JPS602506B2 - Fuel stop device for electronically controlled fuel injection system - Google Patents

Fuel stop device for electronically controlled fuel injection system

Info

Publication number
JPS602506B2
JPS602506B2 JP6847077A JP6847077A JPS602506B2 JP S602506 B2 JPS602506 B2 JP S602506B2 JP 6847077 A JP6847077 A JP 6847077A JP 6847077 A JP6847077 A JP 6847077A JP S602506 B2 JPS602506 B2 JP S602506B2
Authority
JP
Japan
Prior art keywords
time width
fuel
circuit
pulse signal
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6847077A
Other languages
Japanese (ja)
Other versions
JPS543618A (en
Inventor
晋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP6847077A priority Critical patent/JPS602506B2/en
Publication of JPS543618A publication Critical patent/JPS543618A/en
Publication of JPS602506B2 publication Critical patent/JPS602506B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 本発明は内燃機関の減速時に燃料停止を行なわせる機能
を有する電子制御式燃料噴射装置の燃料停止装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel stop device for an electronically controlled fuel injection system having a function of stopping fuel during deceleration of an internal combustion engine.

従来この種の装置によれば機関の減速時の燃料停止を機
関のスロットル弁に設けられたスロットルスィッチによ
り前記スロットル弁の開度を検出し、その関度が設定値
以下でかつ前記機関の回転数が設定値以上の場合実施し
ていたが、その場合前記スロットルスイツチによるスロ
ットル弁の関度検出については、ファーストアイドル時
や車両クーラの使用時のようにスロツトル弁をアイドル
関度より多少大きくかつ回転数を高く保つ場合があるこ
とを考慮すると前記燃料カット回転数との関係でスロツ
トル弁の小さな開き角度(たとえばlo以下)を正確に
検出することが必要でコスト及び信頼性の面で不利であ
る。
Conventionally, this type of device detects the opening degree of the throttle valve using a throttle switch provided on the throttle valve of the engine to stop fuel when the engine decelerates, and when the degree of opening of the throttle valve is less than or equal to a set value and the engine is rotating. However, in this case, when the throttle valve is detected by the throttle switch, the throttle valve should be set slightly higher than the idle function, such as during fast idling or when using a vehicle cooler. Considering that the rotation speed may be kept high, it is necessary to accurately detect a small opening angle of the throttle valve (for example, less than lo) in relation to the fuel cut rotation speed, which is disadvantageous in terms of cost and reliability. be.

