作においても加算される2つの水平
絵素列の一方が黒となる被写体、あるいは撮像素子上の
−〜り゛によ・て評価することも可能である。
Note that the white balance evaluation of the color difference signal in each single horizontal pixel column can be most accurately evaluated by performing a frame accumulation operation in which the signal of each single horizontal pixel column is used as the signal of each horizontal line. It is also possible to evaluate based on a subject where one of the two horizontal pixel columns added in the field accumulation operation is black, or on the image sensor.

上記の本発明による一実施例の力2−固体撮像装置の固
体撮像素子からの出力信号紘儂6図に概略構成図を示し
た単板式カラー撮像装置と同様の装置テ全く同様にNT
SC力2−テレビジ曹ン信号を得ることが出来る・とこ
ろで1以上の説明で明らかなように本発明の効果はカフ
−カメラの基準照明色温度の無彩色に対してのみアシ、
それ以外の照明色温度の白に対しては色差信号は白バラ
ンスしないため垂直色誤差を発生するが、これは従来の
方式においても照明の色温度に対して垂直色誤差が増減
することは全く同様であシ、本発明では少なくとも基準
照明色温度前後の照明色温度に対しては垂直色誤差の発
生は十分低くおさえられるため、色温度変換フィルタの
組合せによれば、砥とんどの色温度の照明に対して垂直
色誤差の発生を防止出来る〇 (発明の効果) 以上詳細に述べた通り本発明によれば、基準照明色温度
による無彩色光に対して各水平ラインから得られる色差
信号ははとんど零となるえめホワイトバランス補正が零
あるいは非常に少なくなシ、ま丸缶水平ツインの色差信
号を構成する各水平線素列の色信号変調成分も完全な色
差信号であるため無彩色光ではほとんど零となル隣接す
る垂直2水平絵素列で相関の無い被写体に対しても色差
信号誤差もホワイトバランス補正誤差もはとんど生じる
ことは無くな)視覚上許容しがたい無彩色画面のシャー
プな垂直輪郭部での垂直色誤差の無いカラー固体撮像装
置が実現される。
A device similar to the single-chip color imaging device whose schematic configuration diagram is shown in FIG.
SC power 2 - TV signal can be obtained.By the way, as is clear from the above explanation, the effect of the present invention is only effective for achromatic colors of the standard illumination color temperature of the cuff camera.
For white at other illumination color temperatures, the color difference signal does not have white balance, resulting in a vertical color error, but this is because even in conventional methods, the vertical color error does not increase or decrease with respect to the illumination color temperature. Similarly, in the present invention, the occurrence of vertical color errors can be suppressed sufficiently low at least for illumination color temperatures around the reference illumination color temperature. (Effects of the Invention) As described in detail above, according to the present invention, the color difference signals obtained from each horizontal line for achromatic light at the reference illumination color temperature can be prevented from occurring with respect to the illumination of However, the white balance correction is zero or very small, and the color signal modulation components of each horizontal line element array that make up the color difference signal of the Mamaru Can Horizontal Twin are also completely color difference signals, so there is no white balance correction. In colored light, it is almost zero.Even for subjects with no correlation between two adjacent vertical and horizontal pixel columns, color difference signal errors and white balance correction errors almost never occur), which are visually unacceptable. A color solid-state imaging device without vertical color errors in sharp vertical contours of an achromatic screen is realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインターライン転送CCD撮像素子の模式的平
