JPS60252432A - Production of isoprene - Google Patents

Production of isoprene

Info

Publication number
JPS60252432A
JPS60252432A JP59108137A JP10813784A JPS60252432A JP S60252432 A JPS60252432 A JP S60252432A JP 59108137 A JP59108137 A JP 59108137A JP 10813784 A JP10813784 A JP 10813784A JP S60252432 A JPS60252432 A JP S60252432A
Authority
JP
Japan
Prior art keywords
isoprene
temperature reaction
reaction zone
liquid
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59108137A
Other languages
Japanese (ja)
Inventor
Kimiaki Tanaka
公章 田中
Kinichi Okumura
奥村 欽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP59108137A priority Critical patent/JPS60252432A/en
Publication of JPS60252432A publication Critical patent/JPS60252432A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce isoprene, by reacting an isobutylene source with a formaldehyde source in a low-temperature reaction zone in a completely liquid phase to obtain an isoprene precursor, carrying out the heat-exchange of the obtained reaction liquid with the liquid discharged from the high-temperature reaction zone, and decomposing the reaction liquid to isoprene in the high-temperature reaction zone. CONSTITUTION:An isobutylene source (e.g. isobutylene, t-butanol, alkyl t-butyl ether, etc.) is made to react with a formaldehyde source in the presence of water and an acidic catalyst in a low-temperature reaction zone in a completely liquid phase at 60-140 deg.C to obtain the isoprene precursor. The obtained reaction liquid is subjected to the heat-exchange with the liquid discharged from the high- temperature reaction zone, and is decomposed to isoprene at 150-230 deg.C and <=40atm in the mixed stage of gas and liquid in the high-temperature reaction zone. EFFECT:The objective compound can be produced easily in high yield without separating the isoprene precursor. The high-temperature reaction can be stabilized, and the energy cost can be remarkably saved.

Description

【発明の詳細な説明】 本発明は液相一段法によるイソプレンの製造法に関し、
さらに詳しくは、インブチレン源とホルムアルデヒド源
とから効率的なプロセスで収率よくインプレンを製造す
る方法に関するつインブチレン、第3級ブタノール(以
下、TBAと略称する)、メチルターシャリ−ブチルエ
ーテル(以下、MTBKと略称する)などの如きインブ
チレン源と、ホルムアルデヒド、バラホルムアルデヒド
などの如きホルムアルデヒド源とから酸性触媒の存在下
に液相一段反応によってイソプレンを製造する方法は従
来から公知である(例えば特公昭48−28884号、
同49−10926号、同50−10283号など)。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing isoprene by a liquid phase one-step process,
More specifically, it relates to a method for producing imprene in a high yield in an efficient process from an inbutylene source and a formaldehyde source. A method for producing isoprene by a one-step liquid phase reaction in the presence of an acidic catalyst from an inbutylene source such as in butylene (abbreviated as MTBK) and a formaldehyde source such as formaldehyde, rose formaldehyde, etc. is conventionally known (for example, Publication No. 48-28884,
49-10926, 50-10283, etc.).

かかる一段法は、すでに工業化されているインブチレン
とホルムアルデヒドから44−ジメチル−1,3−ジオ
キサ/を経由してインプレンを合成する。いわゆる二段
法に比較して反応工程が少ないという基本的な利点を有
しているが、その反面。
In this one-step method, imprene is synthesized from imbutylene and formaldehyde, which have already been commercialized, via 44-dimethyl-1,3-dioxa/. It has the basic advantage of fewer reaction steps compared to the so-called two-step process, but on the other hand.

選択率が未だ充分でなく取扱いの困難な副生物を多量生
成するという弊害がある。
This has the disadvantage that the selectivity is still insufficient and a large amount of by-products that are difficult to handle are produced.

