JPS60253376A - Signal processing method of video camera - Google Patents

Signal processing method of video camera

Info

Publication number
JPS60253376A
JPS60253376A JP59108333A JP10833384A JPS60253376A JP S60253376 A JPS60253376 A JP S60253376A JP 59108333 A JP59108333 A JP 59108333A JP 10833384 A JP10833384 A JP 10833384A JP S60253376 A JPS60253376 A JP S60253376A
Authority
JP
Japan
Prior art keywords
signal
aperture correction
circuit
aperture
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59108333A
Other languages
Japanese (ja)
Inventor
Seiji Tanaka
誠二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59108333A priority Critical patent/JPS60253376A/en
Publication of JPS60253376A publication Critical patent/JPS60253376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)

Abstract

PURPOSE:To improve equivalently both the S/N and the image resolution of a picture by emphasizing the aperture correction signal at a bright part of a picture then reducing the level of the aperture correction signal to a degree that gives no deterioration to the S/N at a dark part of the picture. CONSTITUTION:The aperture correction signal is supplied to an adder cicuit 15 through an AGC circuit 14 and synthesized with the luminance signal underwent the gamma correction. This synthetic signal is supplied to an encoder 9. Thus the amplification factor of the circuit 14 increases when the photographing is carried out in a bright place. Therefore, the aperture correction signal is emphasized. While the amplification factor of the circuit 14 is reduced when the photographing is carried out in a dark place. Thus the aperture correction signal is reduced. The aperture correction signal has a lower level than a conventional case by an amount obtained with no gamma correction in a place of the brightness between black and gray. As a result, the S/N is improved at a part of the brightness between black and gray.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ビデオカメラに係り1%にシW比(信8河雑
音比)と解像度の優れた画像を得るためのビデオカメラ
の信号処理方法に関する〇〔兄剪の背京〕 例えば、家庭用ビデオカメラで撮影する場合屋内などの
暗い場所で使用されることが多い。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a video camera, and relates to a video camera signal processing method for obtaining an image with an excellent signal-to-1% signal-to-noise ratio and resolution. Regarding 〇〇 My brother's backstory〕 For example, when shooting with a home video camera, it is often used in a dark place such as indoors.

このような低照度下での撮影では、ビデオカメラに得ら
れる画像信号のレベルが小さくなることから、受11m
の画像はδ冷′此のきわめて悪いものになってしまう。
When shooting under such low illumination, the level of the image signal obtained by the video camera is reduced, so
The image of δ cold becomes extremely poor.

したがって、屋内等で撮影を行なっても高画質の画像が
得られることが望1れている。
Therefore, it is desired that high-quality images can be obtained even when photographing is performed indoors or the like.

以下、従来のビデオカメラの信号処理方法について図面
とと毛に説明する。
Hereinafter, a conventional signal processing method for a video camera will be explained with reference to the drawings.

第1図は従来の周波数分離方式単管カラーカメラの信号
処理系の一例を示すブロック図であって、1は撮像管、
2はプリアンプ、3は自動利得制御回路(以下、AGC
回路という)、4゜5はt域フィルタ、6は帯域フィル
タ、7はガンマ補正回路、8はアパーチャ補止回路、9
はエンコーダ、10は色分離回路、11は引具回路、1
2は出力端子である。
FIG. 1 is a block diagram showing an example of a signal processing system of a conventional frequency separation single-tube color camera, in which 1 indicates an image pickup tube;
2 is a preamplifier, and 3 is an automatic gain control circuit (hereinafter referred to as AGC).
4. 5 is a t-band filter, 6 is a bandpass filter, 7 is a gamma correction circuit, 8 is an aperture correction circuit, 9
is an encoder, 10 is a color separation circuit, 11 is a fixture circuit, 1
2 is an output terminal.

第2図は、第1図に7r、すカンマ補正回路70入出力
特性を丞す特性図である。
FIG. 2 is a characteristic diagram that combines the input and output characteristics of the comma correction circuit 70 shown in FIG. 1.

第1図において、撮律管1から侍られた画像値−@は、
プリアンプ2により信号処理[!したレベルまでN1′
%されてAGC回路3に供給される。AGC回w!I3
では、供給された画像信号が。
In FIG. 1, the image value -@ received from the camera tube 1 is
Signal processing by preamplifier 2 [! N1' to the level
% and supplied to the AGC circuit 3. AGC episode lol! I3
Now, the supplied image signal.

