JPS60253830A - Load measuring method - Google Patents

Load measuring method

Info

Publication number
JPS60253830A
JPS60253830A JP10958084A JP10958084A JPS60253830A JP S60253830 A JPS60253830 A JP S60253830A JP 10958084 A JP10958084 A JP 10958084A JP 10958084 A JP10958084 A JP 10958084A JP S60253830 A JPS60253830 A JP S60253830A
Authority
JP
Japan
Prior art keywords
load
strain
load cell
formula
longitudinal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10958084A
Other languages
Japanese (ja)
Inventor
Hiroshi Amano
豁 天野
Kunitoshi Watanabe
渡辺 国俊
Seiichi Marumoto
清一 丸元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10958084A priority Critical patent/JPS60253830A/en
Publication of JPS60253830A publication Critical patent/JPS60253830A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01L1/2231Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being disc- or ring-shaped, adapted for measuring a force along a single direction

Abstract

PURPOSE:To reduce the error in the measurement of load using a washer type load cell by a strain gauge system, by calculating load by using a weighted addition formula preliminarily calculated from the longitudinal strain in the inner surface side of an annular block and that in the outer surface side thereof. CONSTITUTION:A load cell is constituted so as to detect the longitudinal strain in the inner surface side of a web having an I-shaped cross-sectional area and that in the outer surface side thereof by adhering strain gauges to a plurality places of the inner and outer surfaces of said web in the circumferential direction. Further, the weighted addition formula of longitudinal strains in the inner and outer surface sides is defined by formula I and the output Fr of the load cell is calculated according to formula II by using the weighted addition value epsilon. The load measuring error e3 in this case is imparted by formula III. By performing heavy regression analysis of inner and outer surface side strains epsilon1, epsilon0 when the loads of two kinds or more of load patterns are applied, coefficients a, b of the formula I are calculated. Herein, F0 is load actually applied to the load cell.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はロードセルを用いた荷重測定方法、とぐにスト
レインゲージ方式によるワッシャ形ロードセルを用いた
荷重測定方法【こ関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a load measuring method using a load cell, and particularly to a load measuring method using a washer type load cell using a strain gauge method.

(従来の技術〕 荷重測定のためのロードセルは各方面で多用されており
、たとえば鉄鋼製造工程における圧延機用ロードセルは
圧延荷重測定に用いられ、板厚制御をはじめ各種圧延制
御に不可欠のセンサーである。
(Prior technology) Load cells for measuring loads are widely used in various fields. For example, load cells for rolling mills in the steel manufacturing process are used to measure rolling loads, and are essential sensors for various rolling controls including plate thickness control. be.

圧延機用ロードセルとしては、荷重検出方式としてスト
レインゲージ方式、電磁方式、静電容量方式などがあり
、葦た形状区分としてワッシャ形。
Load cells for rolling mills include strain gauge methods, electromagnetic methods, capacitance methods, etc. as load detection methods, and the washer type.

ディスク形、長方形などがあるが、本発明の対象とする
ロードセルはストレインゲージ方式によるワッシャ形ロ
ードセルである。
Although there are disk-shaped, rectangular, etc. load cells, the load cell targeted by the present invention is a washer-type load cell using a strain gauge method.

ストレインゲージ方式【こよるワッシャ形ロードセルお
よびその使用の様態は、たとえば「日本鋼管技報、 A
 48 J (1972年2日本鋼管株式会社発行〕の
49頁〜58頁fこ掲載の論文「圧延圧力計に関する考
察」に記載のように7環状ブロツク【コストレインゲー
ンを貼付したロードセルを。
The strain gauge method [Koyoru washer type load cell and its usage are described in, for example, "Nippon Steel Tube Technical Report, A.
48 J (published by Nippon Kokan Co., Ltd., 1972), pp. 49 to 58 f. As described in the article "Considerations on rolling pressure gauges", a load cell with a 7-ring block [cost strain gauge attached] was used.

圧延機のナンドとハウジングの間に設置して使用される
It is installed between the rolling mill's NAND and the housing.

ところでこのような使用状態において、ロードセルが受
ける荷重分布に応じてどのようなひずみが発生し、その
ひずみの発生状況によってどのように測定誤差が生ずる
かということについては従来十分に研究されていなかつ
1こ。
However, under such conditions of use, what kind of strain occurs depending on the load distribution that the load cell receives, and how measurement errors occur depending on the situation in which the strain occurs has not been sufficiently researched. child.

