JPS6025032A - Optical information recording device - Google Patents

Optical information recording device

Info

Publication number
JPS6025032A
JPS6025032A JP58134110A JP13411083A JPS6025032A JP S6025032 A JPS6025032 A JP S6025032A JP 58134110 A JP58134110 A JP 58134110A JP 13411083 A JP13411083 A JP 13411083A JP S6025032 A JPS6025032 A JP S6025032A
Authority
JP
Japan
Prior art keywords
medium
light
laser
pulse
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58134110A
Other languages
Japanese (ja)
Inventor
Shigeru Shimoo
茂 下生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58134110A priority Critical patent/JPS6025032A/en
Publication of JPS6025032A publication Critical patent/JPS6025032A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits

Abstract

PURPOSE:To form such pits that an excellent reproduction output is obtained, and eliminate the risk of destruction of record due to an irradiating readout light beam by irradiating a recording medium which has high heat conductivity with proper light pulses. CONSTITUTION:The optical recording medium in use has heat diffusivity of >=5mum<2>/mus in the medium surface and recording is carried out while the light intensity of laser light pulses is made larger at the leading edge part than at the trailing edge part. A differential amplifier 20 in a laser driving circuit supplies differential signals to TRs 21 and 22 according to an input signal. A capacitor 38 applies only the variation component of voltage pulses of a variable resistor 26 to a TR23. Then when the signal applied to the TR22 rises and falls, a positive and a negative edge pulse are applied to the base of the TR23 and a laser 3 emits light with large power at the leading edge part of a pulse supplied to the laser 3. When the pulse to the TR22 rises, on the other hand, there is no influence upon the current supplied to the laser 3, so the light power becomes larger at the leading edge of the laser light pulse than at the trailing edge part.

Description

【発明の詳細な説明】 本発明は移動する記録媒体に対し、集束したレーザ光を
照射することにより情報を記録する。光デイスクファイ
ル装置等の光学的情報記録装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention records information by irradiating a moving recording medium with focused laser light. The present invention relates to optical information recording devices such as optical disk file devices.

感光性の記録媒体に対し、レーザ光束を微小なスポット
に集束して照射し、媒体の温度上昇により媒体の元照射
部を変質させて、情報を記録する元ディスク装置等の光
学的情報記録装置においては、記録のためのレーザ光源
は小屋であることが望ましく記録に要する光パワーは少
ないことが要求される。特に、小型でかつ直接変調が可
能な半導体レーザを光源として使用Tる場合その発生で
き、る元バ、ワーには制限があり、光記録媒体としては
高感度なものが望丈れる。しかし感度の高い記録媒体は
弱い光によっても変質させられやTく、例えは記録され
た情報の読み出しのための小さなパワーのレーザ光の照
射によっても、瞑った情報の記録あるいは記録された情
報の破壊が起る危険性が大きい。このような傾向は、特
に、媒体の記録感度を向上さぜようとして、熱伝導度の
低い材料を媒体として使用した場合に強く現わイする。
An optical information recording device such as a source disk device that records information by irradiating a photosensitive recording medium with a focused laser beam into a minute spot and altering the quality of the original irradiated area of the medium due to a rise in the temperature of the medium. In this case, it is preferable that the laser light source for recording is a shed, and the optical power required for recording is required to be small. In particular, when a compact semiconductor laser that can be directly modulated is used as a light source, there is a limit to the source power that can be generated, so a highly sensitive optical recording medium is desirable. However, highly sensitive recording media are susceptible to deterioration even by weak light; for example, even when irradiated with a laser beam of low power to read out recorded information, the recording of omitted information or There is a high risk of destruction. This tendency is particularly strong when a material with low thermal conductivity is used as a medium in an attempt to improve the recording sensitivity of the medium.

即ち、熱伝導度の低い媒体では熱の蓄積が起りゃ丁く、
小さなパワーの光でも長時間照射されると、媒体の温度
が変質の起こる高さにまで容易に高まってしまう。この
ような事態を避けるため多くの光学的情報記録再生装置
においては、情報の読み出しのための弱い元ビームでも
、必す媒体を動かした状態で照射するような手法がとら
れている。
In other words, if heat accumulates in a medium with low thermal conductivity,
When irradiated with light of low power for a long period of time, the temperature of the medium can easily rise to a level where deterioration occurs. In order to avoid such a situation, many optical information recording and reproducing apparatuses employ a method of irradiating the medium with a moving state, even with a weak original beam for reading information.

