JPS60253926A - Manufacture of infrared detector - Google Patents
Manufacture of infrared detectorInfo
- Publication number
- JPS60253926A JPS60253926A JP59111440A JP11144084A JPS60253926A JP S60253926 A JPS60253926 A JP S60253926A JP 59111440 A JP59111440 A JP 59111440A JP 11144084 A JP11144084 A JP 11144084A JP S60253926 A JPS60253926 A JP S60253926A
- Authority
- JP
- Japan
- Prior art keywords
- container
- vacuum
- infrared
- gaseous
- prevent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 12
- 230000006866 deterioration Effects 0.000 abstract description 8
- 239000007789 gas Substances 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 229910001868 water Inorganic materials 0.000 abstract description 3
- 230000002542 deteriorative effect Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000007599 discharging Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0296—Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
- H01L31/02966—Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の技術分野
本発明は赤外線検知器の製造方法、詳しくは水銀・カド
ミウム・テルル(IIgCdTe)検知素子の特性を劣
化させることなく真空容器を長時間高真空に保つための
排気方法に関する。DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing an infrared detector, and more particularly, to a method for manufacturing an infrared detector, and more specifically, for manufacturing a mercury-cadmium-tellurium (IIgCdTe) detection element by keeping a vacuum container under high vacuum for a long period of time without deteriorating the characteristics of the detection element. Concerning the exhaust method to maintain the temperature.
(2)技術の背景
第1図に断面図で示される赤外線検知器は知られている
ものであり、同図において、1はガラス製の真空容器、
2は赤外線透過窓、3は赤外線検知素子、4はヒートシ
ンク、5は液体窒素を示し、容器1は魔法びんの如く内
部が真空排気された真空容器である。窓2を通過した赤
外線は赤外線検知素子3によって電気的信号に変換され
る。窓2はゲルマニウム(Ge)−石英の如き赤外線を
良く通す材料で作られる。(2) Background of the technology The infrared detector shown in cross-section in Figure 1 is a known one, and in the figure, 1 is a glass vacuum container;
2 is an infrared transmitting window, 3 is an infrared detecting element, 4 is a heat sink, and 5 is liquid nitrogen. Container 1 is a vacuum container whose inside is evacuated like a thermos flask. The infrared rays that have passed through the window 2 are converted into electrical signals by the infrared sensing element 3. The window 2 is made of a material that is highly transparent to infrared radiation, such as germanium (Ge)-quartz.
(3)従来技術と問題点
前記した赤外線検知器の製造においては、赤外線検知素
子等を図示の如く配備した後に容器1の排気を行う。(3) Prior Art and Problems In manufacturing the above-mentioned infrared detector, the container 1 is evacuated after the infrared detecting elements and the like are arranged as shown.
従来の排気方法においては、10−7〜10’ Tor
rの高真空で、120℃程度のベーキングを行って長時
間排気するために、HgCdTeからI(gが分解して
真空中に出て行き、排気後に赤外線検知素子の特性(特
に信号量)は当該素子製作直後に比べ、約1/10と著
しく劣化する問題がある。In the conventional evacuation method, 10-7 to 10' Tor
In order to perform baking at around 120°C and exhaust for a long time in a high vacuum of There is a problem in that the deterioration is significantly reduced to about 1/10 compared to that immediately after the device was manufactured.
(4)発明の目的
本発明は上記従来の問題に鑑み、HgCdTeからのt
1g放出を抑え、それによってHgCdTeの分解を抑
制し、赤外線検知素子の特性の劣化が防止される赤外線
検知器の真空部の排気方法を提供することを目的とする
。(4) Purpose of the Invention In view of the above-mentioned conventional problems, the present invention provides a
An object of the present invention is to provide a method for evacuating a vacuum section of an infrared detector, which suppresses HgCdTe emission, thereby suppressing decomposition of HgCdTe, and preventing deterioration of the characteristics of the infrared detection element.
(5)発明の構成
そしてこの目的は本発明によれば、赤外線検知素子を収
容した真空容器内に水素ガスを充満して加熱排気し、常
温に戻し、しかる後に前記水素ガスを排気することを特
徴とする赤外線検知器の製造方法を提供することによっ
て達成される。(5) Structure and object of the invention According to the present invention, a vacuum container containing an infrared detection element is filled with hydrogen gas, heated and evacuated, returned to room temperature, and then the hydrogen gas is evacuated. This is achieved by providing a method for manufacturing an infrared detector having the following characteristics.
