JPS60253772A - Liquid heater - Google Patents

Liquid heater

Info

Publication number
JPS60253772A
JPS60253772A JP10972784A JP10972784A JPS60253772A JP S60253772 A JPS60253772 A JP S60253772A JP 10972784 A JP10972784 A JP 10972784A JP 10972784 A JP10972784 A JP 10972784A JP S60253772 A JPS60253772 A JP S60253772A
Authority
JP
Japan
Prior art keywords
liquid
heated
tube
heat transfer
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10972784A
Other languages
Japanese (ja)
Other versions
JPH0425468B2 (en
Inventor
元 八橋
正和 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP10972784A priority Critical patent/JPS60253772A/en
Publication of JPS60253772A publication Critical patent/JPS60253772A/en
Publication of JPH0425468B2 publication Critical patent/JPH0425468B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炉筒煙管式液体加熱装置、例えば吸収式冷温
水機における吸収溶液(LiBr溶液)の加熱に使用す
る炉筒煙管式溶液加熱装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a furnace and smoke tube type liquid heating device, for example, a furnace and smoke tube type solution heating device used for heating an absorption solution (LiBr solution) in an absorption type water chiller/heater. Regarding equipment.

〔従来技術〕[Prior art]

第7図及び第8図に基いて従来の吸収式冷温水機の吸収
溶液の加熱に用いる炉筒煙管式液体加熱装置の例を説明
する。第7図は該加熱装置の縦断面図、第8図はそのI
−I線における横断面図であって、図中符号1は炉筒、
2は缶胴、3は伝熱管、4,5はグレート、6は後部連
室(ターン部)、7は前部煙量、9はバーナを示す。
An example of a furnace and smoke tube type liquid heating device used for heating an absorption solution in a conventional absorption type water chiller/heater will be explained with reference to FIGS. 7 and 8. FIG. 7 is a longitudinal sectional view of the heating device, and FIG. 8 is its I
- It is a cross-sectional view along the I line, and the code 1 in the figure is a furnace cylinder;
2 is a can body, 3 is a heat exchanger tube, 4 and 5 are grate, 6 is a rear continuous chamber (turn part), 7 is a front smoke amount, and 9 is a burner.

第7図及び第8図に示す例においては、バーすI9、に
よって発生した燃焼ガスは、先づ炉筒1において主に輻
射伝熱により炉筒周囲の溶液を加熱した後、後部連室6
を経て煙管群3に入り、煙管群においては主として対流
伝熱によつ不その周囲の溶液を加熱している。燃焼ガス
の温度は当初約1500℃の高温であるが、溶液と熱交
換しながら次第に温度を減じ、後部連室では約850℃
、煙管群3の出口の前部焼室7では約250℃となる。
In the example shown in FIGS. 7 and 8, the combustion gas generated by the bar I9 first heats the solution around the furnace tube mainly by radiation heat transfer in the furnace tube 1, and then passes through the rear continuous chamber 1.
The liquid then enters the smoke tube group 3, where the surrounding solution is heated mainly by convection heat transfer. The temperature of the combustion gas is initially about 1500°C, but the temperature gradually decreases while exchanging heat with the solution, and in the rear chamber it reaches about 850°C.
The temperature in the front burning chamber 7 at the outlet of the smoke pipe group 3 is about 250°C.

燃焼ガスは前部焼室7を経て煙突8から機外へ排出され
る。第7図および第8図に示す加熱装置はいわゆる炉筒
煙管式と呼ばれる方式のものであり、第7図に示すよう
に同一のプレート上に、即ちプレート4及び5の夫々の
上に炉筒及び煙管が配備されており、次のような欠点を
有している。
Combustion gas passes through the front combustion chamber 7 and is discharged from the chimney 8 to the outside of the machine. The heating device shown in FIGS. 7 and 8 is of the so-called furnace tube and smoke tube type, and as shown in FIG. and smoke pipes, which have the following drawbacks:

(1)炉筒及び煙管の長さを同一にしなければならない
(1) The length of the furnace tube and smoke pipe must be the same.