そこで本発明者らはかかる一段法の欠点を改良すべく検
討を行った結果、先にインブチレン源とホルムアルデヒ
ド源を低温反応帯域に導入し完全液相下に反応してイソ
プレン前駆体を合成したのち、導出液を高温反応帯域に
供給して40気圧以下でかつ気液混合状態の下でイソプ
レン前駆体をイソプレンに分解する方法を提案した(特
願昭−58−56700号)。
Therefore, the present inventors conducted studies to improve the shortcomings of such a one-step method, and as a result, they first introduced an inbutylene source and a formaldehyde source into a low-temperature reaction zone and reacted in a complete liquid phase to synthesize an isoprene precursor. Later, he proposed a method of decomposing the isoprene precursor into isoprene by supplying the derived liquid to a high-temperature reaction zone at a pressure of 40 atmospheres or less and under a mixed gas-liquid state (Japanese Patent Application No. 58-56700).

この方法によれば、従来法に比較してイソプレンを高収
率で得ることができる。しかし、その反面、低温反応か
ら高温反応に移行する過程で多量の熱を供給する必要が
あることから高温反応帯域での温度制御がしにくく、ま
た高温反応帯域での反応器が複雑かつ大型化し、更に供
給すべき熱量も考慮するとコスト的にも不利であるとい
う欠点があった。
According to this method, isoprene can be obtained in higher yield than conventional methods. However, on the other hand, it is necessary to supply a large amount of heat in the process of transitioning from low-temperature reaction to high-temperature reaction, which makes it difficult to control the temperature in the high-temperature reaction zone, and the reactor in the high-temperature reaction zone becomes complicated and large. Furthermore, when considering the amount of heat to be supplied, there was a disadvantage in that it was disadvantageous in terms of cost.

そこで本発明者はこの点を改良すべく鋭意検討を進めた
結果、低温反応帯域と高温反応帯域の間に熱交換器を設
置すると反応が制御しやすく、反応器が単純にして小型
化し、熱交換による面も合せてコスト的にもきわめて有
利となることを見い出した。
Therefore, the inventor of the present invention conducted intensive studies to improve this point, and found that installing a heat exchanger between the low-temperature reaction zone and the high-temperature reaction zone makes it easier to control the reaction, makes the reactor simpler and smaller, and allows It has been found that this method is extremely advantageous in terms of cost as well as the cost of replacement.

かくして本発明によれば、イソブチレン、第3級ブタノ
ール及びアルキルターシャリ−ブチルエーテルから選ば
れた少なくとも一つのインブチレン源とホルムアルデヒ
ド源を水及び酸性触媒の存在下に連続的に液相反応して
イソプレンを製造するに際し、イソブチレン源とホルム
アルデヒド源を水及び酸性触媒の存在下に低温反応帯域
で完全液相下に反応してイソプレン前駆体を合成したの
ち、該帯域からの導出液を高温反応帯域からの導出液と
熱交換した後、高温反応帯域に供給して40気圧以下で
、かつ気液混合状態の下でイソプレン前駆体をインプレ
ンに分解することを特徴とする液相一段法によるイソプ
レンの製造法が提供される。
Thus, according to the present invention, at least one source of imbutylene selected from isobutylene, tertiary-butanol, and alkyl tert-butyl ether and a source of formaldehyde are subjected to a continuous liquid phase reaction in the presence of water and an acidic catalyst to produce isoprene. In producing isoprene precursor, an isoprene precursor is synthesized by reacting an isobutylene source and a formaldehyde source in a complete liquid phase in a low temperature reaction zone in the presence of water and an acidic catalyst, and then the liquid derived from the zone is transferred to a high temperature reaction zone. Production of isoprene by a liquid phase one-step process characterized by exchanging heat with the derived liquid and then supplying the isoprene precursor to a high temperature reaction zone to decompose the isoprene precursor into imprene at a pressure of 40 atmospheres or less and under a gas-liquid mixed state. law is provided.

本発明において反応原料として用いられるイソブチレン
源は、イソブチレン、TBAまたはアルキルターシャリ
−ブチルエーテルであり、アルキルターシャリ−ブチル
エーテルの具体例としては。
The isobutylene source used as a reaction raw material in the present invention is isobutylene, TBA, or alkyl tert-butyl ether, and specific examples of the alkyl tert-butyl ether include:

MTBEが例示される。これらのインブチレン源は単独
で使用してもよいが、二種以上の混合物の形で使用する
こともでき、とくにインブチレンと他のイソブチレン源
とを併用することが好ましい。
MTBE is exemplified. These inbutylene sources may be used alone or in the form of a mixture of two or more types, and it is particularly preferable to use inbutylene and another isobutylene source in combination.