暗いjajtfjr+明るい場所で撮影されたことによ
るレベルのKIIIJがありても、 −足しヘA/ c
v N T S C信号が得られるようにレベルのBI
AIiか行rlわれ。
Even if there is a level of KIIIJ due to shooting in a dark jajtfjr + bright place, -additional hair A/c
v BI level so that the N T S C signal is obtained.
AIi or row rl.

こうしてレベルのBI4uが行なわれた回置信号は。In this way, the transposed signal is subjected to level BI4u.

低域フィルタ4.5および帯域フィルタ6[それぞれ供
給される。
A low-pass filter 4.5 and a bandpass filter 6 [respectively provided.

低域フィルタ4では輝度信号が分離され、この輝度信号
は、テレピン盲ン受像機のカンマがほぼz2であること
から、これを補正して忠実tPIj調特性を五するL[
!11律を侍るために、帛2図に示すような、カンマ係
数か0,45の入出力特性を有するガンマ補正回路7で
処理され、アパーチャ補正回w68ic供給される。
The low-pass filter 4 separates the luminance signal, and since the comma of the turpentine blind receiver is approximately z2, this luminance signal is converted to L[
! In order to comply with the 11 law, the signal is processed by a gamma correction circuit 7 having an input/output characteristic of a comma coefficient of 0.45, as shown in FIG. 2, and is supplied with an aperture correction circuit w68ic.

アパーチャ補正回路8では、偉像管や受律慎の定文ビー
ム径が有限であることから生じるアパーチャ効果を補正
し、解像反り良い画像を得るための処理かrlされてエ
ンコーダ9に供給される。
The aperture correction circuit 8 corrects the aperture effect that occurs due to the finite beam diameter of the image tube and the receiver, processes to obtain an image with good resolution, and supplies the processed image to the encoder 9. Ru.

一方、帯域フィルタ6にまり^7IIO阪数で変調され
た色信号が分離され、この色信号は1色分離回路10で
赤信号と青信号とに分離され、引算回路11に供給され
る。そして、しゃ断J@波数が06Ml1zの低域フィ
ルタ5によりAGC回路6からの画i#!J@号から分
離された輝度信号と、上記赤信号および青信号とか引算
回#j66に供給されて次足の色差信gが形成され、こ
れら色差信号がエンコーダ9に供給される。
On the other hand, the color signal modulated by the ^7IIO frequency is separated by the bandpass filter 6, and this color signal is separated into a red signal and a blue signal by the one-color separation circuit 10, and then supplied to the subtraction circuit 11. Then, the image i#! from the AGC circuit 6 is transmitted by the low-pass filter 5 with a cutoff J@ wave number of 06Ml1z! The luminance signal separated from the J@ signal, the red signal and the blue signal are supplied to the subtraction circuit #j66 to form the next color difference signal g, and these color difference signals are supplied to the encoder 9.

エンコーダ9では、アパーチャ補正回路8からの前記補
正された輝度信号と上記の色差信号を処理してNTSC
信勺が形成され、出力端子12に供帽する。
The encoder 9 processes the corrected luminance signal from the aperture correction circuit 8 and the color difference signal to convert the NTSC
A signal line is formed and attached to the output terminal 12.

ところで、3敢m管1から優られる画像信号は。By the way, the image signal superior to the 3D M tube 1 is as follows.

受九菫に依存し、@いj#所と明るい場所とでは、その
受元菫か異なることから、受稼慎で侍られる画像のSA
比に走が生じる。ビデオカメラの5lIV比は、熾像管
1では雑音を発生しないので。
The SA of the image that is served with the ``Ukekushin'' depends on the ``Ukeku violet'', and the ``Ukekushin'' is different depending on the ``@ij# place'' and the bright place.
A run occurs in ratio. The 5lIV ratio of the video camera does not generate noise in the image tube 1.

プリアンプ2自身が促生する雑音のレベルと熾揮管1か
ら得られるll1I7渾信号のレベルとで決まる。
It is determined by the level of noise generated by the preamplifier 2 itself and the level of the ll1I7 signal obtained from the combustion tube 1.

ところカ、上記し7.−よ5KAGC回#j66では。As mentioned above, 7. -Yo5KAGC episode #j66.