即ち、炉筒の設計はバーナの燃焼性を配慮して炎長、断
面、積負荷、燃焼室負荷率から最適な炉径及び炉長が定
められる。一方λ煙管は熱伝達率及び許容燃焼ガス通路
圧損から伝熱管径及び伝熱管長の最適値がめられるが炉
筒側で必要最低長さの制約がある為、煙管は炉筒の長さ
に合わせなければならず、煙管の熱交換量によっては必
要以上に長くなる。
That is, when designing a furnace tube, the optimal furnace diameter and furnace length are determined from the flame length, cross section, product load, and combustion chamber load factor, taking into consideration the combustibility of the burner. On the other hand, for the λ smoke tube, the optimum value of the heat transfer tube diameter and heat transfer tube length can be determined from the heat transfer coefficient and allowable combustion gas passage pressure drop, but since there is a restriction on the required minimum length on the furnace cylinder side, the smoke tube is determined by the length of the furnace cylinder. It has to be matched, and depending on the amount of heat exchange in the flue, it may be longer than necessary.

これは燃焼ガスの流路圧損の増大を招き、これを避ける
為に管径を太き(するか、煙管の本数を多くする等の無
駄が生じている。即ち、構造上炉筒と煙管は長さを揃え
る必要があり、設計上互に影響を受け最適な設計が出来
ない。
This leads to an increase in the flow path pressure drop of the combustion gas, and to avoid this, there is waste such as increasing the diameter of the pipe (or increasing the number of smoke pipes. In other words, due to the structure, the furnace cylinder and smoke pipe are It is necessary to make the lengths the same, and the design is influenced by each other, making it impossible to create an optimal design.

(2)上記の従来の加熱炉の場合、伝熱管群と炉筒とが
同一管板に取り付ゆられているが、炉筒は約1000℃
、伝熱管群は約500℃と夫々燃焼ガスの加熱温度が異
なる為、管板の設計に当っては伝熱管群と炉筒の熱応力
の違いによる歪を考慮する必要があった。即ち管板の厚
さ及びプリージングスペースと称−jる伝′熱管群と炉
筒との最短距離を上記理由により十分に取る必要があっ
た。この結果液体加熱装置内圧保有される液体量が多く
なり価格、重量の増加を招いた。
(2) In the case of the above-mentioned conventional heating furnace, the heat transfer tube group and the furnace tube are attached to the same tube plate, but the furnace tube is heated to approximately 1000℃.
Since the combustion gas heating temperature of each heat exchanger tube group is approximately 500°C, it was necessary to take into account distortion due to the difference in thermal stress between the heat exchanger tube group and the furnace tube when designing the tube sheet. That is, for the reasons mentioned above, it was necessary to sufficiently ensure the thickness of the tube sheet and the shortest distance between the heat transfer tube group and the furnace cylinder, which is referred to as the pleating space. As a result, the amount of liquid held within the liquid heating device increases, resulting in an increase in price and weight.

(3)吸収式冷温水機の吸収溶液の加熱に第7図′に示
すような加熱装置を使用する場合、加熱流体(燃焼ガス
)は、炉筒、後部連室、伝熱−管群と′流路を形成し、
温度を約1500℃から約250℃迄下げるのに対し、
被加熱流体(吸収溶液)は約140℃で流入し沸騰を伴
ないながら蒸気を分離して約160℃で流出するが、被
加熱流体は加熱装置内部で定まった流路を形成せず、あ
たかもルンボの中の様な攪拌された状態の為、温度がほ
ぼ均一である。即ち、第9図のAに示す状態がそれに近
いと考えられ、加熱・被加熱両流体の温度差が状態Aで
はΔt1 状態BではΔt′と、状態Bの方が温度差が
大きく、状態Aは状態Bに比し伝熱は悪い。このことか
ら、上記従来例においては加熱器の性能においても改善
の余地がある。
(3) When using a heating device such as the one shown in Figure 7' to heat the absorption solution of an absorption type water chiller/heater, the heating fluid (combustion gas) is 'Form a flow path,
While lowering the temperature from about 1500℃ to about 250℃,
The fluid to be heated (absorbing solution) flows in at about 140°C, boils, separates the vapor, and flows out at about 160°C. However, the fluid to be heated does not form a fixed flow path inside the heating device, so Because it is in a stirred state like inside a rumbo, the temperature is almost uniform. That is, the state shown in A in FIG. 9 is considered to be close to that, and the temperature difference between the heated and heated fluids is Δt1 in state A and Δt' in state B, and the temperature difference in state B is larger than that in state A. Compared to state B, heat transfer is worse. For this reason, in the conventional example described above, there is room for improvement in the performance of the heater.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来の炉筒煙管式液体加熱装置の欠点を
改善することを目的とする。
An object of the present invention is to improve the drawbacks of the conventional furnace and smoke tube type liquid heating device.

