JPS6025471B2 - Display device driving method - Google Patents

Display device driving method

Info

Publication number
JPS6025471B2
JPS6025471B2 JP50144206A JP14420675A JPS6025471B2 JP S6025471 B2 JPS6025471 B2 JP S6025471B2 JP 50144206 A JP50144206 A JP 50144206A JP 14420675 A JP14420675 A JP 14420675A JP S6025471 B2 JPS6025471 B2 JP S6025471B2
Authority
JP
Japan
Prior art keywords
display device
color
benzene
bis
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50144206A
Other languages
Japanese (ja)
Other versions
JPS5266886A (en
Inventor
浩二 岩佐
義雄 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKO DENSHI KOGYO KK
Original Assignee
SEIKO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKO DENSHI KOGYO KK filed Critical SEIKO DENSHI KOGYO KK
Priority to JP50144206A priority Critical patent/JPS6025471B2/en
Publication of JPS5266886A publication Critical patent/JPS5266886A/en
Publication of JPS6025471B2 publication Critical patent/JPS6025471B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 本発明は液状発色物質を用いた表示装置の駆動方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for driving a display device using a liquid coloring material.

本発明は、有機シンチレーション試薬として知られてい
る化合物が有機溶媒に溶解され、電解質を加えたのち直
流を印加することにより、陰極表面が非常に鮮やかな色
に発色することをみいだしたことによりなされたもので
ある。
The present invention was based on the discovery that when a compound known as an organic scintillation reagent is dissolved in an organic solvent, an electrolyte is added, and a direct current is applied, the cathode surface develops a very bright color. It has been done.

従来不活性溶媒、蛍光性有機化合物(例えば、有機シン
チレーション試薬)及び支持電解質より成る媒質中に少
なくとも2個の電極を有する電解セルを充分なる電圧を
有する交流に接触せしめ、少なくとも1個の電極におい
て該蛍光性有機化合物をして少なくとも1個の電子を失
い又は獲得することによって対応する酸化又は還元状態
に転化せしめ、又その交流は交流サイクルの反転に伴う
充分なる電位変化を有し蛍光性有機化合物をしてその一
重項励起状態に再生せしむべく充分なるエネルギー量を
具備することを特徴とする電解セル中に有用な可視電場
発光を生成せしむる方法(例えば特公昭42一2199
ぴ号公報参照)は公知であった。
Conventionally, an electrolytic cell having at least two electrodes in a medium consisting of an inert solvent, a fluorescent organic compound (e.g., an organic scintillation reagent), and a supporting electrolyte is contacted with an alternating current of sufficient voltage, and at least one electrode is The fluorescent organic compound is converted to the corresponding oxidized or reduced state by losing or gaining at least one electron, and the alternating current has a sufficient potential change with reversal of the alternating current cycle to convert the fluorescent organic compound into the corresponding oxidized or reduced state by losing or gaining at least one electron A method for producing useful visible electroluminescence in an electrolytic cell characterized by providing a sufficient amount of energy to regenerate a compound to its singlet excited state (e.g., Japanese Patent Publication No. 42-2199
(see Publication No. 1) was publicly known.

しかるに本発明による液状発色物質は、有機溶媒に非イ
オン性の有機還状化合物、代表的には液体シンチレーシ
ョン試薬として知られている化合物を溶解し、閥値電圧
以上の電圧を印加することにより、陰極表面でこれらの
化合物がアニオンラジカルを生成し、このラジカルが可
視光領域での特定波長を吸収するため発色が生じるもの
である。今液体シンチレーション試薬として9,10−
ジフェニルアントラセンを例にとり従来技術と本発明の
相違を明確にする。9,10−ジフェニルアントラセン
は、交流亀場の下で露場発光を生じるが、発色は行なわ
ない。
However, the liquid color-forming substance according to the present invention can be produced by dissolving a nonionic organic cyclic compound, typically a compound known as a liquid scintillation reagent, in an organic solvent and applying a voltage higher than the threshold voltage. These compounds generate anion radicals on the surface of the cathode, and these radicals absorb specific wavelengths in the visible light region, resulting in color development. Now as a liquid scintillation reagent 9,10-
The difference between the prior art and the present invention will be clarified by taking diphenylanthracene as an example. 9,10-diphenylanthracene produces outdoor luminescence under an alternating current chamber, but does not develop color.