本発明者等はワソンヤー形ロードセルに関し、有限要素
法(FEM)4用いて上記の点について種々の解析ヲ行
い、従来のワッシャ形ロードセルを用いた荷重測定の問
題点を明らかにしfこ。
The present inventors conducted various analyzes regarding the above-mentioned points using the finite element method (FEM)4 regarding washer-type load cells, and clarified the problems in load measurement using conventional washer-type load cells.

(発明が解決しようとする問題点) 第1図は本発明者等が解析のためζこ用いたワッシャー
形ロードセルを示す斜視図であり、断面(図中胴線で示
す)は“I ”形である。ストレインゲージは工形断面
のウェブの内面および外面の円周方向の数個所(図中○
印に示’?f)iこ貼りつけられ、ウェブ内面側および
外面側の縦ひずみを検出Tる構造となっている。第1表
は本解析)こ用いたウェブ厚さの異なる3個のロードセ
ルの各部の寸法を示した表であり、表中の谷部の記号は
第1図に示した記号と対応する。
(Problems to be Solved by the Invention) Fig. 1 is a perspective view showing a washer-type load cell used by the present inventors for analysis, and the cross section (indicated by the body line in the figure) is an "I" shape. It is. Strain gauges are installed at several locations in the circumferential direction on the inner and outer surfaces of the web in the cross section (○ in the figure).
Show it on the mark? f) The structure is such that longitudinal strain on the inner and outer surfaces of the web can be detected. Table 1 is a table showing the dimensions of each part of the three load cells with different web thicknesses used in this analysis, and the symbols of the valleys in the table correspond to the symbols shown in FIG.

ロードセルのフランジ面(・こかかる荷重は等分布荷重
と偏荷重1こ分けられる。等分布荷重とはo −ドセル
のフランジ面に均一な分布を持つ荷重であり、偏荷重と
は全荷重から前記等分布荷重を差引いた残りである。
The load applied to the flange surface of the load cell can be divided into uniformly distributed load and unbalanced load. Uniformly distributed load is a load that has a uniform distribution on the flange surface of the o-cell, and unbalanced load is a load that is divided from the total load to the This is the remainder after subtracting the uniformly distributed load.

ロードセルおよび圧延機の)・ウジングの形はロードセ
ルの半径方向に必ずしも一様ではないので。
The shape of the load cell and the rolling mill) is not necessarily uniform in the radial direction of the load cell.

半径方向の剛性は均一ではない。そのfこめfこ、ロー
ドセルの縦方向にかかる応力は一般に等分布および不等
分布応力から成る。本発明者等は第1表の届2のロード
セルを圧延機のナツトとハウジングの間に設置して荷重
を加え、ナツトおよびし・ウジングも含めて解析し第2
図に示すごときロードセルの上下7ランン面の荷重分布
を得た。図中縦矢印がフランジ面の半径(r)方向各点
の縦(Z)方向応力(σZ)の大きさを表わす。このと
きの荷重分布に対応したロードセル断面各部の変位を第
3図をこ示す。図中実線は無負荷時の断面形状を示し、
点線が負荷時の形状(変位)を示T。
Radial stiffness is not uniform. The stress applied in the longitudinal direction of the load cell generally consists of uniformly distributed stress and non-uniformly distributed stress. The inventors of the present invention installed the load cell shown in Notification 2 in Table 1 between the nut and housing of a rolling mill, applied a load, analyzed the nut and the housing, and conducted a second analysis.
The load distribution on the upper and lower seven run surfaces of the load cell as shown in the figure was obtained. The vertical arrows in the figure represent the magnitude of the longitudinal (Z) direction stress (σZ) at each point in the radial (r) direction of the flange surface. FIG. 3 shows the displacement of each part of the cross section of the load cell corresponding to the load distribution at this time. The solid line in the figure shows the cross-sectional shape when no load is applied.
The dotted line indicates the shape (displacement) under load.