〔発明の構成〕[Structure of the invention]

本発明は、炉筒及び伝熱管を保持する管板と、炉筒及び
伝熱管を囲む缶胴との間に被加熱液体を収容する液体加
熱装置において、該炉筒及び伝熱管を夫々別個の缶胴に
納−めて夫々液体と熱交換させ、夫々の缶胴が加熱燃焼
ガス及び被加熱液体の連絡管により接続されている液体
加熱装置であって、炉筒と伝熱管群を夫々最適設計とす
ることを可能とすると共に、前記(2)の従来技術の欠
点を構造的に解決すると共に、缶胴内に仕切板を入れる
ことにより被加熱液体の定まった流れを形成せしめるよ
うにすることにより伝熱性能を向上するものである。
The present invention provides a liquid heating device that accommodates a liquid to be heated between a tube plate that holds a furnace cylinder and heat transfer tubes, and a can body that surrounds the furnace cylinder and heat transfer tubes, in which the furnace cylinder and heat transfer tubes are separated from each other. It is a liquid heating device in which each can body is placed in a can body and exchanges heat with the liquid, and each can body is connected by a connecting pipe for heated combustion gas and the liquid to be heated, and the furnace cylinder and heat transfer tube group are optimized respectively. In addition to structurally solving the drawbacks of the prior art described in (2) above, the present invention enables a fixed flow of the liquid to be heated to be formed by inserting a partition plate into the can body. This improves heat transfer performance.

つぎに、本発明を図面に基いて詳しく説明する0 第1図は本発明の一実施例を示すもので、符号21は炉
筒、22.24は缶胴、26は伝熱管、25は燃焼ガス
連絡通路、26は被加熱液体通路、27はバーナ、28
は前部焼室、29は煙突、30は被加熱液体入口管を示
す。
Next, the present invention will be explained in detail based on the drawings. Figure 1 shows an embodiment of the present invention, in which reference numeral 21 is a furnace cylinder, 22, 24 is a can body, 26 is a heat exchanger tube, and 25 is a combustion chamber. 26 is a gas communication passage, 26 is a heated liquid passage, 27 is a burner, 28
29 is the front baking chamber, 29 is the chimney, and 30 is the heated liquid inlet pipe.

第1図に示す液体加熱装置において、燃焼炉筒21及び
伝熱管群25は夫々別個の缶胴22及び24に納められ
ている。缶胴22及び24は燃焼ガス及び被加熱液体の
通路25及び26により連絡されている。バーナ27に
よって発生した燃焼ガスは、先づ炉筒21で炉筒周囲の
液体を加熱した後燃焼ガス連絡通路25を過つ【伝熱管
群に導かれ、該伝熱管群で液体を加熱した後、前部煙量
28、煙突29を通って機外に排出される。一方、被加
熱液体は液体入口管50より缶胴22内に導かれ、炉筒
により加熱された後被加熱液体通路26を経て第2の缶
胴24内に流入し伝熱管群により加熱される。
In the liquid heating device shown in FIG. 1, the combustion furnace tube 21 and the heat transfer tube group 25 are housed in separate can bodies 22 and 24, respectively. Can bodies 22 and 24 are communicated by combustion gas and heated liquid passages 25 and 26. The combustion gas generated by the burner 27 first heats the liquid around the furnace tube in the furnace tube 21, and then passes through the combustion gas communication passage 25. , through the front smoke volume 28 and the chimney 29 to be discharged to the outside of the aircraft. On the other hand, the liquid to be heated is led into the can body 22 through the liquid inlet pipe 50, heated by the furnace tube, and then flows into the second can body 24 through the heated liquid passage 26 and heated by the heat transfer tube group. .