他方9,10−ジフェニルアントラセンは直流電場の下
では発色するが発光は行なわない。この点を明確にする
為にIMのテトラュチルアンモニゥムパークロレートノ
アセトニトリル溶液中に9,10−ジフエニルアントラ
センを8×10‐3モル/夕溶かした発色液を作りこの
中に白金電極対を浸潰し種々の直流電圧.交流電圧を印
加し発色の程度を調べた。
On the other hand, 9,10-diphenylanthracene develops color under a DC electric field but does not emit light. In order to clarify this point, a coloring solution was prepared by dissolving 8 x 10-3 moles of 9,10-diphenylanthracene in IM's tetracylammonium perchlorate noacetonitrile solution, and a platinum electrode was placed in the solution. Various DC voltages are applied to the pair. An alternating current voltage was applied to examine the degree of color development.

該発色液の光透過スペクトルを第1図に示めす。これか
ら明らかなように電圧無印加の場合には多少短波長側に
吸収が倭よつたスペクトルが得られ、全体として薄紫色
に着色している。これに50HZ土4.0Vの矩形波を
加えて何ら透過スペクトルに変化はなく従って発色して
いない。同様に10HZ及び5Hz±4.0Vの矩形波
を印加してもほとんど変化はない。これに対し電極間距
離を0.5肋とし、直流電場十4.0V又は−4.0V
を印加すると第1図に示めすように極端な吸収を示めし
階青色に着色すなわち発色する。
The light transmission spectrum of the coloring liquid is shown in FIG. As is clear from this, when no voltage is applied, a spectrum is obtained in which the absorption is somewhat shifted towards the short wavelength side, and the entire spectrum is colored pale purple. When a rectangular wave of 50 Hz and 4.0 V was added to this, there was no change in the transmission spectrum, and therefore no color was developed. Similarly, there is almost no change even if a rectangular wave of 10 Hz and 5 Hz±4.0 V is applied. On the other hand, the distance between the electrodes is set to 0.5 ribs, and the DC electric field is 14.0V or -4.0V.
When applied, as shown in FIG. 1, it exhibits extreme absorption and develops a blue color.

すなわち本発明の表示装置はシンチレーション試薬に直
流電場を印加すると発色するという新規な現象に基く。
本発明の表示装置は、メモリー性がなく、また発色起因
物質を選択することにより、各種のカラー表示を行なう
事が可能である。
That is, the display device of the present invention is based on a novel phenomenon in which a scintillation reagent develops color when a DC electric field is applied to it.
The display device of the present invention has no memory property, and can display various colors by selecting a color-producing substance.

本発明で使用される液体シンチレーション試薬は、たと
えば同仁薬化学研究所よりドータィト試薬として市販さ
れており、第1表に示すような試薬の1種又は2種以上
を用いることができる。また、これら発色起因物質の溶
媒としては、トルェン,ジオキシサン,アセトン,ジメ
トキシエタン,エタノ−ル,ジメチルホルムアミド,ヘ
キサン,アニソール,パラキシレン等が単独に又は混合
溶媒として使用される。また必要に応じて支持電解質と
して、たとえばテトラエチルアンモニウムパークロレー
ト第1表(TEAP),テトラブチルアンモニウムパー
クロレート(TBAP),過塩素酸ナトリウム,過塩素
酸リチウム等が添加される。
The liquid scintillation reagent used in the present invention is commercially available as Dotite Reagent from Dojin Pharmaceutical Research Institute, for example, and one or more of the reagents shown in Table 1 can be used. Further, as the solvent for these coloring-causing substances, toluene, dioxane, acetone, dimethoxyethane, ethanol, dimethylformamide, hexane, anisole, paraxylene, etc. are used singly or as a mixed solvent. Further, as a supporting electrolyte, for example, tetraethylammonium perchlorate (TEAP), tetrabutylammonium perchlorate (TBAP), sodium perchlorate, lithium perchlorate, etc. may be added as a supporting electrolyte.

上記のような化合物を使用し発色実験を行なった結果、
第2表のような結果を得た。
As a result of color development experiments using the above compounds,
The results shown in Table 2 were obtained.

