JPS60253159A - Negative plate for lead storage battery - Google Patents

Negative plate for lead storage battery

Info

Publication number
JPS60253159A
JPS60253159A JP59110555A JP11055584A JPS60253159A JP S60253159 A JPS60253159 A JP S60253159A JP 59110555 A JP59110555 A JP 59110555A JP 11055584 A JP11055584 A JP 11055584A JP S60253159 A JPS60253159 A JP S60253159A
Authority
JP
Japan
Prior art keywords
copper
lead
amalgam
layer
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59110555A
Other languages
Japanese (ja)
Inventor
Masaatsu Tsubota
坪田 正温
Masaaki Shiomi
塩見 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP59110555A priority Critical patent/JPS60253159A/en
Publication of JPS60253159A publication Critical patent/JPS60253159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To obtain a negative plate which stably maintains the performance for a long period of time without increase of self-discharge by utilizing a copper grating where a covering layer of lead or lead alloy is formed on the copper of which surface is formed by the amalgam. CONSTITUTION:Since when amalgam layer is formed on the surface of copper, a hydrogen over voltage in diluted sulfuric acid becomes excessively higher than that of copper and becomes equal or more than that of lead, generation of hydrogen gas increases even if the lead plated layer is separated or there is defective area in the copper grating and thereby self-discharge is not enhanced. As a method for obtaining amalgam on the surface of copper, for example, the copper from which surface the oxide film is removed is immersed directly into silver or an electrical power is supplied to the cathode made of copper within the solution including silver ion.

Description

【発明の詳細な説明】 本発明は鉛蓄電池の性能向上を計るための負極板の改良
に関するもので、特に銅を負極格子に用いたものの改良
に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in negative electrode plates for improving the performance of lead-acid batteries, and particularly relates to improvements in negative electrode plates using copper for the negative electrode grid.

鉛蓄電池の正・負極板格子はペースト式、クラッド式に
かかわらず鉛または鉛合金が用いられている。これは希
@酸中における鉛合金の腐食や耐酸性などの電気化学的
あるいは化学的特性が鉛蓄電池に適していること、また
機械的強度もほぼ十分であり、さらにその製造が容易で
且つ安価であるという数多くの優れた特徴を持っている
ためである。一方、鉛合金格子の欠点は密度が約111
/−とかなり高いことと、電気抵抗が約20μΩ・cm
と銅の約12〜13倍にも達づる高い値を持っているこ
とである。したがって人形の鉛蓄電池、特に背の高い鉛
蓄電池になると、極板の抵抗が非常に増加するために、
極板の端子から遠くなるほど充放電反応に関与しにくく
なって、充放?12性能が乞しく低下するという欠点が
あった。これを防ぐためには格子に大量の鉛合金を使用
して電圧降下を小さくしなければならないが、逆に鉛蓄
電池の型出は非常に重いものとなり、かつ容積も増加し
て、エネルギー効率(Wh/に9、Wh、l)が極めて
悪く、実用性に乏しいものとなる。
Lead or a lead alloy is used for the positive and negative electrode grids of lead-acid batteries, whether they are paste type or clad type. This is because the electrochemical or chemical properties of the lead alloy, such as corrosion and acid resistance in dilute acid, are suitable for lead-acid batteries, and the mechanical strength is almost sufficient, and furthermore, it is easy and inexpensive to manufacture. This is because it has many excellent characteristics. On the other hand, the disadvantage of lead alloy grid is that the density is about 111
/-, which is quite high, and the electrical resistance is approximately 20 μΩ・cm.
It has a high value of about 12 to 13 times that of copper. Therefore, when it comes to lead-acid batteries for dolls, especially tall lead-acid batteries, the resistance of the electrode plates increases significantly.
The further away from the terminal of the electrode plate, the less likely it is to participate in the charging/discharging reaction, and the charging/discharging reaction becomes less likely. 12 had the disadvantage that performance deteriorated to a poor degree. In order to prevent this, it is necessary to use a large amount of lead alloy in the grid to reduce the voltage drop, but on the other hand, the lead-acid battery mold is extremely heavy, and the volume increases, resulting in energy efficiency (Wh /9, Wh, l) is extremely poor and is of poor practical use.