−是のレベルのNTSC倍勺を得るために、プリアンプ
2からの信号レベルに応じて増幅率を変えている。その
ため、受117R機では同じ明るさに見えても、喰い所
で撮影した時のシW比は。
- In order to obtain the desired level of NTSC multiplication, the amplification factor is changed according to the signal level from the preamplifier 2. Therefore, even if the brightness appears to be the same with the Uke-117R aircraft, the shading ratio will be different when photographed at the feeder.

明るい所で達影した場合に比べて大ぎぐ労化する。It's much more labor intensive than when shooting in a bright place.

萱た、周知のように、ビデオカメラで主じる雑音は周波
数依存性があり、低周阪では小さく。
As is well known, the main noise produced by video cameras is frequency dependent, and is small at low frequencies.

?j671fl披では大きくなる。いわゆる三角錐晋で
るる。
? It becomes larger in j671fl. The so-called triangular pyramid Shin is Ruru.

ところで、アパーチャ補正回W68が、liJIIgi
!のエツジ部分1丁tわち高周阪敢分を強調する作用を
なすものであり、この補正菫を大ぎくするはど児ρ&け
の解像反は同上されるが、それに伴って三角雑音が増加
することとrxす、前記のAGC回路3によるsyy比
の劣下に加えて史に5lIf比が劣下することにrlる
By the way, the aperture correction time W68 is liJIIgi
! This has the effect of emphasizing the edge part 1, that is, the high-frequency vibration part, and the resolution difference of ρ and ke, which greatly aggravates this correction violet, is the same as above, but along with it, triangular noise As rx increases, in addition to the deterioration of the syy ratio due to the AGC circuit 3, the 5lIf ratio also deteriorates.

そこで、従来は、j11信号のレベルの差が小さい部分
での゛アパーチャ補正信号の低レベル部分をクリップす
ることにより、s7y此の労化な抑える方法が採用され
ている。
Therefore, conventionally, a laborious method of suppressing s7y has been adopted by clipping the low level portion of the aperture correction signal in the portion where the difference in level of the j11 signal is small.

しかし、クリックがかかったアパーチャ補正信号により
てアパーチャ補正を行t5と、輝度信号にアパーチャ補
正がなされた部分とアパーチャ補正がなされなかった部
分とが生じ、したかつて%映し出された被写体のIil
!i1#にアパーチャ補正がなされた部分とアパーチャ
補正がなされなかった部分とが主じ、これらの部分でそ
の見え方に大きなkが生ずることになり、不自然な感じ
の画像[rLつてしまうという欠点があったO 更に、カンマ補止かb珈されて低レベル部分が強調され
た′R度信号九よりアパーチャ補正信号が作られている
ので、841此の悪い低レベル部分、すなわち、暗いa
$体の部分でのアパーチャ補正信号が過度に大きくなり
、かかるアパーチャ補正信号で輝度信号をアパーチャ補
正するから、更に画質の患化を招くことICなる。
However, when the aperture correction is performed using the clicked aperture correction signal t5, there are parts where the aperture correction has been made and parts where the aperture correction has not been made in the luminance signal.
! There are mainly parts where aperture correction has been applied to i1# and parts where aperture correction has not been made, and a large k will occur in the appearance of these parts, resulting in an unnatural-looking image [rL]. In addition, since the aperture correction signal is created from the 'R degree signal 9, which has been comma corrected or bc to emphasize the low level part, 841 this poor low level part, that is, the dark a
Since the aperture correction signal in the $ portion becomes excessively large and the luminance signal is aperture-corrected using this aperture correction signal, the image quality of the IC is further deteriorated.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来技術の欠点を除き。 The object of the present invention is to eliminate the drawbacks of the above-mentioned prior art.

シW比と解像度が艮〈、シかも自然な感じの画像を得ら
れるビデオカメラの信号処理方法の提供にある。
The object of the present invention is to provide a signal processing method for a video camera that can obtain a natural-looking image with an excellent image/width ratio and resolution.

〔発明の概要〕[Summary of the invention]

この目的を連成するため1本発明&′@、人間の目の特
性力(画像の明るい部分では解像力が高く。
In order to achieve this objective, the present invention &'@ is based on the characteristic power of the human eye (resolution is high in bright areas of an image).

暗い部分では解像力が洛ちることに看目し1画像の明る
い部分ではアパーチャ補正信号を強調し、#い部分では
、 SlN比が劣化しない程度にアパーチャ補正信号の
レベルを抑え1等価的に画像のψ比と解像度の同上を図
った点に%倣がある。
Considering that the resolution decreases in dark areas, the aperture correction signal is emphasized in the bright areas of the image, and in the dark areas, the level of the aperture correction signal is suppressed to the extent that the SIN ratio does not deteriorate. There is a % imitation in that the ψ ratio and resolution are the same as above.