本実験は第2表に示めす各発色液を作成し(同表中有機
溶媒の混合比を示めす(1:1)の表示は重量比を示め
す)、当該溶液中に白金電極対を浸潰し、電極間に直流
4.0Vを印加し、陰極間の発色を室温下で肉視観察し
たものである。第2表 本発明による発色の機構は明らかとなっていないが、次
のように推定される。
In this experiment, each coloring solution shown in Table 2 was prepared (in the same table, the display of (1:1) indicating the mixing ratio of organic solvents indicates the weight ratio), and a pair of platinum electrodes was placed in the solution. A DC voltage of 4.0 V was applied between the electrodes, and color development between the cathodes was visually observed at room temperature. Table 2 Although the mechanism of color development according to the present invention is not clear, it is presumed as follows.

即ち、陰極の表面で前記発色起因物質が電子をとりこん
でアニオンラジカルを生成し、このアニオンラジカルは
比較的寿命が長く、又、可視光領域で特定の波長の光を
吸収するため電極表面が着色することによる。電解質は
液に導電性を与え、また、応答を速くするために10‐
2〜10‐3モル/そ添加される。電解質を添加しない
でも発色起因物質濃度をある程度高くすれば発色はする
が、一般に応答が遅くなる。本発明における発色起因物
質は安定な有機溶媒に溶解され、また、溶液中ではイオ
ン化していないため、電圧を印加しない状態では化学的
に安定であり、また、発色起因物質の電極表面での電気
化学的変化も非常に小さいので、発消色の繰返し寿命が
室温で2×1ぴ以上と寿命の長い表示器を得ることがで
きる。
That is, on the surface of the cathode, the substance that causes coloration takes in electrons and generates anion radicals, which have a relatively long life and absorb light of a specific wavelength in the visible light region, so the electrode surface becomes colored. By doing. The electrolyte gives conductivity to the liquid and also provides 10-
2 to 10-3 mol/so is added. Even without adding an electrolyte, color can be developed by increasing the concentration of the color-causing substance to a certain extent, but the response is generally slow. The substance that causes color development in the present invention is dissolved in a stable organic solvent and is not ionized in the solution, so it is chemically stable when no voltage is applied. Since chemical changes are also very small, it is possible to obtain a long-life indicator with a repeat life of 2×1 pi or more at room temperature.

本発明に使用される発色物質は、溶液中での濃度が高い
程立上りの応答速度は速いが、通常溶媒に対する溶解度
はさほど大きくないため、0.1〜50タノクの濃度で
使用される。
The higher the concentration of the coloring substance in the present invention, the faster the response speed of the rise, but the solubility in the solvent is usually not so great, so it is used at a concentration of 0.1 to 50%.

発色のはじまる電圧、即ち光の透過率が10%低下する
電圧は電極間距離が0.5側の場合には室温で3〜4V
と低く、4〜5Vで発色は飽和する。また消費電力は、
支持電解質を加えない時は1〜5hW/の、支持電解質
を加えた場合は10〜5瓜hW/の程度と低いため、け
し、帯機器等の表示装置への応用が適している。なお、
本発明による液状発色物質を表示装置に使用した例を図
に示す。図中、1は透明基板であり、内面には酸化スズ
もしくは酸化インジウム等の被膜が透明電極2として形
成されている。3は透明又は不透明な基版であり、その
内面には、ネサ,白金,もしくは金等の電極4が形成さ
れている。
The voltage at which color development begins, that is, the voltage at which light transmittance decreases by 10%, is 3 to 4 V at room temperature when the distance between the electrodes is on the 0.5 side.
The color is saturated at 4 to 5V. Also, the power consumption is
Since it is as low as 1 to 5 hW/ when no supporting electrolyte is added, and 10 to 5 hW/ when a supporting electrolyte is added, it is suitable for application to display devices such as poppies and band devices. In addition,
The figure shows an example in which the liquid coloring material according to the present invention is used in a display device. In the figure, 1 is a transparent substrate, and a coating of tin oxide, indium oxide, or the like is formed as a transparent electrode 2 on the inner surface. Reference numeral 3 denotes a transparent or opaque base plate, and an electrode 4 made of Nesa, platinum, gold, or the like is formed on its inner surface.

5は、このセルをシールするためのシーリング材であり
、かつ基板1および3の間隔を一定に保っている。
5 is a sealing material for sealing this cell, and keeps the distance between the substrates 1 and 3 constant.