愼て 旭II’W+こ云j、1−と2きロードセルを用
いた荷重測定において、ロードセルの出力は従来法のよ
う1こ算出していた。すなわちウェブの内面および外面
に貼られたストレインゲージで検出された縦ひずみを用
いて。
In the load measurement using Asahi II'W+Koinj, 1- and 2 load cells, the output of the load cell was calculated once as in the conventional method. That is, using the longitudinal strain detected by strain gauges attached to the inner and outer surfaces of the web.

T−一(ε。+εカ )/2 ・・・・・・・・・・・
・・・・(1)Fm−πptEg ・・・・・・・・・
・・・・・・(2)ここに、Fm:ロードセル出力〔N
〕 ε。 ニストレインゲージで検出されたウェブ外面の縦
ひずみの和 εL ニストレインゲージで検出されたウェブ内面の縦
ひずみの和 E :ヤング率〔N/TIA〕 D 二ロードセルの平均直径〔■〕 t :ウエブの厚さ〔−〕 としてロードセル出力Fmを算出していた。
T-1 (ε.+εka)/2 ・・・・・・・・・・・・
・・・・・・(1) Fm−πptEg ・・・・・・・・・
・・・・・・(2) Here, Fm: Load cell output [N
] ε. Sum of longitudinal strains on the outer surface of the web detected by the Ni strain gauge εL Sum of longitudinal strains on the inner surface of the web detected by the Ni strain gauge E: Young's modulus [N/TIA] D Average diameter of two load cells [■] t: Web The load cell output Fm was calculated as the thickness [-].

しかしながら、0−ドセル9こかかる実際の荷重Foは
、ウェブ断面の半径σノ方向各点の縦ひずみε(r)の
積分値を用いた下式 から算出される値である。従って前出(2)弐〇こより
算出し7Ho−ドセル出力(荷重9は実際の荷重に対し
て次式に示す測定誤差eIを有していることになる。
However, the actual load Fo applied to the 0-docel9 is a value calculated from the following formula using the integral value of the longitudinal strain ε(r) at each point in the radial σ direction of the web cross section. Therefore, the 7Ho-dossel output (load 9 calculated from the above (2) 2) has a measurement error eI shown in the following equation with respect to the actual load.

e、 =(rr D t B 5− Fo ) / F
o X 100 C% 〕=・・・(4)ここて仮にウ
ェブ断面の半径(r)方向の各点の縦ひずみε(r)の
半径方向の変化が直線的であると仮定したとき、前記の
(3)式は下式 のように表わすことができ、この場合の測定誤差e2は
(5)式の第2項に対応した となる。
e, =(rrDtB5-Fo)/F
o x 100 C%]=...(4) Here, if it is assumed that the change in the radial direction of the longitudinal strain ε(r) at each point in the radial (r) direction of the web cross section is linear, then the above Equation (3) can be expressed as shown below, and the measurement error e2 in this case corresponds to the second term of equation (5).

これら(5)式および(6)武力)らもわかるように、
ウェブ断面各点の縦ひずみε(r)が半径方向に完全に
等しく一様である場合のみ、前記(2)式により算出し
たロードセル出力が実荷重に一致する。
As can be seen from these formulas (5) and (6) military force,
Only when the longitudinal strain ε(r) at each point on the web cross section is completely equal and uniform in the radial direction, the load cell output calculated by the above equation (2) matches the actual load.

しかし、実際には圧延機谷部の剛性の差異2 ロードセ
ルの当り面の傾きや面仕上精度の差異などのためにロー
ドセルにかかる荷重の分布は一定でなく、前述のように
偏荷重がかかつている。そこで本発明者等は、ロードセ
ル9こ異る分布の荷重をかCブたときのウェブ断面谷点
の縦ひずみε(r)の分布とこのひずみ分布に左右され
る測定誤差を実験によりめた。
However, in reality, the distribution of the load applied to the load cell is not constant due to differences in rigidity of the rolling mill valley, differences in the slope of the contact surface of the load cell, and differences in surface finish accuracy, and as mentioned above, the uneven load is There is. Therefore, the present inventors experimentally determined the distribution of longitudinal strain ε(r) at the trough point of the web cross section and the measurement error depending on this strain distribution when loads with different distributions were applied to 9 load cells. .