(6)発明の実施例 以下本発明の実施例を図面によって詳述する。(6) Examples of the invention Embodiments of the present invention will be described in detail below with reference to the drawings.
再び図面を参照すると、HgCdTe検知素子3を取り
付けた真空容器1は、その内部に付着した空気や水分を
脱離させることによって、後に容器内壁からのガス放出
を減らす必要がある。そのために真空寿命を長くするに
ついては、前記したベーキング排気を長時間実施しなけ
ればならない。ところで、検知素子を長時間高温、高真
空中に放置するとその特性は前記した如く著しく劣化す
る。その原因は、検知素子を構成するHgCdTe成分
表面のHg化合物が分解し、Hgが抜けてしまうことに
ある。Referring again to the drawings, the vacuum container 1 to which the HgCdTe sensing element 3 is attached needs to reduce gas release from the inner wall of the container later by removing air and moisture adhering to the inside thereof. Therefore, in order to extend the vacuum life, the above-mentioned baking evacuation must be carried out for a long time. By the way, if a sensing element is left in a high temperature and high vacuum for a long time, its characteristics will deteriorate significantly as described above. The reason for this is that the Hg compound on the surface of the HgCdTe component constituting the sensing element decomposes and Hg escapes.
そして、分解したHgの抜は出る量は、高温、高真空中
に長時間放置すると過度に生じる。反対に、低真空にお
いては、かかるhg分解とそれによる素子特性劣化は少
なくなる。Furthermore, the amount of decomposed Hg that is released becomes excessive if the product is left in a high temperature and high vacuum for a long time. On the contrary, in a low vacuum, such hg decomposition and the resulting deterioration of device characteristics are reduced.
本発明は、一般に使用される水素ゲッターの水素吸着能
力が、他のガスの吸着能力よりも桁違いに大であること
を利用し、l1gの抜は出ることを防止するために、容
器1内を、高真空の代りに低圧の水素ガスで満たし、ベ
ーキングし、容器内壁に付着した水素以外のガス(水、
酸素、窒素など)を水素ガスで置換排気し、しかる後に
、高温下で短時間、または低圧下で水素を排気する。The present invention takes advantage of the fact that the hydrogen adsorption capacity of commonly used hydrogen getters is orders of magnitude greater than the adsorption capacity of other gases, and in order to prevent 11g from being extracted, the hydrogen getter is is filled with low-pressure hydrogen gas instead of high vacuum, baked, and gases other than hydrogen (water, water,
Oxygen, nitrogen, etc.) is replaced with hydrogen gas and then the hydrogen is exhausted for a short time at high temperature or under low pressure.
Hgが抜は出ることを防止し、検知素子の特性劣化を小
にする目的で、本発明の方法においては、リークバルブ
で容器真空部への水素導入量を調節し、例えば10”
〜’10−′ITorrの低圧水素ガスで容器1の真空
部を満たし、従来と同様にベーキングを行う。In order to prevent Hg from leaking out and to minimize deterioration of the characteristics of the detection element, in the method of the present invention, the amount of hydrogen introduced into the vacuum part of the container is adjusted using a leak valve, for example, 10"
The vacuum part of the container 1 is filled with low pressure hydrogen gas of ~'10-'ITorr, and baking is performed in the same manner as in the conventional method.
このベーキングにより、容器内の容器内壁に付着してい
た水蒸気、酸素、窒素等の水素以外のガスは、水素ガス
で置換排気される。もつとも排気速度は従来に比べ若干
遅くなるが、水素圧の下にHgの蒸発(抜は出)が抑え
られ、検知素子3の特性劣化はきわめて小に保つことが
できる。By this baking, gases other than hydrogen such as water vapor, oxygen, and nitrogen adhering to the inner wall of the container inside the container are replaced with hydrogen gas and exhausted. Although the pumping speed is of course slightly slower than in the past, evaporation (extraction) of Hg is suppressed under hydrogen pressure, and deterioration of the characteristics of the sensing element 3 can be kept extremely small.