このような構造を採用することにより、炉筒21を収容
する缶胴22及び伝熱管を収容する缶胴24は夫々別個
に設計することができ、炉筒部、炉径及び伝熱管長、伝
熱管径、伝熱管群の配置は、前記炉筒及び伝熱管群が同
−缶胴内に格納されていた従来例に比し、互に拘束され
ることなく、夫々自由に設計できる為最適の設計を行う
ことが可能となる。又、従来の炉筒、伝熱管群を同一の
缶胴内に納める場合は、第7図に示すように炉筒1及び
伝熱管群3は同一の管板4及び5に一緒に取付けられ固
定される。
By adopting such a structure, the can body 22 housing the furnace tube 21 and the can body 24 housing the heat exchanger tube can be designed separately, and the furnace tube portion, furnace diameter, heat exchanger tube length, and tube body 24 can be designed separately. The diameter of the heat tubes and the arrangement of the heat transfer tube groups are optimal as they can be freely designed without being constrained by each other, compared to the conventional case where the furnace tube and the heat transfer tube group are housed in the same can body. This makes it possible to design In addition, when the conventional furnace tube and heat transfer tube group are housed in the same can body, the furnace tube 1 and the heat transfer tube group 3 are attached and fixed together to the same tube sheets 4 and 5, as shown in Fig. 7. be done.

そして、運転時には炉筒は約1000℃、伝熱管群は約
550℃と夫々燃焼ガスの加熱温度が異なる為その歪量
は異なるが、同じ管板に固定されている為歪量の差は逃
げ場がなく応力となって管板にかNつて来る。従って、
設計時にはこの影11#を考慮して管板の厚さ、伝熱管
群と炉筒との距離を必要分だけ取る必要がある。
During operation, the furnace tube is heated to approximately 1000℃ and the heat exchanger tube group is heated to approximately 550℃, so the amount of strain is different because the heating temperature of the combustion gas is different, but since they are fixed to the same tube sheet, the difference in strain is a relief. Without this, stress is generated and N is applied to the tube sheet. Therefore,
At the time of design, it is necessary to take this shadow 11# into consideration and provide the necessary thickness of the tube plate and the distance between the heat transfer tube group and the furnace cylinder.

しかしながら、本発明においては、このような考慮をす
る必要は全くなく、また機内に保有する液量及び機体重
量が減少し、価格的にも有利となる。
However, in the present invention, there is no need to take such considerations at all, and the amount of liquid held in the machine and the weight of the machine are reduced, which is advantageous in terms of cost.

第2図は本発明の他の実施例を示す図であつ℃、′符号
21〜29は第1図と同じ意味を有し、符号31は被加
熱液体入目管、32は連絡管、33は仕切板、34は缶
胴24の被加熱液体入口部スペースを示す。
FIG. 2 is a diagram showing another embodiment of the present invention, in which the symbols 21 to 29 have the same meanings as in FIG. 34 indicates a partition plate, and 34 indicates a space at the inlet portion of the heated liquid in the can body 24.

第2図に示す実施例においては、仕切板33を缶胴24
内に設けたことを特徴とし、被加熱液体は被加熱液体入
口管31から、仕切板53によって缶胴24内に生じた
スペース64に導かれ、こNで下流の加熱流体と熱交換
された後連絡管32により缶胴22内へ導かれるように
したもので、その後は第1図に示す装置の場合と同様に
加熱される。このように構成することにより、被加熱液
体な先づ加熱流体の下流で熱交換させろこととなり、熱
交換効率を上昇させ、結果として排出される燃焼ガスの
温度を約250℃から約200℃近く迄低下させること
が可能となる。即ち、燃焼ガスからの伝熱効率を促進す
る為に熱交換を一部向流形式にしたことにより熱交換効
率を向上させるものである。このような構造は従来の加
熱装置では採用することができなかつ丸もので、本発明
の炉筒部と伝熱管Sを別個の缶胴に納めることによりは
じめて可能となったものである。
In the embodiment shown in FIG. 2, the partition plate 33 is connected to the can body 2
The heated liquid is guided from the heated liquid inlet pipe 31 to the space 64 created in the can body 24 by the partition plate 53, where it exchanges heat with the downstream heated fluid. It is designed to be guided into the can body 22 by a rear connecting pipe 32, and thereafter heated in the same manner as in the apparatus shown in FIG. With this configuration, heat exchange is performed downstream of the heated liquid first, increasing the heat exchange efficiency, and as a result, the temperature of the exhaust combustion gas is reduced from approximately 250°C to approximately 200°C. It is possible to reduce the That is, heat exchange efficiency is improved by partially performing heat exchange in a countercurrent manner in order to promote heat transfer efficiency from combustion gas. Such a structure cannot be adopted with conventional heating devices and is round, and is only possible by housing the furnace cylinder portion and heat transfer tube S of the present invention in separate can bodies.