一方、用いられるホルムアルデヒド源は反応系内におい
てホルムアルデヒドを発生し得るものであればいずれで
もよく、その具体例として、ホルムアルデヒド水溶液、
ホルムアルデヒドの重合物(例えば、バラホルムアルデ
ヒド、トリオキサン)、ホルムアルデヒドの前駆体(例
えばメチラブル、べ4−ジメチル−L3−ジオキサン)
などが挙げられる。またホルムアルデヒド水溶液にバラ
ホルムアルデヒドを溶解してホルムアルデヒド濃度を高
めたものや、安定剤としてメタノールを含むホルムアル
デヒド水溶液であっても同様に使用することができる。
On the other hand, the formaldehyde source used may be any source that can generate formaldehyde in the reaction system, and specific examples thereof include formaldehyde aqueous solution,
Formaldehyde polymers (e.g. paraformaldehyde, trioxane), formaldehyde precursors (e.g. methylable, be-4-dimethyl-L3-dioxane)
Examples include. Further, a formaldehyde aqueous solution in which rose formaldehyde is dissolved to increase the formaldehyde concentration, or a formaldehyde aqueous solution containing methanol as a stabilizer can be similarly used.

なかでも取扱いの容易さ、入手の容易さ1反応系に水が
必要なことなどの見地からホルムアルデヒド水溶液が賞
月される。
Among these, formaldehyde aqueous solutions are preferred from the viewpoints of ease of handling, availability, and the need for water in the reaction system.

かかるインブチレン源とホルムアルデヒド源の使用比率
は反応条件に応じて適宜選択されるが。
The ratio of the inbutylene source and formaldehyde source to be used is appropriately selected depending on the reaction conditions.

通常はホルムアルデヒド源から生じる理論量のホルムア
ルデヒド1モル当りイソブチレン源から生じる理論量の
イソブチレン2モル以上、好ましくは3モル以上であり
、イソブチレン源の使用量が少ない場合にはホルムアル
デヒドの転化率が低下し、また副生物の生成も増加する
傾向を示す。一方、インブチレン源の使用量が過度に大
きくなると未反応イソブチレン源の回収に要する経費が
嵩むため、この見地からホルムアルデヒド1モル当りイ
ソブチレン20モル以下とするのが適切である。
Usually, the theoretical amount of isobutylene generated from the isobutylene source is 2 moles or more, preferably 3 moles or more per mole of formaldehyde generated from the formaldehyde source, and if the amount of isobutylene source used is small, the conversion rate of formaldehyde will decrease. , the production of by-products also tends to increase. On the other hand, if the amount of inbutylene source used becomes too large, the cost required to recover the unreacted isobutylene source will increase, so from this point of view, it is appropriate to use 20 moles or less of isobutylene per 1 mole of formaldehyde.

本発明においてイソブチレン源とホルムアルデヒド源の
反応を行うに際して、低温及び高温での二段反応を行う
こと、高温反応において40気圧以下の圧力条件下で、
かつ気液混合状態の下で反応を行うこと及び低温反応と
高温反応の間で低温反応からの導出液と高温反応からの
導出液を熱交換することが必須の要件である。
In the present invention, when carrying out the reaction between the isobutylene source and the formaldehyde source, a two-step reaction is carried out at low and high temperatures, and the high temperature reaction is carried out under a pressure condition of 40 atmospheres or less,
In addition, it is essential to carry out the reaction under a gas-liquid mixed state, and to exchange heat between the liquid derived from the low temperature reaction and the liquid derived from the high temperature reaction between the low temperature reaction and the high temperature reaction.

本発明における反応は、予め145℃以下、好ましくは
60〜140℃の温度で実施され(以下、低温反応と称
する)、次いで150℃以上、好ましくは150〜23
0℃の温度で実施される(以下、高温反応と称する)。
The reaction in the present invention is carried out in advance at a temperature of 145°C or lower, preferably 60 to 140°C (hereinafter referred to as low temperature reaction), and then 150°C or higher, preferably 150 to 23°C.
It is carried out at a temperature of 0° C. (hereinafter referred to as high temperature reaction).