第4図は本実験に用いた5種類の荷重のパターンを示す
。パターンEは等変位を与える荷重、ノ(ターンWは等
分布荷重、パターンSおよびRは三角形分布荷重、パタ
ーンBは第2図に示した実験実例であり、全荷重は各パ
ターンとも15MNである。前出第1表のA2のロード
セルに、各パターンE、 W、S、R,Bの荷重をかけ
たときの縦ひずみε(r)の分布を第5図に示T。なお
第6図は第5図のパターンE、W、Blこ対応するひず
み分布(偏差分布)を拡大して示した図である。第5図
および第6図〔こ示す実験結果からも明らかなごとく、
ウェブ断面谷点のひずみεけ〕はどのようなパターンの
荷重に対しても、半径C,r)方向に一様ではなく、非
線形である。
Figure 4 shows the five types of load patterns used in this experiment. Pattern E is a load that gives equal displacement, turn W is a uniformly distributed load, patterns S and R are triangularly distributed loads, pattern B is an experimental example shown in Figure 2, and the total load is 15 MN for each pattern. Figure 5 shows the distribution of longitudinal strain ε(r) when loads of patterns E, W, S, R, and B are applied to the load cell A2 in Table 1 above. is an enlarged view of the strain distribution (deviation distribution) corresponding to patterns E, W, and Bl in Figure 5. Figures 5 and 6 [As is clear from the experimental results shown here,
The strain ε at the trough of the web cross section is not uniform in the radial direction (C, r) and is nonlinear, regardless of the load pattern.

そして第2表1こ示Tごとく、前出ri)、 (2)式
による従来の測定方法によるときの測定誤差e1と、縦
ひずみε(、r)の変化が直線的であると仮定したとき
の測定誤差e2との間にかなり大きな差がある。
As shown in Table 2, the measurement error e1 when using the conventional measurement method using equation (2) and assuming that the change in longitudinal strain ε(,r) is linear. There is a fairly large difference between the measurement error e2 and the measurement error e2.

第 2 表 この差は第5図および第6図に示されるように。Table 2 This difference is shown in FIGS. 5 and 6.

縦ひずみε(、r)の非線形性により生じたものである
。荷重パターンEおよびWの場合でさえも、測定誤差e
1は−6〜−7%にも達するほど太きい。
This is caused by the nonlinearity of the longitudinal strain ε(,r). Even for load patterns E and W, the measurement error e
1 is so thick that it reaches -6 to -7%.

以上lこ述べたように、従来の測定方法におけるロード
セル出力の算出法1丁なわぢ内面側の縦ひずみと外面側
の縦ひずみを単純平均Tる方法では。
As mentioned above, the conventional measurement method for calculating the load cell output is to simply average the longitudinal strain on the inner surface and the longitudinal strain on the outer surface.

荷重測定誤差が大きいことが1本発明者等の解析【こよ
り明らかになった。本発明は以上の知見にもとづいて、
測定誤差を小さクシタところのロードセルを用いた荷重
測定方法を提供するものである。
It has become clear from the analysis conducted by the present inventors that the load measurement error is large. The present invention is based on the above knowledge,
This invention provides a load measurement method using a load cell that reduces measurement errors.

(問題点を解決するための手段〕 本発明の要旨は、ストレインゲージ方式によるワッシャ
形ロードセルを用いた荷重測定方法において、環状ブロ
ックの内面側の縦ひずみと外面側の縦ひずみとを別個f
こ検出し、予じめロードセル【こかかる荷重の分布が異
なる2種以上の偏荷重を用いて荷重測定誤差が最小とな
るところの内面側の縦ひずみと外面側の縦ひずみの重み
付き加算式をめておき、実際の荷重測定において別個に
検出した内面側と外面側のそれぞれの縦ひずみから前記
重み付き加算式を用いて荷重をめることを特徴とする荷
重測定方法である。
(Means for Solving the Problems) The gist of the present invention is to separately calculate the longitudinal strain on the inner surface and the longitudinal strain on the outer surface of an annular block in a load measuring method using a washer-type load cell using a strain gauge method.
This is detected by the load cell [Weighted addition formula of the longitudinal strain on the inner surface side and the longitudinal strain on the outer surface side where the load measurement error is minimized using two or more types of eccentric loads with different load distributions] In this load measurement method, the load is calculated using the weighted addition formula from the longitudinal strains on the inner surface and the outer surface, respectively, which are detected separately in actual load measurement.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

lず本発明においては、内面側の縦ひずみと外面側の縦
ひずみの重み付き加算式を予じめめておく。この重み付
き加算式は次式tこより定義Tる。
First, in the present invention, a weighted addition formula for the longitudinal strain on the inner surface side and the longitudinal strain on the outer surface side is prepared in advance. This weighted addition formula is defined by the following formula t.