又、第3図に示すように複数の仕切板63゜56′・・
・を缶胴24内に設け、被加熱液体は被加熱液体入口管
31から仕切板33によって缶胴2゛4内に生じたスペ
ースの仕切板63′より前部煙室側に導入し、該スペー
ス中を矢印で示す方向に導いてこ〜で下流の加熱流体と
熱交換させた後連絡管62により缶胴22内へ導いても
よい。なお第3図に示す実施例においては、缶胴22の
通路25側に仕切板66″を設け、該仕切板の外側の部
分から被加熱流体を缶胴22へ矢印に沿って導入する例
を示したが、このようにすることにより加熱流体と対向
して被加熱流体を流すことが出来、効率を向上させうる
ものである。
In addition, as shown in Fig. 3, a plurality of partition plates 63°56'...
is provided in the can body 24, and the liquid to be heated is introduced from the liquid to be heated inlet pipe 31 to the front smoke chamber side through the partition plate 63' of the space created in the can body 2'4 by the partition plate 33. It may be guided through the space in the direction indicated by the arrow to exchange heat with the downstream heating fluid, and then guided into the can body 22 through the communication pipe 62. In the embodiment shown in FIG. 3, a partition plate 66'' is provided on the passage 25 side of the can body 22, and the fluid to be heated is introduced from the outside of the partition plate into the can body 22 along the arrow. However, by doing so, it is possible to flow the fluid to be heated in opposition to the heating fluid, and the efficiency can be improved.

更に別の実施例を第4図に基いて説明する。Still another embodiment will be explained based on FIG.

第4図における各符号は第2図における符号と同じ、意
味を有する。第4図に示す装置の%徴は、炉筒゛を上部
に設け、伝熱管群を下部に設けたことである。
Each symbol in FIG. 4 has the same meaning as the symbol in FIG. 2. The characteristic of the apparatus shown in FIG. 4 is that the furnace tube is provided in the upper part and the heat exchanger tube group is provided in the lower part.

被加熱液体は管路31から先づ伝熱管を納めた缶胴22
へ導かれ、ついで連絡通路26を通って炉筒21を納め
た缶胴24へ導入される。
The liquid to be heated is first transferred from the pipe line 31 to the can body 22 containing the heat transfer tube.
Then, through the communication passage 26, it is introduced into the can body 24 in which the furnace cylinder 21 is housed.

一方、燃焼ガスは炉筒21、燃焼ガス通路25、伝熱管
群23を通り前部連室28を経て煙突29へ抜ける。こ
のように構成することにより、被加熱液体の流れと燃焼
ガスの流れが対向しており、缶胴22へ導入された温度
の低い被加熱液体は伝熱管群で加熱された後に伝熱管群
より更に温度の高い炉筒部により加熱されるので、熱交
換方式としては対向流型に近くなり熱交換効率が向上す
る。このように構成できるのも、炉筒部と伝熱部を側構
造にしたことにより派生するもので、本発明に特有のも
のである。
On the other hand, the combustion gas passes through the furnace tube 21, the combustion gas passage 25, and the heat transfer tube group 23, passes through the front chamber 28, and exits to the chimney 29. With this configuration, the flow of the liquid to be heated and the flow of the combustion gas are opposed to each other, and the low-temperature liquid to be heated introduced into the can body 22 is heated by the heat transfer tube group and then transferred from the heat transfer tube group. Furthermore, since the furnace is heated by the high-temperature furnace cylinder, the heat exchange method is similar to a counterflow type, and the heat exchange efficiency is improved. This configuration is derived from the fact that the furnace cylinder part and the heat transfer part are made into side structures, and is unique to the present invention.

更に第5図に示す実施例は、前に説明した第2図及び第
4図に示した実施例を組合わせた形のもので、各符号は
第2図に示した符号と同じ意味を有する。下部の缶胴2
の被加熱液体入口部に仕切板63を設け、被加熱液体を
管路61より仕切板33によって缶胴22内に生じたス
ペース64内に導入した後、缶胴22内に流入するよう
に構成したもので、このように構成することにより更に
熱交換が対向流的に行われることになり熱交換率は更に
向上する。本例においては仕切板33を2枚設げている
が、必要に応じ1枚としてもよく或いは3枚以上とし℃
もよい。
Furthermore, the embodiment shown in FIG. 5 is a combination of the previously described embodiments shown in FIGS. 2 and 4, and each reference numeral has the same meaning as that shown in FIG. . Lower can body 2
A partition plate 63 is provided at the inlet of the liquid to be heated, and the liquid to be heated is introduced from the pipe line 61 into the space 64 created in the can body 22 by the partition plate 33, and then flows into the can body 22. With this configuration, heat exchange is further performed in a countercurrent manner, and the heat exchange efficiency is further improved. In this example, two partition plates 33 are provided, but if necessary, one partition plate 33 or three or more partition plates 33 may be used.
Good too.