さりこ前記スロットルスイッチの設定開度よりわずかに
閥度が大きくかつ設定回転数以上の領域では燃料カット
がされず、さらに車両が前記領域に入る確率は多く電磁
噴射弁の流量特性と前記機関のシリンダ容積との関係で
、前記領域では電磁噴射弁に印加した噴射パルス信号の
パルス時間幅と流量特性の直線的な制御が不可能になる
可能性が十分あり、すなわち各シリンダ容積の小さい機
関の場合吸入空気量が少ない範囲では前記電磁噴射弁の
流量の小さいものが必要となるがある程度小さいもの以
下の物は製作上不可能であり、かつ製作できたとしても
歩蟹りが悪く非常に高価なものとなる。その場合、正確
な燃料対吸入空気量の制御ができず失火しやすく禾燃焼
な排気ガスが排出され排気ガス中の有害成分特にHCが
多量に排出されるという欠点を有する。さらに、失火し
た場合は排気ガス浄化装置として触媒、リアクタ等を有
した車両に対しては前記排気ガス浄化装置の熱負荷を増
大させ最悪の場合は焼損せしめるという重大な欠点を有
す。そのため上記欠点を防ぐため現システムでは機関の
吸気マニホールドがある負圧以下になったら作動して空
気を入れてやるという動作をするバキュームIJミッタ
、前記スロットル弁が急閉しないようにするダッシュポ
ット等を使用しているが完全な対策ではない。さらに、
前記バキュームリミツタをつけたためにエンジン回転数
がアクセルを踏んでいない場合に下らない等の問題も生
じコストアップと信頼性の面でも大きな欠点を有する。
本発明は上述の欠点に鑑みなされたものであり、機関の
吸入空気量と回転数により決定される噴射パルス信号の
パルス時間幅が電磁噴射弁の制御範囲以下になった場合
、すなわち減速域にありその時噴射パルス信号による電
磁噴射弁の直線的制御が不能となり失火しやすい状態を
与える領域で、噴射パルス信号のパルス時間幅がこの状
態となる予め検出設定した設定パルス時間幅以下になっ
た場合もしくは噴射パルス時間幅が前記状態となる了め
検出設定した設定パルス時間幅以下でかつ機関の回転数
が設定回転数以上の場合には機関への燃料噴射を停止す
ることにより、減速時には未然に失火領域を検出して燃
料の供給を停止し未燃焼な排気ガスの排出を防止できる
と共にスロットル弁開度機能を正確に制御する必要がな
くなり低コスト化がはかれる燃料噴射装置の提供を目的
とするものである。
In a region where the opening degree is slightly larger than the set opening of the throttle switch and the rotation speed is higher than the set speed, fuel cut is not performed, and the probability that the vehicle enters this region is high, depending on the flow rate characteristics of the electromagnetic injector and the engine speed. In relation to the cylinder volume, there is a strong possibility that linear control of the pulse time width and flow rate characteristics of the injection pulse signal applied to the electromagnetic injection valve will be impossible in the above region. In this case, in a range where the amount of intake air is small, the electromagnetic injection valve with a small flow rate is required, but it is impossible to manufacture something smaller than a certain level, and even if it could be manufactured, it would be slow and very expensive. Become something. In that case, there is a disadvantage that accurate control of the amount of fuel versus intake air is not possible, misfires are likely to occur, and a large amount of harmful components in the exhaust gas, particularly HC, is emitted. Furthermore, in the case of a misfire, there is a serious drawback that for vehicles equipped with a catalyst, reactor, etc. as an exhaust gas purification device, the heat load on the exhaust gas purification device increases and, in the worst case, it burns out. Therefore, in order to prevent the above-mentioned drawbacks, the current system includes a vacuum IJ transmitter that operates to inject air into the engine's intake manifold when the pressure drops below a certain negative pressure, and a dashpot that prevents the throttle valve from closing suddenly. is used, but it is not a complete solution. moreover,
Since the vacuum limiter is provided, there is a problem that the engine speed does not decrease even when the accelerator is not depressed, and this has major disadvantages in terms of increased cost and reliability.
The present invention has been made in view of the above-mentioned drawbacks, and is designed to be used when the pulse time width of the injection pulse signal, which is determined by the intake air amount and rotational speed of the engine, falls below the control range of the electromagnetic injection valve, that is, when the pulse time width of the injection pulse signal is determined by the intake air amount and engine speed If the pulse time width of the injection pulse signal falls below the set pulse time width that has been detected in advance to cause this state, the linear control of the electromagnetic injector by the injection pulse signal becomes impossible and misfires are likely to occur. Alternatively, when the injection pulse time width reaches the above state and is less than the set pulse time width and the engine rotation speed is higher than the set rotation speed, fuel injection to the engine is stopped, thereby preventing the occurrence of deceleration. The purpose of the present invention is to provide a fuel injection device that can detect a misfire region, stop the supply of fuel, and prevent the emission of unburned exhaust gas, and also eliminates the need to accurately control the throttle valve opening function, thereby reducing costs. It is something.

さらに本発明では燃料を停止する条件は前記の如くであ
るが燃料停止中再び燃料を噴射させる条件を前記噴射パ
ルス信号が設定パルス時間幅以上となるかもしくは機関
回転数が設定回転数以下になった場合のみとすると、仮
に燃料停止中の減速城からスロットル弁を開いて加速し
ようとしても、すぐには噴射パルス信号が設定パルス時
間幅以上にはならず、燃料停止を解除して再噴射するま
でに応答遅れが生じ機関のトルク差による車両のショッ
クを引き起しドライバーに不快感を与える可能性がある
ことに鑑み、燃料停止中にスロットル弁が所定開度以上
開かれたときは燃料を再噴射される構成とすることによ
り、燃料停止状態から加速運転に切換る際燃料の再噴射
の応答遅れを防止し、ドライバーに不快感を与えること
を防止することを目的とするものである。
Furthermore, in the present invention, the conditions for stopping the fuel are as described above, but the conditions for injecting the fuel again during the fuel stop are such that the injection pulse signal becomes greater than or equal to the set pulse time width or the engine speed becomes less than or equal to the set number of revolutions. Even if you try to accelerate by opening the throttle valve from the deceleration castle where the fuel is stopped, the injection pulse signal will not exceed the set pulse time width immediately, and the fuel stop will be canceled and the injection will be resumed. In consideration of the possibility that a response delay may occur, causing a shock to the vehicle due to the engine torque difference and causing discomfort to the driver, if the throttle valve is opened more than the specified opening while the fuel is stopped, the fuel By adopting a configuration in which fuel is re-injected, the purpose is to prevent a delay in the response of fuel re-injection when switching from a fuel stop state to accelerated operation, and to prevent discomfort from being caused to the driver.

以下本発明を図に示す一実施例について説明する。An embodiment of the present invention shown in the drawings will be described below.