εニー(aε。+bE;、) ・・・・・・・・・ (
7)但し、a、bは係数 この(7)式でめた縦ひずみの重み付き加算値εを用い
てロードセルの出力Frは次式で算出される。
ε knee (aε.+bE;,) ・・・・・・・・・ (
7) However, a and b are coefficients.The output Fr of the load cell is calculated by the following formula using the weighted addition value ε of the longitudinal strain determined by the formula (7).

Fr−πDtE令 ・・・ ・・(8)この場合の荷重
測定誤差e3は次式て与えられるe3−=(πDtEε
−F。) /FoX 100 [%) −(9)上記(
7)式の係数a、Llは、ロードセルの7ランノ面【こ
加わる荷重分布の異る少なくとも2種以上の荷重パター
ンの荷重をかけ1こときの内面側の縦ひずみε力と外面
側の縦ひずみε。を重回帰分析すること【こよりめるこ
とができる。不発明の実施例Gこおいては、第1表に示
した3つの寸法の異なるロードセルに第4図に示しγこ
種々のパターンの荷重をかけ1重回帰分析によつそれぞ
れのロードセル毎に回帰係数a、l)をめた。その結果
を第3表に示す。
Fr-πDtE order... (8) The load measurement error e3 in this case is given by the following formula: e3-=(πDtEε
-F. ) /FoX 100 [%) −(9) Above (
7) The coefficients a and Ll in equation Strain ε. It is possible to perform multiple regression analysis. In the uninvented embodiment G, loads of various patterns of γ shown in FIG. The regression coefficients a, l) were calculated. The results are shown in Table 3.

第 3 表 回帰係数a、l)をめるにあたっては、ロードセルOこ
かかる荷重分布が同じであってもロードセルの寸法、形
状によってウェブのひずみ分布は異なるので、係数a、
bは異なる寸法形状のロードセル毎Eこめる必要がある
。1.1こ第4図に示すとおりの荷重分布をロードセル
のフランジ面pこ加えることは難しいが、1ことえばパ
ターン3.R+こ対しては、フランジ面の半径方向の外
側半分あるいは内側半分に荷重がかかるような当て金を
用いたり、あるいは、半径方向船こ20〜40μm程度
のテーバを有する当て金を介して荷重をかけること等に
より実用上問題なく係数a、br、請求めることができ
る。第3表9こは回帰係数a、bをめる1こめの測定デ
ータを用いて、従来法によるときの荷重測定誤差e1と
本発明法によるときの荷重測定誤差C3とをそれぞれめ
て示した。この結果からも明らかなように、本発明法に
よれば荷重測定誤差は1%以下で従来法に比して格段に
小さくなっている。
Table 3 In calculating the regression coefficients a and l), the coefficients a,
b must be stored for each load cell of different size and shape. 1.1 It is difficult to apply the load distribution as shown in Fig. 4 to the flange surface of the load cell, but in short, pattern 3. R By multiplying the coefficients a and br, the coefficients a and br can be obtained without any practical problem. Table 3 shows the load measurement error e1 when using the conventional method and the load measurement error C3 when using the method of the present invention, using the first measurement data for regression coefficients a and b. . As is clear from this result, according to the method of the present invention, the load measurement error is less than 1%, which is much smaller than that of the conventional method.