予め行う低温反応の過程ではイソブチレンとホルムアル
デヒドの反応によって44−ジメチル−L3−ジオキサ
ン、3−メチル−1,3−ブタンジオール、3−メチル
−3−ブテン−1−オールなどのごときイソプレン前駆
体が合成される。この際0反応源度を145℃以下に抑
えることが重要であり、この温度を越えると最終生成物
であるイソグレンの生成量がこの段階で増加するため、
系中に存在するホルムアルデヒドまたは44−ジメチル
−L3−ジオキサンの分解によって発生するホルムアル
デヒドとイソプレンとの反応によって処理の困難などラ
ン類の副生が増加する。逆に反応温度が過度に低くなる
と反応性が低下するため実用的でない。また低温反応(
(おける反応温度は必ずしも一定に保つ必要はなく、1
45℃以下の範囲であれば逐次的に上昇させても、また
二段以上に分割して段階的に上昇させてもよいっかかる
低温反応帯域の反応圧力は気相が存在しないように適宜
選択すればよく、通常1〜80#/dである、該帯域に
おいて気相が存在すると反応器の気相部分にホルムアル
デヒドのポリマーが析出したり、反応速度の低下をひき
おこすため。
In the preliminary low-temperature reaction process, isoprene precursors such as 44-dimethyl-L3-dioxane, 3-methyl-1,3-butanediol, and 3-methyl-3-buten-1-ol are produced by the reaction of isobutylene and formaldehyde. be synthesized. At this time, it is important to keep the 0-reactivity level below 145°C; if this temperature is exceeded, the amount of isogrene, the final product, will increase at this stage.
Due to the reaction between formaldehyde and isoprene generated by the decomposition of formaldehyde or 44-dimethyl-L3-dioxane present in the system, by-products of orchids, such as processing difficulties, increase. On the other hand, if the reaction temperature is too low, the reactivity decreases, which is not practical. Also, low temperature reaction (
(The reaction temperature at 1 does not necessarily need to be kept constant;
If the temperature is within the range of 45°C or less, the reaction pressure may be raised sequentially or divided into two or more stages and raised stepwise.The reaction pressure in the low-temperature reaction zone may be appropriately selected so that no gas phase exists. If a gas phase exists in this zone, formaldehyde polymers will precipitate in the gas phase portion of the reactor and the reaction rate will decrease.

好ましくない。Undesirable.

一方、高温反応の過程においては低温反応によって生成
したイソグレン前駆体の分解によってイソプレンが生成
する。この際1反応源度が150℃未満では・イソプレ
ン前駆体の分解速度が遅く。
On the other hand, in the process of high-temperature reaction, isoprene is produced by decomposition of the isogrene precursor produced by low-temperature reaction. At this time, if the degree of one reaction source is less than 150°C, the rate of decomposition of the isoprene precursor is slow.

逆に過度に高くなるとインブレンの重合物やカーボン状
またはタール状の副生物が増加する傾向を示す。
On the other hand, if it becomes too high, polymerized products of inbrene and carbon-like or tar-like by-products tend to increase.

本発明における高温反応は40気圧以下、好ましくは4
〜35気圧の条件下に気液混合状態で行われる。反応圧
力が高くなるにつれてエネルギー効率や収率の点で劣る
ようKなり、また設備費もかさむようになる。他方、圧
力の下限は気液混合状態を保持しつる限りとくに制限さ
れるものではな(、低圧にするほど効果が大きくなる。
The high temperature reaction in the present invention is 40 atmospheres or less, preferably 40 atmospheres or less.
It is carried out in a gas-liquid mixture under conditions of ~35 atm. As the reaction pressure increases, energy efficiency and yield become inferior, and equipment costs also increase. On the other hand, the lower limit of the pressure is not particularly limited as long as the gas-liquid mixed state is maintained (the lower the pressure, the greater the effect).

なお。In addition.