第1図は本発明になる電子制御式燃料噴射装置の演算部
を示すブロック図である。第1図において、1は機関の
回転数信号を電圧波形で検出するィグニッションコィル
の一次側端子、2は前記電圧波形を誤動作防止のため波
形整形する波形整形回路、3は6気筒の場合機関1回転
で燃料噴射する電磁噴射弁11を1回作動させるように
するための1/3分周回路で、機関1回転で1回以上前
記電磁噴射弁11を作動させる場合は他の分周比を必要
とすることは勿論である。4は演算回路で、吸入空気量
計5からの吸入空気量に応じた信号を入力し機関の吸入
空気量を機関回転数で割算し、すなわち1つの気筒に1
行程で吸い込まれた空気量に比例したパルス時間幅tp
のパルス信号T.を作り出力するものである。
FIG. 1 is a block diagram showing a calculation section of an electronically controlled fuel injection device according to the present invention. In Fig. 1, 1 is the primary side terminal of the ignition coil that detects the engine speed signal in the form of a voltage waveform, 2 is the waveform shaping circuit that shapes the voltage waveform to prevent malfunction, and 3 is the 6-cylinder In this case, it is a 1/3 frequency division circuit to operate the electromagnetic injection valve 11 that injects fuel once per engine rotation, and when the electromagnetic injection valve 11 is operated more than once per engine rotation, other frequency division circuits are used. Of course, a circumferential ratio is required. 4 is an arithmetic circuit which inputs a signal corresponding to the amount of intake air from the intake air amount meter 5 and divides the amount of intake air of the engine by the engine speed;
Pulse time width tp proportional to the amount of air sucked in during the stroke
The pulse signal T. It is used to create and output.

6は乗算回路で、前記演算回路4から出力するパルス信
号T,のパルス時間幅tpをエンジン水温、吸入空気温
等を検出する運転状態検出手段Tからの各種信号による
増量すなわち乗算をしてパルス時間幅tmのパルス信号
T2を作るものである。
6 is a multiplication circuit which increases or multiplies the pulse time width tp of the pulse signal T output from the arithmetic circuit 4 by various signals from the operating state detection means T for detecting engine water temperature, intake air temperature, etc., to produce a pulse. A pulse signal T2 having a time width tm is generated.

8は電圧補正回路で、前記乗算回路6からのパルス信号
Lを入力し、電磁噴射弁1 1の機関の電圧によって燃
料噴射量が変化するのを補正するパルス時間幅tuの電
圧補正パルス信号T3を作るものである。
Reference numeral 8 denotes a voltage correction circuit which inputs the pulse signal L from the multiplication circuit 6 and produces a voltage correction pulse signal T3 having a pulse time width tu to correct changes in the fuel injection amount due to the engine voltage of the electromagnetic injection valve 11. It is something that creates

9はOR回路で、前記演算回路4、前記乗算回路6、及
び前記電圧補正回路8からのパルス信号T,,T2,T
3を入力してパルス時間幅(tp+tm+tu)のパル
ス信号Tを作りこれを出力回路10‘こ供給し、電磁噴
射弁11を前記パルス信号Tのパルス時間(tp+tm
+tu)の間作動させ運転状態に応じた最適量の燃料を
機関内に供給するようしてある。
9 is an OR circuit which receives pulse signals T,, T2, T from the arithmetic circuit 4, the multiplication circuit 6, and the voltage correction circuit 8;
3 to generate a pulse signal T having a pulse time width (tp+tm+tu) and supply it to the output circuit 10'.
+tu) to supply the optimum amount of fuel into the engine according to the operating condition.