又仕切板の構造は第6図の33に示す如く、缶胴全体に
張り渡し1、被加熱液体を伝熱管群との哄を通す為に穴
をルーズにして、その間隙より液体な缶胴2内に流すよ
うにしてもよい。
The structure of the partition plate is as shown in 33 in Fig. 6. It is stretched over the entire can body 1, and the holes are made loose so that the liquid to be heated can pass through the heat exchanger tube group, and the liquid can be removed from the can body through the gap. 2 may be allowed to flow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図、第5図及び第6図は
本発明の詳細な説明するための本発明の炉筒煙管式液体
加熱装置の断面概略図、第7図及び第8図は従来の炉筒
煙管式流体加熱装置の断面概略図を示し、第9図は従来
例における被加熱流体の温度と燃焼ガスの温度との関係
な′説明するだめの図である。 1・・・炉筒、2・・・缶胴、6・・・伝熱管、4.5
−・・グレート、6−・後部産室、7・・・前部連室、
9・・・バーナ、21・・・炉筒、22.24・・・缶
胴、23・・・伝熱管、25・・・燃焼ガス連絡通路、
26・・・被加熱液体通路、27・・・バーナ、28・
−・前部連室、29・・・煙突、30.51・・・被加
熱液体入口管、32・一連絡管、53.53’。 53″・・・仕切板、34・・・被加熱液体入口部スペ
代理人 中本 宏 同 弁上 昭 同 吉 嶺 桂 第1図 第2回 第3図 第4図 1 第5図 第6図 第7図 第8図 第9回
1, 2, 3, 4, 5 and 6 are schematic cross-sectional views of the furnace and smoke tube type liquid heating device of the present invention for detailed explanation of the present invention, and FIG. 8 and 8 show a schematic cross-sectional view of a conventional furnace-fire-tube type fluid heating device, and FIG. 9 is a diagram for explaining the relationship between the temperature of the fluid to be heated and the temperature of the combustion gas in the conventional example. be. 1... Furnace barrel, 2... Can body, 6... Heat exchanger tube, 4.5
- Great, 6- Rear birth room, 7 Front continuous room,
9... Burner, 21... Furnace tube, 22.24... Can body, 23... Heat transfer tube, 25... Combustion gas communication passage,
26... Heated liquid passage, 27... Burner, 28...
- Front continuous chamber, 29... Chimney, 30.51... Heated liquid inlet pipe, 32. Connecting pipe, 53.53'. 53''...Partition plate, 34...Heated liquid inlet section agent Hirodo Nakamoto Bengami Shodo Yoshimine Katsura Figure 1 Figure 2 Figure 3 Figure 4 Figure 1 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1、 炉筒及び伝熱管を保持する管板と、炉筒及び伝熱
管を囲む缶胴との間に被加熱液体を収容する液体加熱装
置において、該炉筒及び伝熱管を各々別個の缶胴に納め
て夫々液体と熱交換させ、夫々の缶胴が加熱燃焼ガス及
び被加熱液体の連絡管により接続されていることを特徴
とする液体加熱装置。 Z 伝熱管が納められている缶胴が仕切板により分割さ
れ、被加熱液体は先づ該分割された缶胴の中の燃焼ガス
下流側に導入される特許請求の範囲第1項記載の液体加
熱装置。 i 仕切板と伝熱管の間に間隙を設け、該間隙を被加熱
液体の仕切板前後の連絡路とした特許請求の範囲第1項
記載の液体加熱装置。 4、伝熱管が納められている缶胴な下に、炉筒が納めら
れている缶胴を上に配置し、被加熱液体は下部の伝熱管
群が納められている缶胴に導かれた後、上部の炉筒が納
められている缶胴に導かれるようにし、且つ、被加熱液
体の流れと燃焼ガスの流れが対向するようにした特許請
求の範囲第1項記載の液体加熱装置。
[Claims] 1. In a liquid heating device that stores a liquid to be heated between a tube plate that holds a furnace cylinder and a heat transfer tube and a can body that surrounds the furnace cylinder and heat transfer tube, the furnace cylinder and the heat transfer tube A liquid heating device characterized in that the can bodies are housed in separate can bodies to exchange heat with the liquid, and the can bodies are connected by a communication pipe for heated combustion gas and the liquid to be heated. Z. The liquid according to claim 1, wherein the can body in which the heat transfer tubes are housed is divided by a partition plate, and the liquid to be heated is first introduced into the downstream side of the combustion gas in the divided can body. heating device. i. The liquid heating device according to claim 1, wherein a gap is provided between the partition plate and the heat transfer tube, and the gap is used as a communication path for the liquid to be heated before and after the partition plate. 4. The can body housing the heat transfer tubes was placed below the can body, and the furnace tube was placed above the can body, and the liquid to be heated was guided to the can body containing the heat transfer tubes at the bottom. 2. The liquid heating device according to claim 1, wherein the upper furnace tube is guided to the can body in which the upper furnace cylinder is housed, and the flow of the liquid to be heated and the flow of the combustion gas are opposed to each other.
JP10972784A 1984-05-31 1984-05-31 Liquid heater Granted JPS60253772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10972784A JPS60253772A (en) 1984-05-31 1984-05-31 Liquid heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10972784A JPS60253772A (en) 1984-05-31 1984-05-31 Liquid heater