面図、第2図はインターライン転送CODをフィールド
蓄積で動作させた場合の信号電荷の読第3図の色フィル
タ配列でフィールド蓄積動作時の各水平ラインの出力信
号を模式的に示した図、第5図は色差信号ベクトルを示
した図、第6図は単板式カラー撮像装置の概略構成図、
第7図は本発明の一実施例による色フィルタ配列會示す
模式的部分平面図、第8図(8)9 (b)は各色フィ
ルタの分光透過特性を示す図、第9図(all (b)
は2つの水平ラインの無彩色光時の色差信号の分光レス
ポンス特性を示す図、第10図は各色差信号のベクトル
、を示した図である0 図において、1・・・絵素、2・・・垂直CCDレジス
タ、3・・・水平CCDレジスタ、4・・・出力部、5
・・・色フィルタ、6−・・インターツイン転送CCD
撮像素子、7・・・ローパスフィルタ、8・・・混合回
路、9・・・狭帯域ローパスフィルタ、10・・・ゲイ
ン切換回路、11・・・バンドパスフィルタ、12・・
・検波器、13・・・ホワイトバランス回路、14・・
・IH遅延線、15・・・IH切換回路、16・・・平
衡変調回路、右、6゜tap・・・1.、・・・水平絵
素列に順番につけた列番号である〇 鮒1図 第2図 第3図 囚同ロロロロL・ 四日ロロ国口1・ 日田日ロロロノ・ 目日ロ日ロ国14 一回日日ロロム 可ロ国ロ間ロム 一一ロロロ日ノ7 コロロ国口日!、 第4図 ((1) (b) 第5図 尺−G 第7図 ロロロロ日田 11 日日ロロロー 1、 ロロロ図口図 ノ3 日日口日田口 ノ4 区ロロロF口 ノ5 [四NQ 口 [〒;] ■ −ノロ 日ロロロロE ノ。 一ロロロロ日 ノ。 第6図 400 500 600 7θO う(t + (tyyn〕 (a) 400 500 600 TOO 5nL 長 (1?#) (b) 第9図 う皮 ←とi (労?1) (I2) シ皮表(ηmン (b、) 第10図 〉− 岨
Figure 1 is a schematic plan view of an interline transfer CCD image sensor, and Figure 2 is a signal charge reading when the interline transfer COD is operated in field accumulation. Figure 3 shows the color filter arrangement during field accumulation operation. FIG. 5 is a diagram schematically showing the output signal of each horizontal line, FIG. 5 is a diagram showing color difference signal vectors, and FIG. 6 is a schematic configuration diagram of a single-chip color imaging device.
7 is a schematic partial plan view showing a color filter array according to an embodiment of the present invention, FIG. 8(8)9(b) is a diagram showing spectral transmission characteristics of each color filter, FIG. )
is a diagram showing the spectral response characteristics of color difference signals in two horizontal lines under achromatic light, and Figure 10 is a diagram showing the vectors of each color difference signal. ...Vertical CCD register, 3...Horizontal CCD register, 4...Output section, 5
...Color filter, 6-...Intertwin transfer CCD
Image sensor, 7...Low pass filter, 8...Mixing circuit, 9...Narrow band low pass filter, 10...Gain switching circuit, 11...Band pass filter, 12...
・Detector, 13... White balance circuit, 14...
・IH delay line, 15...IH switching circuit, 16...Balanced modulation circuit, right, 6° tap...1. , ... Column numbers assigned to horizontal picture element rows in order. Kororo Kuniguchi Day! , Figure 4 ((1) (b) Figure 5 Scale-G Figure 7 Rorororo Hita 11 Days Rororo 1, Rororo Figure Mouth Map No. 3 Days Exit Hita Exit No. 4 Ward Rororo F Exit No. 5 [4 NQ Mouth [〒;] ■ -Noro day Rorororo E ノ. One Rorororo day ノ. Fig. 6 400 500 600 7θO う(t + (tyyn) (a) 400 500 600 TOO 5nL length (1?#) (b) No. Fig. 9 Skin ← and i (labor?1) (I2) Shi skin surface (ηmn (b,) Fig. 10〉-岨