さらに、前記乗算回路6は各種増量がない場合パルス信
号T2はパルス信号T,と同じ時間幅となるように構成
してあり、増量分は流れ込む電流に比例するように回路
構成がされている。また、12は単安定マルチパイプレ
ータで、前記演算回路4から出力するパルス信号T,に
よりこの単安定マルチパイプレータ12はトリガされ所
定パルス時間幅Aのパルス信号を比較回路13に出力す
る。このパルス信号の所定パルス時間幅A,は、電磁噴
射弁の噴射特性が印加された噴射パルス信号のパルス時
間幅に対して直線的制御の不可能となる制御限界に近い
状態を与えるパルス時間幅であり、機関にとっては減速
時の非常に失火しやすい失火領域となりうる機関状態を
与える噴射パルス信号のパルス時間幅であり、この燃料
停止パルス時間幅は例えば0.7msecである。そこ
で比鮫回路12は演算回路4からのパルス時間幅tpの
パルス信号T,とこの所定パルス時間幅Aのパルス信号
とを入力して両パルス時間幅tp、Aの大小を判別し、
前記両パルス時間幅tp,Aがtp>Aのとき比較回路
13の出力を“0”レベルとし、前記両パルス時間幅t
p,Aがtp<Aのときには前記比較回路13の出力を
“1”レベルとするものである。また比較回路13の出
力は単安定マルチパイプレータ12に帰還され燃料停止
を決めるパルス時間幅Aと燃料を再び噴射させるパルス
時間幅B(B〉A)との間にヒステリシスを持たせてい
る。一方前記分周回路3には単安定マルチパイプレータ
14及び比較回路15が接続され、比較回路15は分周
回路3から入力される機関回転数に反比例した時間幅n
2のパルス信号N2と、このパルス信号に同期して単安
定マルチパイプレータ14から入力される所定時間幅n
,のパルス信号N,との各々の時間幅比,n,を比較し
てn.<n2(つまり機関回転数が設定回転数以下)の
とき“0”電圧を生じ、n,>Q(つまり機関回転数が
設定回転数以上)のとき“1”電圧を生ずるよう構成さ
れ、さりこ比較回路15の出力を単安定マルチバイブレ
ーター4に帰還して噴射パルス幅同様回転数にもヒステ
リシスを持たせるよう構成されている。
Further, the multiplier circuit 6 is configured so that the pulse signal T2 has the same time width as the pulse signal T when there is no increase in the amount of each type, and the circuit is configured such that the amount of increase is proportional to the flowing current. Further, reference numeral 12 designates a monostable multipipelator, which is triggered by the pulse signal T outputted from the arithmetic circuit 4 and outputs a pulse signal having a predetermined pulse time width A to the comparator circuit 13. The predetermined pulse time width A of this pulse signal is a pulse time width that provides a state close to the control limit where linear control is impossible with respect to the pulse time width of the injection pulse signal to which the injection characteristics of the electromagnetic injection valve are applied. This is the pulse time width of the injection pulse signal that gives the engine a state in which the engine is in a misfire region where it is very likely to misfire during deceleration, and the fuel stop pulse time width is, for example, 0.7 msec. Therefore, the Hi-Same circuit 12 inputs the pulse signal T having the pulse time width tp from the arithmetic circuit 4 and the pulse signal having the predetermined pulse time width A, and determines the magnitude of both pulse time widths tp and A.
When the two pulse time widths tp,A are tp>A, the output of the comparison circuit 13 is set to "0" level, and the two pulse time widths tp and A are set to the "0" level.
When p and A are tp<A, the output of the comparison circuit 13 is set to the "1" level. Further, the output of the comparison circuit 13 is fed back to the monostable multipipulator 12, and hysteresis is provided between the pulse time width A that determines fuel stop and the pulse time width B (B>A) that causes fuel to be injected again. On the other hand, a monostable multipipulator 14 and a comparison circuit 15 are connected to the frequency division circuit 3, and the comparison circuit 15 has a time width n inversely proportional to the engine rotational speed inputted from the frequency division circuit 3.
2 pulse signal N2 and a predetermined time width n inputted from the monostable multipipulator 14 in synchronization with this pulse signal.
, by comparing the time width ratios, n, with the pulse signals N, of n. It is configured to generate a "0" voltage when <n2 (that is, the engine speed is below the set speed) and to generate a "1" voltage when n,>Q (that is, the engine speed is above the set speed). The output of the Riko comparator circuit 15 is fed back to the monostable multivibrator 4, so that the rotational speed as well as the injection pulse width has hysteresis.

なおパルス信号N,の時間幅n,が燃料停止を決める設
定回転数に対応するものであり、比較回路15は機関回
転が設定回転数以上のときにのみ“1”電圧を生ずるこ
とになる。16は機関のスロットル弁に連動するスロッ
トル開度検出器で、スロットル弁関度が設定値以下のと
きにのみ“1”電圧を生ずるよう構成されている。
Note that the time width n of the pulse signal N corresponds to the set rotational speed that determines fuel stop, and the comparator circuit 15 generates a "1" voltage only when the engine rotation is equal to or higher than the set rotational speed. Reference numeral 16 denotes a throttle opening degree detector interlocked with the throttle valve of the engine, and is configured to generate a "1" voltage only when the throttle valve degree is less than a set value.

一方ゲート回路17は第2図に示す回路構成よりなるも
ので、NANDゲート1 7a,レジスタR,,R2及
びコンデンサC,で構成されるトリガ回路17fと、イ
ンバータ17b,17c,レジスタR3,R4及びコン
デンサC2で構成されるトリガ回路17gとSet入力
及びReset入力を持つR−Sフリツプフロツプ(R
−S・FF)17d及びORゲート17eによって構成
される。
On the other hand, the gate circuit 17 has the circuit configuration shown in FIG. A trigger circuit 17g composed of a capacitor C2 and an R-S flip-flop (R
-S/FF) 17d and an OR gate 17e.