第7図は本発明の方法を実施するfこめの装置構成の1
例を示す図である。図において1カはウェブ内面側のス
トレインゲージ抵抗を辺に含む内面筒編ひずみ検出用の
ブリッジ回路、1oはウェブ外面側のストレインゲージ
抵抗を辺に含む外面側縦ひすみ検出用のブリッジ回路で
あり、それぞれウェブの内面側の縦ひずみεおと外面側
の縦ひずみε。1こ和尚Tる電気信号を出力する。2は
演算器で、前出の(力式および(8)式の演算を行ない
(8)式のFrを出力する。演算器2には前記しムニ重
回帰分析によりめfこ(力式の回帰係数a、bを設定す
る機能が付加されている。
FIG. 7 shows one of the configurations of an apparatus for carrying out the method of the present invention.
It is a figure which shows an example. In the figure, 1 is a bridge circuit for detecting strain on the inner cylindrical knitting, which includes strain gauge resistance on the inner side of the web, and 1o is a bridge circuit for detecting longitudinal strain on the outer side, including strain gauge resistance on the outer side of the web. The longitudinal strain ε on the inner side of the web and the longitudinal strain ε on the outer side of the web, respectively. Outputs an electric signal for one priest. 2 is an arithmetic unit which calculates the above-mentioned (force equation) and equation (8) and outputs Fr of the equation (8). A function to set regression coefficients a and b is added.

本発明を実施するための装置は上記のごとくウェブ内面
側とウェブ外面側の縦ひずみを別個【こ検出てきる装置
構成とするたけてよく、ロードセル自体は従来から用い
られているものをその11゜使用できる。
As described above, the apparatus for implementing the present invention may be configured to separately detect longitudinal strain on the inner surface of the web and on the outer surface of the web, and the load cell itself may be one of the conventionally used ones.゜Can be used.

なお以上の説明では、ワッシャ形ロードセルのウェブの
内面と外面の表面にストシ・インゲージを貼付したロー
ドセルについて述べたが、ウェブの内面および外面の表
層部に孔を穿ってストレインゲージを埋込むなどして、
内面側と外面側の縦ひずみを検出するようにしたロード
セルであっても。
In the above explanation, we have described a load cell in which strain-in gauges are attached to the inner and outer surfaces of the web of the washer type load cell, but it is also possible to drill holes in the inner and outer surfaces of the web and embed strain gauges. hand,
Even if the load cell is designed to detect longitudinal strain on the inner and outer sides.

本発明法を適用できることはもちろんである。Of course, the method of the present invention can be applied.

(発明の効果〕 以上述べ1こように本発明法は、ワッシャ形ロードセル
の実際の使用状態において避は難い偏荷重の存在下にお
いても、第3表に示したように荷重測定誤差を著しく低
減することができ、実用的に極めて効果的な発明である
(Effects of the Invention) As stated above, the method of the present invention significantly reduces load measurement errors as shown in Table 3 even in the presence of unbalanced loads that are unavoidable in actual use of washer-type load cells. This invention is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はワッシャ形ロードセルの形状外観を示す斜視図
、第2図は口〜ドセルジこかかる荷重分布の1例を示す
図、第3図はa−ドセル断面谷部の変位の状況の1例を
示す図、第4図は実験に用いた各種の荷重分布のパター
ンを示す図、第5図および第6図は実験によりめ7Cロ
ードセル断面の縦ひずみの分布の例を示す図、第7図は
本発明を実施するための装置構成を示す図である。 IL、1・・・ブリッジ回路、2・・・演算器。 特許出願人 代理人 弁理士 矢 葺 知 之 (はか1名〕 第 II! @ 2図 L−’+ 、−−−jσ2 z l 1 第3問 第4図 第7図 1 第5図 第6図
Figure 1 is a perspective view showing the appearance of the washer type load cell, Figure 2 is a diagram showing an example of the load distribution between the mouth and the deserge, and Figure 3 is an example of the displacement of the valley of the a-decel cross section. Figure 4 is a diagram showing various load distribution patterns used in the experiment, Figures 5 and 6 are diagrams showing an example of longitudinal strain distribution in the cross section of the 7C load cell based on the experiment, and Figure 7 is a diagram showing various load distribution patterns used in the experiment. 1 is a diagram showing a device configuration for implementing the present invention. IL, 1...Bridge circuit, 2...Arithmetic unit. Patent Applicant Representative Patent Attorney Tomoyuki Yafuki (1 person) Part II! @ Figure 2 L-'+ , ---jσ2 z l 1 Question 3 Figure 4 Figure 7 Figure 1 Figure 5 Figure 6 figure

Claims (1)