Publications (2)

Publication Number Publication Date
JPS60253772A true JPS60253772A (en) 1985-12-14
JPH0425468B2 JPH0425468B2 (en) 1992-04-30

Family

ID=14517697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10972784A Granted JPS60253772A (en) 1984-05-31 1984-05-31 Liquid heater

Country Status (1)

Country Link
JP (1) JPS60253772A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105378A (en) * 1986-10-23 1988-05-10 三洋電機株式会社 Generator for absorption refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762374A (en) * 1980-10-01 1982-04-15 Takuma Kk Decompression type boiler
JPS5855255U (en) * 1981-10-13 1983-04-14 川重冷熱工業株式会社 Direct-fired absorption chiller regeneration equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855255B2 (en) * 1975-05-26 1983-12-08 株式会社クラレ High-speed heat treatment method for latent crimp fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762374A (en) * 1980-10-01 1982-04-15 Takuma Kk Decompression type boiler
JPS5855255U (en) * 1981-10-13 1983-04-14 川重冷熱工業株式会社 Direct-fired absorption chiller regeneration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105378A (en) * 1986-10-23 1988-05-10 三洋電機株式会社 Generator for absorption refrigerator

Also Published As

Publication number Publication date
JPH0425468B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
US4502626A (en) Combustion product condensing water heater
US9476610B2 (en) Hot fluid production device including a condensing heat exchanger
US7614366B2 (en) High efficiency water heater
CN212806654U (en) Novel heat exchanger
US8327810B2 (en) High efficiency water heater
US3998188A (en) Heater for heating a fluid
WO2002063231A1 (en) Spiral flow heat exchanger
JPS58150794A (en) Concentric pipe type recuperative heat exchanger
US4182276A (en) Economizer for smoke tube boilers for high pressure steam and hot water
WO2019043480A1 (en) Heat exchanger for a boiler, and heat-exchanger tube
JP2986982B2 (en) Small gas fired air heater
JP5234350B2 (en) Heat exchanger and water heater
US4305455A (en) Multipass corrosion proof air heater
JPS60253772A (en) Liquid heater
RU2686357C1 (en) Gaseous medium heater
CA1171332A (en) Heater
EP0028503A2 (en) Method and apparatus for heating a fluid employing a gas containing sulfur oxides and water
US1779538A (en) Heat exchanger
CN212205750U (en) High-efficiency heat exchanger
EP2428731A2 (en) Combined water heater, air preheater and condensing smoke gas cooler
RU53410U1 (en) DEVICE FOR GAS AND OIL HEATING
JPS6284258A (en) Fluid heating device
CN110057209A (en) A kind of shell and tube light pipe evaporator and its welding method
CN105737381B (en) A kind of biomass-burning heat-conducting oil furnace
CN2720319Y (en) Vacuum super-conductive heating oven