本発明でいう圧力は、特に断わりのないかぎりゲージ圧
として理解されるべきである。
The pressure referred to in the present invention should be understood as gauge pressure unless otherwise specified.

また高温反応は気液混合状態で行う必要があり、それに
よって完全液相下に反応する場合に比較して副生物を大
幅に減少させ、イソプレンの収率を向上させることがで
きる。
Furthermore, the high-temperature reaction needs to be carried out in a gas-liquid mixed state, thereby making it possible to significantly reduce by-products and improve the yield of isoprene compared to when the reaction is carried out in a completely liquid phase.

因みに反応系を気液混合系にするだめの手段として、圧
力制御の他に不活性ガス(例えば窒素、炭酸ガス、炭化
水素ガス)を混入する方法も考えられるが、この場合に
は設備の大型化が必要となるうえイソプレン収率の改良
効果がさほど顕著とは言えないっ 本発明においては、低温反応と高温反応の間で熱交換が
行われるっ使用する熱交換器は、低温反応液と高温反応
液を熱的に接触せしめ、よく熱交換しうる構造のもので
あればいずれでも良く、その具体例としては、多管円筒
形熱交換器、二重管式熱交換器、単管式熱交換器などや
、プレート式熱交換器などの特殊熱交換器などが例示さ
れる、この熱交換により、低温反応帯域の導出液は適度
に加熱され、高温反応帯域での温度制御を容易化し、ま
た簡単かつ小型な設備でも容易に所定温度に加熱するこ
とができる、そのうえ高温反応帯域からの導出液は気液
混合系であることから、その蒸発潜熱を有効に利用でき
、単なる液相系の熱交換に比較して熱効率はきわめて大
きくなる。
Incidentally, as a means of converting the reaction system into a gas-liquid mixed system, in addition to pressure control, it is also possible to mix in an inert gas (e.g. nitrogen, carbon dioxide, hydrocarbon gas), but in this case, the large size of the equipment In the present invention, heat exchange is performed between the low temperature reaction and the high temperature reaction. Any structure that allows the high-temperature reaction liquid to come into thermal contact and exchange heat well may be used. Specific examples include multi-tube cylindrical heat exchangers, double-tube heat exchangers, and single-tube heat exchangers. This heat exchanger, for example a heat exchanger or a special heat exchanger such as a plate heat exchanger, moderately heats the liquid extracted from the low temperature reaction zone, making it easier to control the temperature in the high temperature reaction zone. In addition, the liquid extracted from the high-temperature reaction zone is a gas-liquid mixture system, so the latent heat of vaporization can be effectively used, and it is not a simple liquid phase system. Thermal efficiency is extremely high compared to heat exchange.

本発明においてはイソブチレン源とホルムアルデヒド源
との反応に際して酸性触媒が使用される。
In the present invention, an acidic catalyst is used in the reaction between the isobutylene source and the formaldehyde source.

かかる酸性触媒は水が存在する反応条件下で酸性を示す
物質であればいずれでもよく、その具体例として塩漬、
硫酸、硝酸、リン酸、次亜リン酸。
The acidic catalyst may be any substance that exhibits acidity under reaction conditions in the presence of water; specific examples include salting,
Sulfuric acid, nitric acid, phosphoric acid, hypophosphorous acid.