Claims (1)

【特許請求の範囲】[Claims] 少なくとも固体撮像装置と前記固体撮像装置の各絵氷に
対応し、水平及び垂直方向に配列された複数個の色フィ
ルタを備え九カラー固体撮像装置において、第1.第3
の水平絵素列からは第1の色差信号が一定絵素数周期で
変調された信号として得られ、第2.第4の水平絵素列
からは第2の色差信号が第1の色差信号と同二絵素数周
期で得られ、かつ第3.第4の水平絵素列から得られる
第1.第2の色差信号の一方が第1.第2の水平絵素列
から得られる第1.第2の色差信号と180゜位相が異
なるように配列した色フイルタ列を垂直方向に第1.第
2.第3.第4と4絵素の繰ル返し周期で順次配列し、
さらに各色フィルタは所定の基準照明色温度による10
〇−輝度レベル無彩色一様被写体操像時に前記第1.第
2の各色差信号及び、第1と第2の水平絵素列の各色差
信号を加算して得られる第3の色差信号及び、第3と第
4の水平絵素列の各色差信号を加算して得られる第4の
色差信号の各残留色差信号成分による搬送色信号振巾が
、最大搬送色信号振巾025%以下となる透過率特性を
持たせてなること′を特徴、とする固体撮像装置。
A nine-color solid-state imaging device comprising at least a solid-state imaging device and a plurality of color filters arranged in the horizontal and vertical directions corresponding to each picture frame of the solid-state imaging device; Third
A first color difference signal is obtained as a signal modulated at a constant pixel number period from the horizontal pixel row, and a second color difference signal is obtained as a signal modulated with a constant pixel number period. A second color difference signal is obtained from the fourth horizontal picture element row with the same two picture element periods as the first color difference signal, and the third... The first .obtained from the fourth horizontal pixel column. One of the second color difference signals is one of the second color difference signals. The first .obtained from the second horizontal pixel array. A row of color filters arranged so as to have a phase difference of 180° from the second color difference signal is vertically connected to the first color difference signal. Second. Third. The 4th and 4th picture elements are arranged sequentially at a repeating period,
Furthermore, each color filter has 10
〇-The above-mentioned 1. Each second color difference signal, a third color difference signal obtained by adding each color difference signal of the first and second horizontal picture element columns, and each color difference signal of the third and fourth horizontal picture element columns. It is characterized by having a transmittance characteristic such that the carrier color signal amplitude due to each residual color difference signal component of the fourth color difference signal obtained by addition is 025% or less of the maximum carrier color signal amplitude. Solid-state imaging device.
JP59111327A 1984-05-31 1984-05-31 Color solid-state imaging device Expired - Lifetime JPH0832052B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59111327A JPH0832052B2 (en) 1984-05-31 1984-05-31 Color solid-state imaging device
DE8585303861T DE3584582D1 (en) 1984-05-31 1985-05-31 SOLID-COLOR IMAGE RECORDING DEVICE.
EP85303861A EP0164255B1 (en) 1984-05-31 1985-05-31 Solid-state color imaging apparatus
US07/147,604 US4845548A (en) 1984-05-31 1988-01-22 Solid-state color imaging apparatus having color filters with corrected transmission characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111327A JPH0832052B2 (en) 1984-05-31 1984-05-31 Color solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS60254978A true JPS60254978A (en) 1985-12-16
JPH0832052B2 JPH0832052B2 (en) 1996-03-27

Family

ID=14558393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111327A Expired - Lifetime JPH0832052B2 (en) 1984-05-31 1984-05-31 Color solid-state imaging device

Country Status (1)

Country Link
JP (1) JPH0832052B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364288A (en) * 1989-08-02 1991-03-19 Nec Corp Array system for color filter and color solid-state image pickup device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687783A (en) * 1979-12-17 1981-07-16 Mitsubishi Electric Corp Dryer
JPS57109489A (en) * 1980-12-26 1982-07-07 Matsushita Electric Ind Co Ltd Color solid image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687783A (en) * 1979-12-17 1981-07-16 Mitsubishi Electric Corp Dryer
JPS57109489A (en) * 1980-12-26 1982-07-07 Matsushita Electric Ind Co Ltd Color solid image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364288A (en) * 1989-08-02 1991-03-19 Nec Corp Array system for color filter and color solid-state image pickup device

Also Published As

Publication number Publication date
JPH0832052B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US6825470B1 (en) Infrared correction system
WO2000007365A1 (en) Color imaging system with infrared correction
JPS60103790A (en) Color solid-state image pickup device
US20030151685A1 (en) Digital video camera having only two CCDs
EP0164255B1 (en) Solid-state color imaging apparatus
JPS6351436B2 (en)
US20030020728A1 (en) Method and apparatus for sensing and interpolating color image data
US5168350A (en) Solid-state color imaging apparatus
JP5108013B2 (en) Color imaging device, imaging device using the same, and filter
JPH0142192B2 (en)
JPS60254978A (en) Color solid-state image pickup device
JPS62190993A (en) Solid-state image pickup device
CN110324541A (en) The filtration combined denoising interpolation method of one kind and device
JPH0832051B2 (en) Color solid-state imaging device
JP7150514B2 (en) Imaging device and imaging method
JPS6253586A (en) Color solid-state image pickup device
JPS60263592A (en) Solid-state image pickup device
JPS6338920B2 (en)
JPH0127340Y2 (en)
JP2744705B2 (en) Color solid-state imaging device
JPH0230231B2 (en)
JPH0139273B2 (en)
JPH089395A (en) Color image pickup device
CA2054055A1 (en) Solid-state image pickup device having a color filter
JPS58139586A (en) Color solid-state image pickup device