このゲ−ト回路17の動作は前記比較回路13,15の
出力がNANDゲート17aに導入され、比較回路13
,15の出力が“1”のとき(すなわち燃料停止時)N
ANDゲート17aの出力は“0”になる。又素子R,
,R2,C,で構成されるトリガ回路17fはNAND
ゲート17aの出力が“1”から‘‘0”に反転したと
きR−S・FF17dをSetしそのときR−S・FF
17dの出力Qは‘‘0”となる。一方ORゲート17
eは前記NANDゲート17aの出力が“0”かつ前記
R−S・FF17dの出力Qが“0”のときのみ出力は
“0”となりその出力がOR回路9に接続され燃料停止
をする。なおORゲート1 7eの出力はOPENコレ
ク夕で出力が“0”のときのみOR回路9の出力を“0
”にし、“1”のときはOR回路9の出力に影響を及ぼ
さないように構成されている。一方前記スロツトル開度
検出器16の出力はィンバータ17b,17cに接続さ
れており、インバータ17cの出力はスロツトル弁が設
定関度以下から以上に達したとき“1”から“0”に反
転し素子R3,R4,C2で構成されるトリガ回路17
gによりR−S・FF17dをResetしR−S・F
F17dの出力Qは“1”になりORゲート17eの出
力は“1”となり燃料停止は終了する。又R−S・FF
17dはトリガ回路17f,17gの出力が負方向の電
圧を生じたときのみ作用するよう構成されている。次に
本発明の主要部の1つである設定パルス時間幅以下かど
うかの判定をする比較回路13の回路部の詳細を第3図
に示す。
The operation of this gate circuit 17 is such that the outputs of the comparison circuits 13 and 15 are introduced into the NAND gate 17a, and the comparison circuit 13
, 15 is “1” (i.e., when fuel is stopped) N
The output of the AND gate 17a becomes "0". Also element R,
, R2, C, the trigger circuit 17f is a NAND
When the output of the gate 17a is inverted from "1" to "0", R-S FF 17d is set;
The output Q of 17d becomes ``0''.On the other hand, the OR gate 17
The output of e is "0" only when the output of the NAND gate 17a is "0" and the output Q of the R-S FF 17d is "0", and the output is connected to the OR circuit 9 to stop the fuel. Note that the output of the OR gate 17e is an OPEN collector, and only when the output is "0", the output of the OR circuit 9 is "0".
", and when it is "1", it is configured so as not to affect the output of the OR circuit 9. On the other hand, the output of the throttle opening detector 16 is connected to inverters 17b and 17c, and the output of the inverter 17c is The output is reversed from "1" to "0" when the throttle valve reaches the set temperature from below to above, and trigger circuit 17 consisting of elements R3, R4, and C2
Reset R-S・FF17d by g
The output Q of F17d becomes "1", the output of OR gate 17e becomes "1", and the fuel stop ends. Also R-S・FF
17d is configured to act only when the outputs of the trigger circuits 17f and 17g generate voltages in the negative direction. Next, FIG. 3 shows details of the circuit section of the comparison circuit 13, which is one of the main parts of the present invention, and which determines whether the pulse time width is less than or equal to the set pulse time width.

演算回路4の生ずるパルス信号T,は比較回路13(D
ーフリツプフロツプ;テキサスィンストルメント社SN
747釘相当)のClock端子に入力され、さらに前
記信号T,のパルスの立上りでトリガされる公知の単安
定マルチパイプレータ12の所定時間幅Aの出力パルス
が○端子に入力されることにより比較回路13の出力Q
は時間幅Aと信号T,のパルス時間幅tpの関係がA>
tpのとき“1”を、A<tpのとき“0”を生じる。
一方この所定パルス時間幅Aにヒステリシスを持たせる
ため前言己比較回路13の出力Qとは反対の出力Qが単
安定マルチバイブレーター2に帰還されている。この結
果A>tpのとき出力Qが“0”となって単安定マルチ
パイプレータ12から出力されるパルスの時間幅をAか
らB(A<B)に変更しヒステリシスを持たせ得る。比
較回路15、単安定マルチパイプレータ14についても
上記回路13,12とほぼ同様の構成で設定回転数以上
か否かの判別ができこの構成のものも又単安定マルチパ
イプレータ14から出力されるパルス信号N,の時間幅
をn,からn,′(n.<n,′)に変更しヒステリシ
スを持たせている。
The pulse signal T generated by the arithmetic circuit 4 is sent to the comparator circuit 13 (D
-Flip-flop; Texas Instrument Co., Ltd. SN
Comparison is made by inputting an output pulse of a predetermined time width A of a known monostable multi-piper 12, which is triggered by the rising edge of the pulse of the signal T, into the ○ terminal. Output Q of circuit 13
The relationship between the time width A and the pulse time width tp of the signal T is A>
It produces "1" when tp, and "0" when A<tp.
On the other hand, in order to provide hysteresis to this predetermined pulse time width A, an output Q opposite to the output Q of the self-comparison circuit 13 is fed back to the monostable multivibrator 2. As a result, when A>tp, the output Q becomes "0", and the time width of the pulse output from the monostable multipipulator 12 is changed from A to B (A<B), thereby providing hysteresis. The comparator circuit 15 and the monostable multipipelator 14 have almost the same configuration as the circuits 13 and 12 above, and can determine whether or not the rotation speed is higher than the set rotation speed. The time width of the pulse signal N, is changed from n, to n,'(n.<n,') to provide hysteresis.