亜すン酸、タングステン酸、モリブデン酸、テルル酸、
臭化水素酸、クロルスルホン酸、ケイタングステン酸、
スズ酸1次亜塩素酸などのごとき無機酸、ギ酸、シュウ
酸、コハク酸、クエン酸、フタル酸、パラトルエンスル
ホン酸、トリフルオロメタンスルホン酸、スルホン酸系
イオン交換樹脂などのごとき有機酸、カリ明パン、クロ
ム明バンなどのどとき複塩、硫酸アンモニウム、リン酸
アンモニウム、塩化アンチモノなどのごとき非金属無機
強酸塩、硫酸第二鉄、硫酸ニッケル、塩化スズ、ビロリ
ン酸第二銅、リン酸ホウ素、リン酸ジルコニウム、リン
酸ナトリウムなどのごとき金属塩などがあげられる。な
かでもリン酸、リン酸塩などのごときリン化合物、ヘテ
ロポリ酸、有機酸及びそれらの塩が装置の腐食防止の見
地から賞月される。
Snous acid, tungstic acid, molybdic acid, telluric acid,
Hydrobromic acid, chlorosulfonic acid, tungstic silicoic acid,
Inorganic acids such as stannic acid, hypochlorous acid, organic acids such as formic acid, oxalic acid, succinic acid, citric acid, phthalic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, sulfonic acid-based ion exchange resins, potassium Throat double salts such as alum bread and chromium alum, strong nonmetallic inorganic salts such as ammonium sulfate, ammonium phosphate, and antimonochloride, ferric sulfate, nickel sulfate, tin chloride, cupric birophosphate, boron phosphate, Examples include metal salts such as zirconium phosphate and sodium phosphate. Among these, phosphorus compounds such as phosphoric acid and phosphates, heteropolyacids, organic acids, and their salts are prized for their ability to prevent corrosion of equipment.

これらの酸性触媒は通常単独で使用されるが。Although these acidic catalysts are usually used alone.

必要罠応じて二種以上の触媒を適宜併用することもでき
る。触媒の使用量は触媒の種類や反応温度。
Two or more types of catalysts can be used in combination as appropriate depending on the required trap. The amount of catalyst used depends on the type of catalyst and reaction temperature.

反応時間などの条件によって必ずしも一定ではないが、
簡単な予備実験を行うことKより適宜決定することがで
きる。
Although it is not necessarily constant depending on conditions such as reaction time,
It can be determined appropriately by conducting a simple preliminary experiment.

また反応時間は適宜選択すればよく、低温反応において
は通常、滞留時間5分〜5時間、好ましくは10分〜2
時間であり、他方、高温反応においては通常2分〜2時
間、好ましくは4分〜1時間である。
In addition, the reaction time may be selected appropriately; in low-temperature reactions, the residence time is usually 5 minutes to 5 hours, preferably 10 minutes to 2 hours.
On the other hand, in high-temperature reactions, it is usually 2 minutes to 2 hours, preferably 4 minutes to 1 hour.

反応で使用する水の量は適宜選択しうるが、通常ホルム
アルデヒド源から生じるホルムアルデヒド1重量部当り
1重量部以上、好ましくは2〜100貫量部である。ま
た必要に応じてアルコール、ケトンなどの極性溶剤や脂
肪酸、芳香族系炭化水素溶剤などを共存させることがで
きる。
The amount of water used in the reaction can be selected as appropriate, but is usually at least 1 part by weight, preferably from 2 to 100 parts by weight, per 1 part by weight of formaldehyde produced from the formaldehyde source. Further, if necessary, polar solvents such as alcohols and ketones, fatty acids, aromatic hydrocarbon solvents, and the like can be allowed to coexist.

用いられる反応器は、反応液をよく混合しつる構造のも
のであればいずれでも良く、その具体例としては攪拌機
付反応器、多孔板塔、充填塔などが例示される。特に高
温反応における反応器としては、取扱いの容易性、構造
の簡便性から空塔、多孔板塔、充填塔の如き基型反応器
が賞月される。
Any reactor may be used as long as it has a structure that allows the reaction solution to be mixed well, and specific examples thereof include a reactor equipped with a stirrer, a perforated plate column, and a packed column. In particular, as reactors for high-temperature reactions, base reactors such as empty columns, perforated plate columns, and packed columns are preferred because of their ease of handling and simple structure.

また低温反応及び高温反応の圧力条件は同一条件であっ
てもよいが1反応制御を容易にし、かつ各々の最適条件
を確保しやすくするためにそれぞれ独立に圧力制御機構
を設けることが好ましい。
Although the pressure conditions for the low-temperature reaction and the high-temperature reaction may be the same, it is preferable to provide independent pressure control mechanisms for each reaction in order to facilitate control of one reaction and to ensure optimal conditions for each.