格子材料としての銅は前述したように電気抵抗が鉛より
も署しく小さく、かつ密度も約8,9s/CIl+と低
いため、同重蟻で比較すると電気抵抗は鉛の約1/16
に、また同じ抵抗で比較すると重量は約1/16に減少
することになる。また銅は希硫酸中においてかなり安定
な金属であって、浸漬電位から陽分極して電気化学的に
酸化したり、あるいは溶存酸素によって酸化したりしな
い限り、はとんど電解液中へは溶出しないので、正極板
用格子に使用することはできないが、負極板用格子とし
ては十分適用できる可能性がある。このため従来から銅
を鉛合金の代りに負極格子に使用する試みが行なわれて
いるが、自己放電の増加という問題が発生するためにま
だ実用には至っていない。これはf6@酸中における水
素過電圧が鉛や鉛合金に比べて著しく低いために、負極
板からの水素ガス発生量の増加とそれに伴なう活物質の
放電反応が進行するからである。
As mentioned above, copper as a lattice material has a significantly lower electrical resistance than lead, and also has a low density of about 8.9 s/CIl+, so when comparing the same weight of ants, the electrical resistance is about 1/16 that of lead.
Furthermore, when compared with the same resistance, the weight is reduced to about 1/16. Copper is also a fairly stable metal in dilute sulfuric acid, and unless it is electrochemically oxidized by anodic polarization from the immersion potential or oxidized by dissolved oxygen, it will rarely leach into the electrolyte. Therefore, it cannot be used as a positive electrode grid, but it may be fully applicable as a negative electrode grid. For this reason, attempts have been made to use copper in the negative electrode grid instead of the lead alloy, but this has not yet been put to practical use because of the problem of increased self-discharge. This is because the hydrogen overvoltage in f6@acid is significantly lower than that in lead or lead alloy, so the amount of hydrogen gas generated from the negative electrode plate increases and the accompanying discharge reaction of the active material progresses.

本発明は銅を鉛蓄電池の負極格子に使用する場合の上記
した如き欠点を除去するもので、その要旨は水銀のよう
な水素過電圧が鉛と同等以上の金属で銅表面に合金層を
形成し、そしてその表面に鉛または鉛合金よりなる被覆
層を形成することにある。
The present invention eliminates the above-mentioned drawbacks when copper is used for the negative electrode grid of lead-acid batteries.The gist of the present invention is to form an alloy layer on the copper surface using a metal such as mercury, which has a hydrogen overvoltage equal to or higher than that of lead. , and to form a coating layer made of lead or a lead alloy on its surface.