次に上記構成の作動を説明する。機関の吸入空気量と回
転数で決定される演算回路4のパルス信号T,の時間幅
tpが単安定マルチパイプレータ12により設定された
所定パルス時間幅Aより小さくかつ機関の回転数のパル
ス信号N2の時間幅n2が単安定マルチパイプレータ1
4で決まるパルス信号N,の所定時間幅n,より4・さ
し、(つまり機関回転数が設定回転数より大きい)機関
の減速時には、両比較回路13,15の出力は“0”と
なりゲート回路17のNANDゲート17aの出力は“
0”となり、トリガ回路17fはR−S・FF17dを
Setして出力Qを“0”とし、この結果ORゲート1
7eの出力は“0”となってOR回路9の出力を“0”
とし燃料を停止する。この減速時の燃料停止状態中に再
び機関を加速するためスロットル弁が開かれ設定関度以
上となると、スロットル開度検出器16の出力は“0”
に反転し、ィンバー夕17cの出力も“0”に反転し、
トリガ回路17gはR−S・FF17dをResetし
て出力Qを“1”とする。
Next, the operation of the above configuration will be explained. A pulse signal whose time width tp of the pulse signal T of the arithmetic circuit 4, which is determined by the intake air amount and engine speed of the engine, is smaller than the predetermined pulse time width A set by the monostable multipipulator 12 and whose speed is equal to the engine speed. The time width n2 of N2 is monostable multipipulator 1
When the engine is decelerating by 4.4 times from the predetermined time width n of the pulse signal N, which is determined by The output of the NAND gate 17a of the circuit 17 is “
0", the trigger circuit 17f sets the R-S FF 17d to set the output Q to "0", and as a result, the OR gate 1
The output of 7e becomes “0” and the output of OR circuit 9 becomes “0”.
and stop the fuel. During this fuel stop state during deceleration, the throttle valve is opened to accelerate the engine again, and when the temperature exceeds the set value, the output of the throttle opening detector 16 becomes "0".
The output of the inverter 17c is also reversed to "0",
The trigger circuit 17g resets the R-S•FF 17d and sets the output Q to "1".

このためORゲート17e出力は“1”となりOR回路
9は噴射パルス信号Tを出力回路1川こ出力し電磁噴射
弁11を再び作動させて燃料噴射を再開する。また機関
減速時の燃料停止中、機関回転数が減少していき演算回
路4のパルス信号T,の時間幅tpが、ヒステリシスを
持たせるべく変更させた単安定マルチパイプレータ12
のパルス信号の時間幅B以上となるか、或いは機関回転
数のパルス信号N2の時間幅山がヒステリシスを持たせ
るため変更された単安定マルチパイプレータ14のパル
ス信号Nの時間幅n,′より大きく(つまり機関回転数
が時間幅n,′で決まる所定回転数より小さく)なると
、ゲート回路17のNANDゲート17aの出力は“1
”となり、ORゲート17eの出力も“1”となり、O
R回路9は噴射パルス信号Tを出力回路1川こ出力し電
磁噴射弁11を再び作動させて燃料噴射を再開する。な
お、上記実施例では燃料停止は燃料噴射量を決めるパル
ス信号の時間幅と機関回転数の信号との両条件によって
行なわせるものであったが、燃料噴射量を決めるパルス
信号の時間幅のみを判別して燃料停止を行なわせるもの
であってもよいことは勿論のことである。
Therefore, the output of the OR gate 17e becomes "1", and the OR circuit 9 outputs the injection pulse signal T to the output circuit 1, thereby operating the electromagnetic injection valve 11 again and restarting fuel injection. Furthermore, during fuel stop during engine deceleration, the engine speed decreases and the time width tp of the pulse signal T of the arithmetic circuit 4 is changed to have hysteresis.
is greater than or equal to the time width B of the pulse signal of When the engine speed increases (that is, the engine speed becomes smaller than the predetermined speed determined by the time width n,'), the output of the NAND gate 17a of the gate circuit 17 becomes "1".
”, the output of the OR gate 17e also becomes “1”, and O
The R circuit 9 outputs the injection pulse signal T to the output circuit 1 to operate the electromagnetic injection valve 11 again to resume fuel injection. In the above embodiment, the fuel stop is performed based on both the time width of the pulse signal that determines the fuel injection amount and the engine rotation speed signal, but it is determined that only the time width of the pulse signal that determines the fuel injection amount is determined. Of course, it is also possible to make the determination and stop the fuel.

また上記実施例では燃料噴射(供給)量を決めパルス信
号として演算回路4の出力信号を用いたが乗算回路6の
出力信号を用いることも可能である。
Further, in the above embodiment, the output signal of the arithmetic circuit 4 is used as the pulse signal for determining the fuel injection (supply) amount, but it is also possible to use the output signal of the multiplication circuit 6.