かくして本発明によれば、イングレン前駆体を単離する
ことなく簡略化されたプロセスでインプレンを高収率に
製造することができ、また高温反応を安定化しかつエネ
ルギーコストを著しく低減することができる。
Thus, according to the present invention, inprene can be produced in high yield through a simplified process without isolating the inglene precursor, and the high temperature reaction can be stabilized and energy costs can be significantly reduced. .

次に実施例を挙げて本発明をさらに具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、実施例中の部及び%はとくに断りのないかぎり重
量基準である。
In addition, parts and percentages in the examples are based on weight unless otherwise specified.

実施例1 低温反応器として容積0,97.10ケの攪拌室からな
る多段翼槽型反応器を使用し、その出口を系内圧力調節
弁に接続し、該弁からの導出管を単管式熱交換器の外管
に接続し、さらに該熱交換器からの導出管を高温反応器
と接続する。高温反応器として、磁製ラツシピリングを
充填した内径28m、長さ1.5mの充填塔を使用し、
該反応器からの導出管を系内圧力調節弁を経由して前記
単管式熱交換器の内管に接続する。導出液は耐圧製のガ
ラス容器に捕集され、有機層に含まれるイソプレン及び
水層に残る未反応ホルムアルデヒドをガスクロマトグラ
フィーによって分析した。低温反応及び高温反応の反応
器は、それぞれ電気ヒーターによって120℃及び16
0℃に維持される。
Example 1 A multi-stage blade tank type reactor consisting of stirring chambers with a volume of 0.97.10 was used as a low-temperature reactor, its outlet was connected to an internal pressure control valve, and the outlet pipe from the valve was a single pipe. The tube is connected to the outer tube of a type heat exchanger, and the outlet tube from the heat exchanger is further connected to a high temperature reactor. As a high-temperature reactor, a packed column with an inner diameter of 28 m and a length of 1.5 m filled with a porcelain lacquer pilling was used.
The outlet pipe from the reactor is connected to the inner pipe of the single-tube heat exchanger via an internal pressure regulating valve. The derived liquid was collected in a pressure-resistant glass container, and the isoprene contained in the organic layer and the unreacted formaldehyde remaining in the aqueous layer were analyzed by gas chromatography. The reactors for low-temperature and high-temperature reactions are heated to 120℃ and 16℃ by electric heaters, respectively.
Maintained at 0°C.

次いで、この低温反応器にホルムアルデヒド5.5チ、
水53.iq6.TBA30チ、リン酸xo、sq6゜
リン酸リチウム0.9チからなる水溶液及びイソブチレ
ンをそれぞれ980g/時及び580.9/時の流量で
ポンプにより供給し、低温反応器を35kg/ctl、
高温反応器を20ゆ/dの圧力に維持し。
Next, 5.5 g of formaldehyde was added to the low temperature reactor.
Water 53. iq6. An aqueous solution consisting of 30% TBA, xO phosphoric acid, 0.9% sq6° lithium phosphate and isobutylene were supplied by pump at flow rates of 980g/hour and 580.9/hour, respectively, and the low temperature reactor was heated at 35kg/ctl.
The high temperature reactor was maintained at a pressure of 20 Yu/d.

連続的に反応を行った。その結果、ホルムアルデヒドの
転化率は100チであり、インプレン収率はホルムアル
デヒド基準(以下同じ)78゜2モルチであった。
The reaction was carried out continuously. As a result, the conversion rate of formaldehyde was 100 molar, and the yield of imprene was 78°2 molar based on formaldehyde (the same applies hereinafter).

なお、高温反応器における反応物への加熱用熱tの測定
から、反応器内のインブチレンの気化が発生している事
が認められ、気液混合系で反応が進められていた。
In addition, from the measurement of the heat t for heating the reactants in the high-temperature reactor, it was confirmed that vaporization of inbutylene in the reactor occurred, and the reaction was proceeding in a gas-liquid mixed system.

また高温反応帯域での加熱用熱量の測定から。Also from measuring the amount of heat for heating in the high temperature reaction zone.

高温反応器で必要な加熱用熱量は熱交換器を設置しない
場合に比べて1/3に減少することが判明した。
It has been found that the amount of heat required for heating in the high-temperature reactor is reduced to 1/3 compared to the case where no heat exchanger is installed.