6はセル内部に封入された液状発色物質であり、電極2
および4を介して電圧を印加すると発色する。
6 is a liquid coloring substance sealed inside the cell, and electrode 2
When a voltage is applied through 4 and 4, color develops.

以上述べたように、本発明によれば、寿命が長くコント
ラストが良く、しかも低電圧で、かつ少ない消費電力で
発色する新規な表示装置の駆動方法を実現することがで
きる。
As described above, according to the present invention, it is possible to realize a novel method for driving a display device that has a long life, provides good contrast, and produces color at low voltage and low power consumption.

とくに発色の種類については第2表に示めすように、赤
紫、黄、茶、濃青、黄緑、又は青のように多様なものが
得られた。
In particular, as shown in Table 2, a variety of colors were obtained, such as reddish-purple, yellow, brown, dark blue, yellow-green, and blue.

又、コントラストについては第1図に示めす通り無印加
時で透過率85%程度、DC十4.0V印加時で平均数
%以下に押さえることができ、その差は極めて大である
As for the contrast, as shown in FIG. 1, the transmittance can be suppressed to about 85% when no voltage is applied, and to an average of several percent or less when DC 14.0 V is applied, and the difference is extremely large.

さらに寿命については、本発明の表示装置では発色物質
は化学的に安定な溶媒に溶解され、また電圧無印加状態
ではイオン化しておらず、支持電解質との反応もないの
で、発色液の寿命は長い。
Furthermore, regarding the lifespan, in the display device of the present invention, the coloring substance is dissolved in a chemically stable solvent, and is not ionized when no voltage is applied, and there is no reaction with the supporting electrolyte, so the lifespan of the coloring liquid is limited. long.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明と従釆例を比較する為の電圧印加時の9
,10ージフェニルアントラセンの光透過スペクトルで
ある。 第2図は、本発明による液状発色物質を表示装置に組み
込んだ状態を示す断面図である。1・・・透明基板、2
・・・透明電極、3・・・基板、4・・・電極、5・・
・シーリング材「 6・・・液状発色物質、7・・・直
流電源。 第2図 第1図
Figure 1 shows 9 when voltage is applied to compare the present invention and a conventional example.
, 10-diphenylanthracene. FIG. 2 is a sectional view showing a state in which the liquid coloring material according to the present invention is incorporated into a display device. 1...Transparent substrate, 2
...Transparent electrode, 3...Substrate, 4...Electrode, 5...
・Sealing material 6... Liquid coloring substance, 7... DC power supply. Figure 2 Figure 1

Claims (1)

【特許請求の範囲】 1 発色に起因する物質として、2,5−ビス〔5′−
ターシヤリ−ブチルベンゾキサゾリル(2)′〕チオフ
エン、1,4ビス〔2−(5−フエニルオキサゾリル)
〕ベンゼン、1,4−ビス(2−メチルスチリル)ベン
ゼン、1,4−ビス〔2−(4−メチル−5−フエニル
オキサゾリル)〕ベンゼン、1,4ビス〔2−(5−P
−トリルオキサゾール)〕ベンゼン、2−(4′−ター
シヤリ−ブチルフエニル)−5−(4″−ビフエニル)
−1,3,4−オキサジアゾール、2,5−ジフエニリ
ルオキサゾール、9,10ジフエニルアントラセン、1
,6−ジフエニル−1,3,5−ヘキサトリエン、P・
P′−ジフエニルスチルベン、P−ターフエニル、P−
クオーターフエニル、2(1−ナフチル)−5−フエニ
ルオキサゾールの少なくとも1種の有機シンチレーシヨ
ン試薬と、これを溶解する有機溶媒と電解質からなる発
色液を少なくとも一方が透明な内面に導電層が形成され
た一対の基板間に保持してなる表示装置の駆動方法にお
いて、前記導電層間に直流電圧を印加することにより陰
極表面で前記発色物質をアニオンラジカルとし、該アニ
オンラジカルが可視光領域で特定波長の光を吸収するこ
とにより発色させることを特徴とする表示装置の駆動方
法。
[Claims] 1. 2,5-bis[5'-
Tertiary-butylbenzoxazolyl(2)']thiophene, 1,4bis[2-(5-phenyloxazolyl)
] Benzene, 1,4-bis(2-methylstyryl)benzene, 1,4-bis[2-(4-methyl-5-phenyloxazolyl)]benzene, 1,4-bis[2-(5- P
-tolyloxazole)]benzene, 2-(4'-tert-butylphenyl)-5-(4''-biphenyl)
-1,3,4-oxadiazole, 2,5-diphenylyloxazole, 9,10 diphenylanthracene, 1
, 6-diphenyl-1,3,5-hexatriene, P.
P'-diphenylstilbene, P-terphenyl, P-
At least one organic scintillation reagent such as quarterphenyl, 2(1-naphthyl)-5-phenyloxazole, an organic solvent for dissolving the scintillation reagent, and an electrolyte are used as a coloring liquid. In a method of driving a display device held between a pair of formed substrates, the color-forming substance is converted into anion radicals on the cathode surface by applying a DC voltage between the conductive layers, and the anion radicals are identified in a visible light region. A method for driving a display device characterized by generating color by absorbing light of a certain wavelength.
JP50144206A 1975-12-02 1975-12-02 Display device driving method Expired JPS6025471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50144206A JPS6025471B2 (en) 1975-12-02 1975-12-02 Display device driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50144206A JPS6025471B2 (en) 1975-12-02 1975-12-02 Display device driving method