銅の水素過電圧が鉛より低いのでこれによる自己放電を
防止するには、従来より鉛や鉛合金を銅の表面に電着し
て、銅の表面が直接電解液と接触しないように被覆する
方法がある。この形成された鉛または鉛合金の電着層を
微視的にみると、ピンホールやクラックが沢山存在して
おり、非多孔性ではない。したがってこのような電着層
を形成しても電解液が細孔から浸透して銅表面に接触す
るので、鉛メッキを行なうだけでは不十分であり、銅山
体の水素過電圧を高くする必要がある。周知の如く水銀
は非常に水素過電圧が^い金属であり、かつ常温では液
体である。また水銀は他の金属と合金(アマルガム)を
作りやツク、例えば銅とのアマルガムを得る場合、表面
の酸化被膜を除去した銅を直接水銀中に?を潰すれば、
その表面に銅と水銀どのアマルガム層が形成できる。こ
の銅とのアマルガム層は希@酸中での水素過電圧が高く
、鉛とj’i1等の鎗になる。図は鉛、純銅および純銅
の表面をアマルガム化した試料の1.28 (20℃〉
希硫酸中における電位走査図を示り゛。なお、電位走査
範囲は、硫酸第1水銀電極基準で陽分極時は−0,70
Vまで、陰分極時は水素ガス発生電位までとした。また
電位走査速度は20 mV/sec 、試料の表面積は
1−である。図より明らかなように、純銅での水素ガス
発生は約−1,Ovを越えると舊しく活発になるが、こ
れに対して船上でのそれは約−1,4Vから発生し始め
、純銅に比べて実に約0.4Vも水素ガス発生電位が低
いことがわかる。
The hydrogen overvoltage of copper is lower than that of lead, so in order to prevent self-discharge caused by this, the conventional method is to electrodeposit lead or a lead alloy on the copper surface to prevent the copper surface from coming into direct contact with the electrolyte. There is. When the electrodeposited layer of lead or lead alloy thus formed is microscopically observed, there are many pinholes and cracks, and the layer is not non-porous. Therefore, even if such an electrodeposited layer is formed, the electrolyte will penetrate through the pores and come into contact with the copper surface, so lead plating alone is not sufficient, and it is necessary to increase the hydrogen overvoltage of the copper mine body. . As is well known, mercury is a metal with a very high hydrogen overvoltage and is liquid at room temperature. Also, when mercury is made into an alloy (amalgam) with other metals, for example, to obtain an amalgam with copper, is it possible to directly put the copper with the surface oxide layer removed and place it in mercury? If you crush the
An amalgam layer of copper and mercury can be formed on its surface. This amalgam layer with copper has a high hydrogen overvoltage in dilute acid, and becomes a spear with lead and j'i1. The figure shows lead, pure copper, and pure copper surface amalgamated samples at 1.28 (20℃).
A potential scanning diagram in dilute sulfuric acid is shown. In addition, the potential scanning range is -0.70 when polarized with reference to the mercurous sulfate electrode.
V and up to the hydrogen gas generation potential during cathodic polarization. Further, the potential scanning speed was 20 mV/sec, and the surface area of the sample was 1-. As is clear from the figure, hydrogen gas generation with pure copper becomes slightly more active when the temperature exceeds about -1.0V, whereas hydrogen gas generation on board a ship starts from about -1.4V, compared to pure copper. It can be seen that the hydrogen gas generation potential is actually as low as about 0.4V.

銅表面をアマルガム化したもので勢よ、水素ガス発生は
約−1,5V付近を越えると苔しくaることから、鉛と
同等以上の水素過電圧を有していることがわかる。
Since the copper surface is amalgamated and the hydrogen gas generated becomes mossy when the voltage exceeds about -1.5V, it can be seen that it has a hydrogen overvoltage equal to or higher than that of lead.

このように銅表面にアマルガム層を形成けると、希硫酸
中における水素過電圧が銅に比べて著しく高くなり、鉛
と同等以上になるので、これを用いた銅格イでは、万−
鉛メッキ層がはがれたり、欠陥があっても、水素ガスの
発生が増加して自己放電が大きくなることはない。
When an amalgam layer is formed on the copper surface in this way, the hydrogen overvoltage in dilute sulfuric acid becomes significantly higher than that of copper, and is equal to or higher than that of lead.
Even if the lead plating layer peels off or has defects, the generation of hydrogen gas will not increase and self-discharge will not become large.

’J J3、銅表面をアマルガム化する方法としては、
前述した方法の他、水銀イオンを含む溶液中で銅を陰極
にし−C通電する方法によることもできる。
'J J3, as a method of amalgamating the copper surface,
In addition to the method described above, it is also possible to use a method in which -C current is applied using copper as a cathode in a solution containing mercury ions.

以上詳述したように本発明による鉛蓄電池用負極板は、
表面をアマルガム化し1=銅に鉛または鉛合金の被覆層
を形成した銅格子を用いることを特徴とするもので、こ
れによって自己放電を増加させることなく、長期間にわ
たって負極板の性能を安定に維持することができるとい
った優れた利点を有するものである。
As detailed above, the negative electrode plate for lead-acid batteries according to the present invention is
It is characterized by the use of a copper lattice with an amalgamated surface and a coating layer of lead or lead alloy formed on the copper, thereby stabilizing the performance of the negative electrode plate over a long period of time without increasing self-discharge. It has the excellent advantage of being able to be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

図は各秤金属上での水素ガスの発生する電位を電位走査
法によって調べた際の電位−電流曲線を承り特性図ぐあ
る。
The figure shows the potential-current curves obtained when the potential generated by hydrogen gas on each scale metal was investigated using the potential scanning method.