水素以外のガスが排気された後に常温に戻し、水素ガス
を排気する。このときに容器内壁に吸着された水素が脱
離し、真空度の低下を招く。そこで符号6で示す公知の
ゲッターを用いると、ゲッターは水素に対して排気能力
がきわめて大で、酸素、窒素に比べ100倍程度の排気
能力があるから、真空度の低下が防止される。After gases other than hydrogen are exhausted, the temperature is returned to room temperature and hydrogen gas is exhausted. At this time, hydrogen adsorbed on the inner wall of the container is desorbed, causing a decrease in the degree of vacuum. Therefore, when a known getter designated by reference numeral 6 is used, the getter has an extremely large exhaust capacity for hydrogen, about 100 times as high as that for oxygen and nitrogen, so that a decrease in the degree of vacuum can be prevented.
(7)発明の効果
以上詳細に説明した如く本発明によれば、赤外線検知器
の真空容器の排気において、ベーキング排気中に容器内
を水素ガスで満たし、しかる後に水素ガスの排気を行う
ことにより、HgCdTeからのHgの放出とそれの分
解を抑制し、赤外線検知素子の特性劣化を防止する効果
がある。(7) Effects of the Invention As explained in detail above, according to the present invention, in evacuation of a vacuum container of an infrared detector, the inside of the container is filled with hydrogen gas during baking evacuation, and then the hydrogen gas is evacuated. , has the effect of suppressing the release of Hg from HgCdTe and its decomposition, and preventing characteristic deterioration of the infrared sensing element.
添付の図は赤外線検知器の断面図である。
1−真空容器、2−赤外線透過窓、
3−赤外線検知素子、4−ヒートシンク、5−液体窒素
、6ヘーゲソター
特開08GO−253926(3)The attached figure is a cross-sectional view of an infrared detector. 1-Vacuum container, 2-Infrared transmitting window, 3-Infrared detection element, 4-Heat sink, 5-Liquid nitrogen, 6 Hegesoter JP-A-08GO-253926 (3)
Claims (1)
して加熱排気し、當温に戻し、しかる後に前記水素ガス
を排気することを特徴とする赤外線検知器の製造方法。1. A method for manufacturing an infrared detector, comprising filling a vacuum container containing an infrared detection element with hydrogen gas, heating and evacuating the container, returning it to a normal temperature, and then evacuating the hydrogen gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59111440A JPS60253926A (en) | 1984-05-31 | 1984-05-31 | Manufacture of infrared detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59111440A JPS60253926A (en) | 1984-05-31 | 1984-05-31 | Manufacture of infrared detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60253926A true JPS60253926A (en) | 1985-12-14 |
Family
ID=14561251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59111440A Pending JPS60253926A (en) | 1984-05-31 | 1984-05-31 | Manufacture of infrared detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60253926A (en) |
-
1984
- 1984-05-31 JP JP59111440A patent/JPS60253926A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5921461A (en) | Vacuum package having vacuum-deposited local getter and its preparation | |
US5091233A (en) | Getter structure for vacuum insulation panels | |
JP2694576B2 (en) | Improved process for venting heat insulating jackets, in particular dewar or other cryogenic jackets | |
JPH064286Y2 (en) | Infrared detector | |
US3114469A (en) | Means for improving thermal insulation space | |
WO1993023713A1 (en) | Vertical heat treatment apparatus and heat insulating material | |
US4000246A (en) | Removal of gases from an enclosed space using metal hydrocarbyl oxides | |
JPH0326320B2 (en) | ||
US4886240A (en) | Dewar cryopumping using barium oxide composite for moisture removal | |
ES2105514T3 (en) | METHOD TO MANUFACTURE A VACUUM PANEL. | |
JPS60253926A (en) | Manufacture of infrared detector | |
US5543121A (en) | Getter materials for the vacuum insulation of liquid hydrogen storage vessels or transport lines | |
US4297082A (en) | Vacuum gettering arrangement | |
JPH09210290A (en) | Method and device for manufacturing evacuated insulator | |
US3356846A (en) | Infrared detector mounted on thermoelectric cooling means and within a container of inert gas | |
JPH0592136A (en) | Adsorbent packing bag and production thereof | |
EP0406342B1 (en) | Dewar cryopumping using molecular sieve | |
JP7129979B2 (en) | Vacuum insulation material manufacturing method | |
US3185842A (en) | Method of stabilization of dewar package thin film detectors | |
US2456968A (en) | Process for outgassing photocells containing antimony | |
JP2001108184A (en) | Vacuum heat insulating body | |
SU815424A1 (en) | Cryostat | |
JP2768573B2 (en) | Vacuum insulation for high temperature | |
US2431402A (en) | Photoube and method of manufacture | |
JPH0798963B2 (en) | Sintering furnace for rare earth magnet alloys |