〔発明の大抛例〕[Great example of invention]

以下1本発明の一笑施例を図面とともにBR,明する。 Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.

第3図は、不発明によるビデオカメラの信号処理方式を
示すブロック図であり、16はアパーチャ回路、14は
AGC回路、15は加算回路16は制御信号でろって、
′m1図と同一部分には同一符号をつけ℃いる。
FIG. 3 is a block diagram showing a signal processing system of a video camera according to the invention, in which 16 is an aperture circuit, 14 is an AGC circuit, 15 is an addition circuit, and 16 is a control signal.
The same parts as in Figure 1 are given the same symbols.

撮像管1から得られた1iIll像信号は、プリアンプ
2を通り、AGC回路3により常に画定レベルのNTS
C信号を得るための処理がなされて。
The 1iIll image signal obtained from the image pickup tube 1 passes through the preamplifier 2, and is always converted to a defined level NTS by the AGC circuit 3.
Processing is performed to obtain the C signal.

低域フィルタ4.5および帯域フィルタ乙に供給される
It is supplied to the low-pass filter 4.5 and the bandpass filter O.

低域フィルタ4では輝度@号が分離され、ガンマ補正回
路7およびアパーチャ回路1stc供11&され、カン
マ補正回路7で処理された輝度信号は加算回路15に供
給される。−万、アパーチャ回路13では、アパーチャ
補正信号が形成され。
The low-pass filter 4 separates the luminance signal and supplies it to the gamma correction circuit 7 and the aperture circuit 1stc 11&, and the luminance signal processed by the comma correction circuit 7 is supplied to the addition circuit 15. - In the aperture circuit 13, an aperture correction signal is formed.

゛このアパーチャ補正信号はAGC回路14を遮って加
昇回路15に供給され、前記カンマ補正された輝度信号
と合成されてエンコーダ9に供給される。そして、前記
第1図で説明したように。
This aperture correction signal is supplied to the booster circuit 15 after passing through the AGC circuit 14, and is combined with the comma-corrected luminance signal and supplied to the encoder 9. And, as explained in FIG. 1 above.

低域フィルタ5で分離された*i倍信号、帯域フィルタ
6を通り°色分服回路10で形成された色信号とから引
算回路11において形崩された色差信号かエンコーダ9
に加わり、エンコーダ9かう出力端子12ttcNTs
c′@号か出力される。
The *i-times signal separated by the low-pass filter 5 passes through the bandpass filter 6 and the color signal formed by the color separation circuit 10 is converted into a color difference signal whose shape is distorted by the subtraction circuit 11 or the encoder 9
In addition, encoder 9 output terminal 12ttcNTs
c'@ number is output.

ここで1例えば、カンマ補正回路7とアパーチャ回路1
3に、第4図(C1に示すような輝度信号が供給される
と、アパーチャ回路16では、蘂4図+71に示すよう
なアパーチャ補正信号が形成される。そして、加算回路
15では、ガンマ補正回路7からの輝度信号に上記アパ
ーチャ補正信号が合成されるので、継4図(C1に示す
ように、ガンマ補正とアパーチャ補正がなされた輝度信
号が形成されることになる。
For example, comma correction circuit 7 and aperture circuit 1
3, when a luminance signal as shown in FIG. 4 (C1) is supplied, the aperture circuit 16 forms an aperture correction signal as shown in FIG. Since the aperture correction signal is combined with the luminance signal from the circuit 7, a luminance signal that has been subjected to gamma correction and aperture correction is formed as shown in FIG. 4 (C1).

更VC,AGC回路14は、AGC回路6からの制御信
号16により増幅率が制御されている。この制御信号1
6は、1リアング2からAGC回路6に供給される画像
信号のレベA?が大きくなるに従ってAGC回路14の
増幅率を大きくシ、その画像信号のレベルが小さくなる
に従ってAGC回路の増幅率が小さくなるよ5tKmJ
御している。
Furthermore, the amplification factor of the VC and AGC circuit 14 is controlled by a control signal 16 from the AGC circuit 6. This control signal 1
6 is the level A? of the image signal supplied from 1 ring 2 to the AGC circuit 6? As the image signal level increases, the amplification factor of the AGC circuit 14 increases, and as the level of the image signal decreases, the amplification factor of the AGC circuit decreases.5tKmJ
I am in control.