また上述の実施例ではゲート回路17にてOR回路9の
後段に燃料停止の制御信号を送って電磁噴射弁の作動の
停止を制御しているが、OR回路9の前段に制御信号を
送って制御してもよい。
Furthermore, in the above-described embodiment, the gate circuit 17 sends a fuel stop control signal to the stage after the OR circuit 9 to control the stop of the operation of the electromagnetic injection valve. May be controlled.

以上のように本発明装置は電磁噴射弁に印加する噴射パ
ルス信号の時間幅を機関運転状態に応じて算出する回路
と、この回路からのパルス信号の時間幅が設定時間幅以
下か否かを比較する比較回路と、機関のスロツトル弁の
関度が設定関度以上か否かを検出するスロットル関度検
出器と、前記比較回路と前記スロットル関度検出器の出
力が入力され、前記パルス信号の時間幅が設定時間幅以
下のとき前記電磁噴射弁の作動を停止して燃料供給を停
止させると共に、燃料停止中に前記スロットル弁の関度
が設定関度以上となったとき再び前記電磁噴射弁を作動
させ燃料を噴射を行なわせるゲート回路とを備える構成
であり、減速時には未然に失火領域を検出して燃料の噴
射を停止し禾燃焼な排気ガスの排出を防止できるという
優れた効果があり、さらに従来装置のようにスロットル
開度及び機関回転数を検出して燃料停止するといった複
雑な検出処理機能は不要でコストダウン化が可能である
という優れた効果がある。・さらに、スロツトル開度と
機関回転数とで燃料停止を制御する従来装置では低温で
の始動時に機関を円滑に作動させるためェアバルブを通
して空気量をスロツトルをバイパスさせて機関に供V給
し機関の回転数を上げるファーストアイドルと称するシ
ステムになっているため、機関の水温等を検出して燃料
停止を決定する設定回転数をこの水温に応じて変化させ
てファーストアイドル回転数よりこの設定回転数の方が
大きくなるようにして燃料停止が起らないようにしてい
るが、本発明装置では、前記燃料停止を決定する設定時
間幅に対し、ファーストアイドル時では空気量が増える
ため燃料噴射量を決定するパルス時間幅が大きくなって
自動的に燃料停止は行なわなくなり、従来装瞳のように
設定回転数を機関のファーストアイドル時の回転数より
高くするといった調整は不要であり、簡単な構成でよい
As described above, the device of the present invention includes a circuit that calculates the time width of the injection pulse signal applied to the electromagnetic injection valve according to the engine operating state, and a circuit that calculates whether the time width of the pulse signal from this circuit is less than or equal to the set time width. a comparison circuit for comparison; a throttle relation detector for detecting whether the relation of the throttle valve of the engine is equal to or higher than a set relation; the outputs of the comparison circuit and the throttle relation detector are input; When the time width is less than or equal to the set time width, the operation of the electromagnetic injection valve is stopped to stop the fuel supply, and when the coefficient of the throttle valve becomes equal to or higher than the set coefficient during fuel stop, the electromagnetic injection is restarted. It has a configuration that includes a gate circuit that operates a valve to inject fuel, and has the excellent effect of detecting a misfire region during deceleration and stopping fuel injection, thereby preventing the emission of combustible exhaust gas. Furthermore, there is no need for complicated detection processing functions such as detecting the throttle opening and engine speed and stopping the fuel as in conventional devices, and there is an excellent effect that cost reduction is possible.・Furthermore, with conventional devices that control fuel stop using the throttle opening and engine speed, in order to operate the engine smoothly when starting at low temperatures, the amount of air is supplied to the engine by bypassing the throttle through an air valve, and the engine speed is increased. Since it is a system called "first idle" that increases the engine speed, the engine's water temperature, etc. is detected and the set engine speed, which determines fuel stop, is changed according to this water temperature. However, in the device of the present invention, the fuel injection amount is determined because the amount of air increases during fast idling compared to the set time width for determining the fuel stop. As the pulse time width increases, fuel stop is no longer performed automatically, and there is no need to adjust the set rotation speed to be higher than the engine speed at first idle, as with conventional pupil systems, and a simple configuration is sufficient. .

また本発明装置では、燃料停止の解除はスロットル開度
の大きさによっても行なわせるものであり、燃料停止状
態でスロットル弁が開かれ機関が加速運転に移項する際
は応答遅れなく直ちに燃料噴射が再開され得る。
In addition, in the device of the present invention, the fuel stop is canceled depending on the throttle opening degree, and when the throttle valve is opened in the fuel stop state and the engine shifts to accelerating operation, fuel injection is performed immediately without response delay. May be resumed.