特許出願人 日本ゼオン株式会社Patent applicant: Zeon Corporation

Claims (1)

【特許請求の範囲】 1 イソブチレン、第3級ブタノール及びアルキルター
シャリ−ブチルエーテルから選ばれた少なくとも一つの
イソブチレン源とホルムアルデヒド源を水及び酸性触媒
の存在下に連続的に液相反応してイソプレンを製造する
に際し、インブチレン源とホルムアルデヒド源を水及び
酸性触媒の存在下に低温反応帯域で完全液相下に反応し
てイソプレン前駆体を合成したのち、該帯域からの導出
液を高温反応帯域からの導出液と熱交換した後、高温反
応帯域に供給して40気圧以下で、かつ気液混合状態の
下でイソプレン前駆体をイソプレンに分解することを特
徴とするイソプレンの製造法。 2 高温反応帯域の圧力制限を低温反応帯域とは独立に
実施する特許請求の範囲第1項記載の製造法、
[Claims] 1. Isoprene is produced by a continuous liquid phase reaction of at least one isobutylene source selected from isobutylene, tertiary butanol, and alkyl tertiary butyl ether and a formaldehyde source in the presence of water and an acidic catalyst. During production, an isoprene precursor is synthesized by reacting an inbutylene source and a formaldehyde source in a complete liquid phase in a low-temperature reaction zone in the presence of water and an acidic catalyst, and then the liquid derived from the zone is transferred to a high-temperature reaction zone. A method for producing isoprene, which comprises decomposing an isoprene precursor into isoprene at a temperature of 40 atmospheres or less and under a gas-liquid mixed state by exchanging heat with a liquid derived from the above, and then supplying the isoprene precursor to a high-temperature reaction zone. 2. The production method according to claim 1, wherein the pressure restriction in the high temperature reaction zone is carried out independently of the low temperature reaction zone,
JP59108137A 1984-05-28 1984-05-28 Production of isoprene Pending JPS60252432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59108137A JPS60252432A (en) 1984-05-28 1984-05-28 Production of isoprene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59108137A JPS60252432A (en) 1984-05-28 1984-05-28 Production of isoprene

Publications (1)

Publication Number Publication Date
JPS60252432A true JPS60252432A (en) 1985-12-13

Family

ID=14476869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59108137A Pending JPS60252432A (en) 1984-05-28 1984-05-28 Production of isoprene

Country Status (1)

Country Link
JP (1) JPS60252432A (en)

Similar Documents

Publication Publication Date Title
JP3797914B2 (en) process
US2373501A (en) Preparation of cyclohexane
EP1042264B1 (en) High selective method of phenol and acetone production
KR20080034998A (en) Decomposition of cumene hydroperoxide
Petrus et al. Thermal deactivation of strong-acid ion-exchange resins in water
US4822921A (en) Method for one-step synthesis of methyl t-butyl ether
JP6843866B2 (en) Improved process for preparing alkane halogenated
WO1999033775A1 (en) PROCESS FOR THE PREPARATION OF tert-BUTYL ALCOHOL
JPS6234024B2 (en)
JPS60252432A (en) Production of isoprene
CN114249640B (en) Continuous production of methylpentenone using cation exchange resin in a fixed bed reactor
KR20020089524A (en) Improved process for the preparation of alkylene glycols
GB1219973A (en) Apparatus and method for carrying out exothermic catalytic reactions
TW513401B (en) Process for the manufacture of carboxylic acids
CN114920621B (en) Preparation method of high-selectivity 3-chloro-2-chloromethyl propylene
KR101275370B1 (en) A method for producing diethylene glycol from ethylene oxide with high yield
JPS59184136A (en) Production of isoprene
JPS6256141B2 (en)
JPS5925337A (en) Preparation of isoprene
US7847135B1 (en) Propylene oxide isomerization process
JP2002502402A (en) Method for producing formaldehyde from methanol
US6362305B1 (en) Method for producing formaldehyde from methanol
JPS60226834A (en) Preparation of isoprene
JPH04149145A (en) Production of bis(hydroxyphenyl)methane
JPS59225128A (en) Preparation of isoprene