したがって、81するい所で撮影が行なわれる時には、
AGC回路14の増%A率が大きくなるため、アパーチ
ャ補正信号が強−され、逆に、暗い所で像影する時には
、AGC回路14の増幅率が小さくなり、アパーチャ補
正信号は小さくなる。
Therefore, when filming takes place at 81 points,
Since the %A rate of the AGC circuit 14 becomes large, the aperture correction signal is strengthened. Conversely, when imaging in a dark place, the amplification factor of the AGC circuit 14 becomes small and the aperture correction signal becomes small.

このように、ガンマ補正前の輝度信号からアパーチャ補
正信号を形成するものであるから、画像信号のレベルが
小さいとき1丁なわち、黒から灰色の明さの部分でのア
パーチャ補正信号は、カンマ補正がされない分だけ、1
1!、1図の従来例によるアパーチャ補正信号よりもレ
ベルが低くなる。このため、黒から灰色の明るさの部分
のSlN比が改善される。
In this way, since the aperture correction signal is formed from the luminance signal before gamma correction, when the level of the image signal is low, the aperture correction signal for the brightness area from black to gray is comma. 1 for the amount not corrected
1! , the level is lower than that of the aperture correction signal according to the conventional example shown in FIG. Therefore, the SIN ratio in the brightness range from black to gray is improved.

一万、1ili像信号レベルが大きいとき、すなわち、
白色に近い明るさの部般アパーチャ補正信号のレベルを
工従来技術とほぼ同じレベルとなり。
When the 10,000, 1ili image signal level is large, that is,
The level of the aperture correction signal for areas with brightness close to white is approximately the same level as conventional technology.

解像度の良い履律を得ることかできる。It is possible to obtain a pattern with good resolution.

更に、アパーチャ補正信号のレベルは、ACrC回wr
3からの制御信号16に基づいてAGC回路14で設足
されるので、不米ψ比の艮り画像の得られる明るい所で
撮影した時には、十分なアパーチャ補正が行なわれ、S
l比の悪いI!li像となる暗い所で撮影した場合には
、アパーチャ補正信号のレベルが、明るい場合に比べて
小さ〈なり、 sAV比の劣化が抑制される。
Furthermore, the level of the aperture correction signal is ACrC times wr
Since the AGC circuit 14 is set up based on the control signal 16 from S.
I have a bad l ratio! When photographing in a dark place where a li image is obtained, the level of the aperture correction signal is smaller than when it is bright, and deterioration of the sAV ratio is suppressed.

この鯖来、従来妖術のように、アパーチャ補正(II号
をクリラグする必要がなくなり1画像の暗い部分から明
るい部分lで、自然なi#像を得ることができる。
With this, it is no longer necessary to perform aperture correction (Kurilag No. II) as in the conventional magic, and a natural i# image can be obtained from the dark part to the bright part l of one image.

〔抛明の効果〕[Effect of dawn]

以上説明したように1本発明によれは、ガンマ補正か題
されていroVs輝度信号によりアパーチャ補正信号を
形成し、このアパーチャ補正信号のレベルを5!、[、
煉家管から得られる一11!信号のレベル変化に従って
変1ヒさせているので。
As explained above, according to one aspect of the present invention, an aperture correction signal is formed using a roVs luminance signal called gamma correction, and the level of this aperture correction signal is set to 5! , [,
111 things you can get from Renkakan! This is because the signal changes as the signal level changes.

輝度信号レベルの低い部分のSi比が頃嵜されるととも
に1人間の目の解律度特性に会ったアパーチャ補正カニ
でき、従来技術の欠点を除いてll16南質の幽塚が優
られる捩れた愼舵のビデオカメラの信号処理方法を提供
できる。
As the Si ratio in the low luminance signal level area is adjusted, an aperture correction that meets the resolution characteristics of the human eye can be made, and the 116 southern matter's distortion is superior, excluding the drawbacks of the conventional technology. It is possible to provide a signal processing method for a steering video camera.