Publications (2)

Publication Number Publication Date
JPS5266886A JPS5266886A (en) 1977-06-02
JPS6025471B2 true JPS6025471B2 (en) 1985-06-18

Family

ID=15356683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50144206A Expired JPS6025471B2 (en) 1975-12-02 1975-12-02 Display device driving method

Country Status (1)

Country Link
JP (1) JPS6025471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877228B2 (en) * 2005-05-31 2012-02-15 コニカミノルタホールディングス株式会社 Electrochromic display element and full-color electrochromic display element
JP5040218B2 (en) * 2006-08-28 2012-10-03 コニカミノルタホールディングス株式会社 Display element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871995A (en) * 1971-12-28 1973-09-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4871995A (en) * 1971-12-28 1973-09-28

Also Published As

Publication number Publication date
JPS5266886A (en) 1977-06-02

Similar Documents

Publication Publication Date Title
US3451741A (en) Electrochromic device
JP4635997B2 (en) Electrochemiluminescence device and driving method of electrochemiluminescence element
Nobeshima et al. Advantage of an AC-driven electrochemiluminescent cell containing a Ru (bpy) 32+ complex for quick response and high efficiency
Nobeshima et al. Reaction mechanism and improved performance of solution-based electrochemiluminescence cell driven by alternating current
Hwang et al. Improvement of brightness, color purity, and operational stability of electrochemiluminescence devices with diphenylanthracene derivatives
Kim et al. Smart approach to liquid electrolyte-based multi-colored electrochemiluminescence for lighting applications
US4752119A (en) Electrochromic display devices
US5215684A (en) Electrolyte for electrochromic elements
JP2002324401A (en) Light emitting device
Tsuneyasu et al. Electrochemical Stability of Diphenylanthracene and Its Effect on Alternating‐Current‐Driven Blue‐Light Electrochemiluminescence Properties
US3900418A (en) Electrochemical luminescent solutions and devices incorporating such solutions
JPS5935947B2 (en) electrochromic display device
JPS6025471B2 (en) Display device driving method
US3906283A (en) Electrochemical luminescent solutions and devices incorporating such solutions
KR20030001440A (en) Luminescent Element
US3816795A (en) Method for providing electroluminescent light from a polycyclic heterocyclic compound in an aprotic solvent under electric current
JPS6057320A (en) Electrochromic display element
Corrente et al. Reversible vis-NIR electrochromic/electrofluorochromic switching in dual-functional devices modulated by different benzothiadiazole-arylamine anodic components
JPS6025472B2 (en) Display device driving method
OZAWA et al. Device Lifetime Improvement and Efficiency of Upconverted Blue Electrochemiluminescence From 9, 10-Diphenylanthracene With DNA/Ru (bpy) 32+ Hybrid Film
JPS61185730A (en) Composite film type electrochromic material
Mukaigawa et al. Electrochemical switching of fluorescence emission between red and blue from complexed europium ions in poly (ethylene oxide)
JPS608034B2 (en) Photosensitive display element
JPS60233186A (en) Image displaying device
JP7313066B2 (en) Display element and display device using the same