この結果、車体ショックを引き起すことはなくドライバ
ーに不快感を与えることはないという効果を奏する。
As a result, there is an effect that no vehicle body shock is caused and no discomfort is given to the driver.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図に示すゲート回路の電気回路図、第3図は第1図
に示す比較回路の電気回路図である。 4・・・演算回路、6…乗算回路、11・・・電磁噴射
弁、13・・・比較回路、16・・・スロツトル開度検
出器、17・・・ゲート回路。 第1図 第2図 第3図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an electric circuit diagram of the gate circuit shown in FIG. 1, and FIG. 3 is an electric circuit diagram of the comparison circuit shown in FIG. 1. 4... Arithmetic circuit, 6... Multiplier circuit, 11... Electromagnetic injection valve, 13... Comparison circuit, 16... Throttle opening detector, 17... Gate circuit. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関への燃料供給量を電磁噴射弁に印加する噴
射パルス信号の時間幅にて規定する電子制御式燃料噴射
装置において、前記噴射パルス信号の時間幅を機関運転
状態に応じて算出する手段と、この手段からのパルス信
号の時間幅が設定時間幅以下か否かを比較する比較手段
と、機関のスロツトル弁の開度が設定開度以上か否かを
検出するスロツトル開度検出器と、前記比較手段と前記
スロツトル開度検出器の出力が入力され、前記パルス信
号の時間幅が設定時間幅以下のとき前記電磁噴射弁の作
動を停止して燃料供給を停止させると共に、燃料停止中
に前記スロツトル弁の開度が設定開度以上となったとき
再び前記電磁噴射弁を作動させ燃料の噴射を行なわせる
ゲート手段とを備えたことを特徴とする電子制御式燃料
噴射装置の燃料停止装置。
1. In an electronically controlled fuel injection device that defines the amount of fuel supplied to an internal combustion engine by the time width of an injection pulse signal applied to an electromagnetic injection valve, means for calculating the time width of the injection pulse signal according to the engine operating state. a comparison means for comparing whether the time width of the pulse signal from the means is less than or equal to a set time width; and a throttle opening detector for detecting whether or not the opening of the throttle valve of the engine is at least the set opening. , the outputs of the comparison means and the throttle opening detector are input, and when the time width of the pulse signal is less than or equal to a set time width, the operation of the electromagnetic injection valve is stopped to stop the fuel supply, and the fuel is stopped. and gate means for operating the electromagnetic injection valve again to inject fuel when the opening degree of the throttle valve becomes equal to or higher than a set opening degree. Device.
JP6847077A 1977-06-09 1977-06-09 Fuel stop device for electronically controlled fuel injection system Expired JPS602506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6847077A JPS602506B2 (en) 1977-06-09 1977-06-09 Fuel stop device for electronically controlled fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6847077A JPS602506B2 (en) 1977-06-09 1977-06-09 Fuel stop device for electronically controlled fuel injection system

Publications (2)

Publication Number Publication Date
JPS543618A JPS543618A (en) 1979-01-11
JPS602506B2 true JPS602506B2 (en) 1985-01-22

Family

ID=13374599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6847077A Expired JPS602506B2 (en) 1977-06-09 1977-06-09 Fuel stop device for electronically controlled fuel injection system

Country Status (1)

Country Link
JP (1) JPS602506B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518604B2 (en) * 1984-03-31 1996-07-24 富士重工業株式会社 Engine fuel cut device

Also Published As

Publication number Publication date
JPS543618A (en) 1979-01-11

Similar Documents

Publication Publication Date Title
JPH0217166Y2 (en)
JPS589260B2 (en) Denshisei Giyoshikinen Ryoufunsha Sochi
JPS602508B2 (en) Fuel stop device for electronically controlled fuel injection system
US4146000A (en) Air flow control system
US4402295A (en) Electronically controlled fuel injection apparatus for internal combustion engine
US4285319A (en) Air flow amount adjusting system for an internal combustion engine
JPH0372829B2 (en)
JPS602505B2 (en) Electronically controlled fuel injection device
US4586478A (en) Air-fuel ratio control method and apparatus for an internal combustion engine
US4079711A (en) Air-fuel ratio controlling device
JPS6056900B2 (en) Fuel control device for internal combustion engines
JPS6048623B2 (en) Fuel stop device for electronically controlled fuel injection system
US4387687A (en) Control apparatus for a fuel metering system in an internal combustion engine
JPS602506B2 (en) Fuel stop device for electronically controlled fuel injection system
JPS5812459B2 (en) How to use the latest information
US4192268A (en) Air flow amount adjusting system for an internal combustion engine
JPS5912859B2 (en) Air flow adjustment device
JPS589259B2 (en) Denshisei Giyoshikinen Ryoufunsha Sochi
JPS602507B2 (en) Fuel stop device for electronically controlled fuel injection system
JPH0577867B2 (en)
JPS61142343A (en) Air-fuel ratio control device in internal combustion engine
JPH0318676Y2 (en)
JPH0121333B2 (en)
JP2998370B2 (en) Fuel injection amount control device for internal combustion engine
JP2503055Y2 (en) Electronically controlled fuel injection device for internal combustion engine