【図面の簡単な説明】[Brief explanation of the drawing]

嵩1図は従来のビデオカメラの信号処理方法の一例を示
すプay7図、第2図はカンマ補正回路の入出力特性を
ボ丁特性曲#図、兜3図は本発明によるビデオカメラの
信号処理方法の一笑扇例を示すブロック図、編4図は第
3図に示す*V処処理圧おけるアパーチャ補正製作な説
明する説明図である1゜ 1・・・撮像管 7・・・カンマ補正回路13・・・ア
パーチャ回路 14・・・AGC回路代塩入弁塩士?t
bal 明 大 手1図 ■?図 入力 第37 噺4El
Figure 1 shows an example of a conventional video camera signal processing method, Figure 2 shows the input/output characteristics of the comma correction circuit, and Figure 3 shows the signal processing method of the video camera according to the present invention. A block diagram showing an example of the processing method, Figure 4 is an explanatory diagram explaining the aperture correction production at the *V processing pressure shown in Figure 3. 1゜1... Image pickup tube 7... Comma correction Circuit 13... Aperture circuit 14... AGC circuit cost Shioiri Benshiroshi? t
bal Akira Major 1 Diagram■? Diagram Input No. 37 Story 4El

Claims (1)

【特許請求の範囲】[Claims] 撮像管からの輝度信号にガンマ補正とアパーチャ補正を
施すことKより画質の同上を図るビデオカメラの信号処
理方法において、該ガンマ補正か厖される以前の輝度信
号からアパーチャ補正信号を形成し、該アパーチャ補正
信号レベルをKK撮像管からの輝度信号レベルの変化に
従って制御することを特徴とするビデオカメラの信号処
理回路。
In a signal processing method for a video camera that aims to improve image quality by applying gamma correction and aperture correction to a luminance signal from an image pickup tube, an aperture correction signal is formed from a luminance signal before the gamma correction is performed, and the aperture correction signal is A signal processing circuit for a video camera, characterized in that an aperture correction signal level is controlled according to a change in a luminance signal level from a KK image pickup tube.
JP59108333A 1984-05-30 1984-05-30 Signal processing method of video camera Pending JPS60253376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108333A JPS60253376A (en) 1984-05-30 1984-05-30 Signal processing method of video camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108333A JPS60253376A (en) 1984-05-30 1984-05-30 Signal processing method of video camera

Publications (1)

Publication Number Publication Date
JPS60253376A true JPS60253376A (en) 1985-12-14

Family

ID=14482032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108333A Pending JPS60253376A (en) 1984-05-30 1984-05-30 Signal processing method of video camera

Country Status (1)

Country Link
JP (1) JPS60253376A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189880A (en) * 1986-02-17 1987-08-19 Hitachi Denshi Ltd Contour emphasizing circuit
JPS63121362A (en) * 1986-11-10 1988-05-25 Matsushita Electric Ind Co Ltd Signal processor
JPH02296469A (en) * 1989-05-10 1990-12-07 Pioneer Electron Corp Contour compensation circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62189880A (en) * 1986-02-17 1987-08-19 Hitachi Denshi Ltd Contour emphasizing circuit
JPS63121362A (en) * 1986-11-10 1988-05-25 Matsushita Electric Ind Co Ltd Signal processor
JPH02296469A (en) * 1989-05-10 1990-12-07 Pioneer Electron Corp Contour compensation circuit

Similar Documents

Publication Publication Date Title
US5264944A (en) Multi-function digital CCD camera
CN110378859B (en) Novel high dynamic range image generation method
US5767899A (en) Image pickup device
JPWO2002084997A1 (en) Edge enhancement device
KR100489457B1 (en) Methods and devices for improving the quality of video signals, displays, and cameras
CN107533756A (en) Image processing apparatus, camera device, image processing method and storage image processing unit image processing program storage medium
US5767900A (en) Digital apparatus for contour enhancement of video signal
JP3297168B2 (en) Video signal processing device
JPS6245285A (en) Video signal processing circuit
JPS60253376A (en) Signal processing method of video camera
JPH0316078B2 (en)
JP3454990B2 (en) Signal processing circuit
JP2699582B2 (en) Contour corrector
JPS6216064B2 (en)
JPH07143509A (en) Chromanoise suppressing method for video camera
JP3348311B2 (en) Video signal processing apparatus and method
JP2692151B2 (en) Video camera
JPS61295792A (en) Improving device for television picture quality
JPS61295791A (en) Improving device for television picture quality
JPH06205244A (en) Waveform correction device
JPS61270992A (en) Device for improving picture quality of television
JPS6134793Y2 (en)
JPH0345095A (en) Picture contour exaggeration circuit
JPS61295793A (en) Improving device for television picture quality
JPH02234592A (en) Color television signal transmission system