【特許請求の範囲】 ストレインゲージ方式【こよるワッシャ形ロードセルを
用いた荷重測定方法をこおいて、環状ブロックの内面側
の縦ひずみと外面側の縦ひずみとを別個に検出し、予じ
めロードセルにかかる荷重の分布が異なる2種以上の偏
荷重を用いて荷重測定誤差が最小となるところの内面側
の縦ひずみと外面側の縦ひずみの重み付き加算式をめて
おき、実際の荷重測定において別個に検出した内面側と
外面側のそれぞれの縦ひずみから前記重み付き加算式を
用いて荷重をめることを特徴とする荷重測定方法。
[Claims] Strain gauge method [This is a load measurement method using a washer-type load cell that separately detects the longitudinal strain on the inner surface and the longitudinal strain on the outer surface of the annular block. Using two or more types of eccentric loads with different load distributions applied to the load cell, a weighted addition formula for the longitudinal strain on the inner surface and the longitudinal strain on the outer surface that minimizes the load measurement error is determined, and then the actual load is determined. A load measuring method characterized in that the load is calculated using the weighted addition formula from the longitudinal strains of the inner surface and the outer surface, which are detected separately in the measurement.
JP10958084A 1984-05-31 1984-05-31 Load measuring method Pending JPS60253830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10958084A JPS60253830A (en) 1984-05-31 1984-05-31 Load measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10958084A JPS60253830A (en) 1984-05-31 1984-05-31 Load measuring method

Publications (1)

Publication Number Publication Date
JPS60253830A true JPS60253830A (en) 1985-12-14

Family

ID=14513872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10958084A Pending JPS60253830A (en) 1984-05-31 1984-05-31 Load measuring method

Country Status (1)

Country Link
JP (1) JPS60253830A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205403A (en) * 2012-03-29 2013-10-07 Toshiba Corp Pressure sensor and microphone
JP2015064375A (en) * 2014-12-04 2015-04-09 株式会社東芝 Pressure sensor and microphone

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205403A (en) * 2012-03-29 2013-10-07 Toshiba Corp Pressure sensor and microphone
US8973446B2 (en) 2012-03-29 2015-03-10 Kabushiki Kaisha Toshiba Pressure sensor and microphone
US9759618B2 (en) 2012-03-29 2017-09-12 Kabushiki Kaisha Toshiba Pressure sensor and microphone
US10082430B2 (en) 2012-03-29 2018-09-25 Kabushiki Kaisha Toshiba Pressure sensor and microphone
JP2015064375A (en) * 2014-12-04 2015-04-09 株式会社東芝 Pressure sensor and microphone

Similar Documents

Publication Publication Date Title
Godwin An extended octagonal ring transducer for use in tillage studies
WO2021036751A1 (en) Bearing reaction influence line curvature-based continuous beam damage identification method
CN107314838B (en) Force measuring wheel set for measuring axle load spectrum
DE102006013462B4 (en) Deformation sensor that compensates for thermal deformation
Zhang et al. A notched cross weld tensile testing method for determining true stress–strain curves for weldments
Kong et al. Sensing distortion-induced fatigue cracks in steel bridges with capacitive skin sensor arrays
CN106289622A (en) A kind of device and method measuring high-strength bolt auxiliary connection torque coefficient
US20030131672A1 (en) Load cell
EP2901100B1 (en) Strain transmitter
JPS60253830A (en) Load measuring method
CN102778316A (en) Die cutting pressure testing method and device
CN106441532A (en) Railway vehicle overload and unbalanced load detecting device and method
Yam et al. An investigation of the block shear strength of coped beams with a welded clip angle connection—Part I: Experimental study
CN110987269B (en) Method and system for determining position of strain gauge of force measuring wheel set
Pytka Design considerations and calibration of stress transducers for soil
WO1991019968A1 (en) Gauge for estimating life of structure and method of estimate with said gauge
CN110686631B (en) Method for measuring initial bending defect of T-shaped section steel compression bar
Younis Assembly stress for the reduction of stress concentration
Thaulow et al. Constraint effects on crack tip stress fields for cracks located at the fusion line of weldments
CN101692019B (en) Method for indentifying carrying cable needing to adjust cable force on basis of space coordinate monitoring
CN219532236U (en) Y-type track weighing detection sensing device
Yan et al. On the correction of plasticity effect at the hole edge when using the centre hole method for measuring high welding residual stress
DE19921174A1 (en) Strain gauge sensor
Tarasiuk et al. Fatigue designing of welded agricultural wheel
JPS6093933A (en) Load meter