Claims (1)

【特許請求の範囲】[Claims] アマルガム化した銅表面に鉛または鉛合金よりなる被覆
層を形成したことを特徴とする銅格子を用いたペースト
式鉛蓄電池用負極板。
A negative electrode plate for a paste-type lead-acid battery using a copper grid, characterized in that a coating layer made of lead or a lead alloy is formed on the surface of amalgamated copper.
JP59110555A 1984-05-29 1984-05-29 Negative plate for lead storage battery Pending JPS60253159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110555A JPS60253159A (en) 1984-05-29 1984-05-29 Negative plate for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110555A JPS60253159A (en) 1984-05-29 1984-05-29 Negative plate for lead storage battery

Publications (1)

Publication Number Publication Date
JPS60253159A true JPS60253159A (en) 1985-12-13

Family

ID=14538794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110555A Pending JPS60253159A (en) 1984-05-29 1984-05-29 Negative plate for lead storage battery

Country Status (1)

Country Link
JP (1) JPS60253159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616593A1 (en) * 1987-06-12 1988-12-16 Magneti Marelli Spa METHOD FOR MANUFACTURING GROUPS OF NEGATIVE ELECTRODE PLATES OR GRIDS FOR LEAD-ACID BATTERIES, AND GROUPS OF PLATES OR GRIDS PRODUCED ACCORDING TO SAID PROCESS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616593A1 (en) * 1987-06-12 1988-12-16 Magneti Marelli Spa METHOD FOR MANUFACTURING GROUPS OF NEGATIVE ELECTRODE PLATES OR GRIDS FOR LEAD-ACID BATTERIES, AND GROUPS OF PLATES OR GRIDS PRODUCED ACCORDING TO SAID PROCESS

Similar Documents

Publication Publication Date Title
US6228536B1 (en) Lithium-ion battery cell having an oxidized/reduced negative current collector
US3785868A (en) Zinc electrode
Ijomah Electrochemical behavior of some lead alloys
JP3767859B2 (en) Positive electrode active material for battery and battery
JP3712259B2 (en) Cathode active material for alkaline manganese battery and battery
US3440100A (en) Storage battery
IwAKuRA et al. Nickel/metal hydride cells using an alkaline polymer gel electrolyte based on potassium salt of crosslinked poly (acrylic acid)
US4140589A (en) Method for lead crystal storage cells and storage devices made therefrom
US3753779A (en) Method of making zinc electrodes
US3236690A (en) Rechargeable alkaline cell and liquid phase-containing amalgam anode therefor
JPS60253159A (en) Negative plate for lead storage battery
US4074030A (en) Process for producing nickel oxide cathodic reactant for primary cells
JPH10513598A (en) Alkaline storage battery
US4818645A (en) Electrochemical cell having non-solution lithium alloys
Wagner Investigation on copper corrosion in thin films of sulfuric acid
US4136235A (en) Secondary batteries
JP2589150B2 (en) Alkaline zinc storage battery
Shi et al. Effect of perfluoroalkylsulfonate on the discharge behaviour of PbO2 electrodes in sulfuric acid solution
US703875A (en) Active material for storage batteries and process of making same.
Bullock et al. The Corrosion of a Strontium‐Lead Alloy in Sulfuric Acid
KR860000820B1 (en) Storage battery
Galgali et al. Studies on Corrosion of Lead Acid Battery Grids with Addition of Cobalt and Silver Compounds
Matthews et al. The behaviour of lead dioxide electrodes in acidic sulfate electrolytes
Bialacki et al. The effect of alloying with Sb and Ca/Sn on the electrochemical properties of solid lead
US3785871A (en) Brine battery