しかしこのような手法を採用しても、媒体が停止した状
態で光ビームが照射される危険性は無くならす、一旦そ
のような事1川が起った場合、媒体の破壊前の状態への
復元は不可能である。また装置の起動、停止の際の動作
上からも、媒体を停止させた状態で、焦点誤差信号トラ
ックすれ信号を得るために、読み出し用光ビームが照射
できることが望才しい。
However, even if such a method is adopted, there is no risk that the light beam will be irradiated with the medium in a stopped state; Restoration is not possible. Also, from the viewpoint of operation when starting and stopping the apparatus, it is desirable to be able to irradiate the readout light beam in order to obtain the focus error signal and the off-track signal while the medium is stopped.

一方、記録媒体として熱伝導度の高い材料を使えば、照
射された元ビームによる熱エネルギーは丁はやく拡散し
、熱の蓄積は起りにくいから、小さなパワーの元の照射
による媒体の変質の危険性は小さくなり、停止状態での
光の照射も可能となり、情報の保存性、安全性は向上す
る。しかし、熱伝導度の高い媒体では照射された光ζこ
よる熱エネルギーかすはやく拡散するため、照射した光
エネルギーに対する媒体の温度上昇が比較的小さくなり
、見かけ上の記録感度が抵下する。このような傾向は、
パルス状に光を照射して、微小な長さの変質した情報記
録領域(以下ビットと呼ぶ)を連続的ζこ形成していく
場合の、持にパルス先端部(ビットの先端部に対応)に
おいて著しく現われる。
On the other hand, if a material with high thermal conductivity is used as the recording medium, the thermal energy from the irradiated original beam will be diffused quickly, making it difficult for heat to accumulate, so there is a risk of deterioration of the medium due to the original irradiation with a small power. becomes smaller, it becomes possible to irradiate light even in a stopped state, and information storage and security are improved. However, in a medium with high thermal conductivity, thermal energy particles due to the irradiated light ζ are quickly diffused, so that the temperature rise of the medium in response to the irradiated light energy is relatively small, and the apparent recording sensitivity decreases. This trend is
The tip of the pulse (corresponding to the tip of the bit) when irradiating light in a pulsed manner to continuously form an altered information recording area of minute length (hereinafter referred to as a bit) It appears prominently in

これは媒体が移動している状嘘で光パルスを照射すると
、その先端部で媒体に照射された熱エネルギーは速やか
に拡散する上に、媒体が移動しているためその後に照射
される元ビームは媒体の移動方向に対して、後方部を照
射することになりその光エネルギーはビット先端部の温
度上昇Oこ寄与しないことによる。−万、ビット後方部
においては、その地点に照射されている光によるエネル
ギーに加えて、ビット先端部が拡散した熱エネルギーの
一部が伝わってく6ため、照射された元エネルギ刊こ力
して比較的高い温度上昇が起る。元の照射はビット内の
各地点に対してほぼ一様連続Jこイテなわれるが、拡散
によって伝わってくる熱エネルギーの量はビットの後方
になるほど多くなり、従って先端部に比して高い温度上
昇が得られることになる。このため記録されたビットは
先端部で変質の度合いが小さく後方になるほど大きく変
質することになり、このようなビットを読み吊下と先端
部でレベルが低く、後方に行くに従ってレベルが大きく
なる再生波形となる。このようなビットの記録状態ある
いは再生波形は高密度、面精度の記録再生にとって好ま
しくないが、このような傾向は記録媒体の熱伝導度が大
きいほど強く現われ、熱伝導度の大きな材料を光記録媒
体として使用する際の大きな難点となる。
This is because when a light pulse is irradiated while the medium is moving, the thermal energy irradiated to the medium at the tip quickly diffuses, and because the medium is moving, the original beam irradiated afterwards This is because the rear part of the medium is irradiated with respect to the moving direction of the medium, and the light energy does not contribute to the temperature rise at the tip of the bit. - At the back of the bit, in addition to the energy from the light irradiated at that point, a part of the thermal energy diffused by the tip of the bit is transmitted6, so the original energy irradiated is reduced. A relatively high temperature rise occurs. Although the original irradiation is applied almost uniformly and continuously to each point within the bit, the amount of thermal energy transmitted by diffusion increases toward the rear of the bit, resulting in higher temperatures than at the tip. You will get an increase. For this reason, the degree of deterioration of the recorded bits is small at the tip and becomes more significant toward the rear.When reading such bits, the level is low at the hanging and tip portions, and the level increases toward the rear. It becomes a waveform. This kind of bit recording state or reproduction waveform is unfavorable for high-density, surface-accuracy recording and reproduction, but this tendency appears more strongly as the thermal conductivity of the recording medium increases, and materials with high thermal conductivity are not suitable for optical recording. This is a major difficulty when using it as a medium.

本発明の目的は、かかる従来の光学的情報記録装置装置
における欠点を除き熱伝導度の高い記録媒体に対し、適
切な光パルスを照射することにより、良好な再生出力の
得られるビットを形成するとともに、読み出し月光ビー
ムの照射等による記録の破壊の危険性のない光学的情報
記録装置を提供することにある。
An object of the present invention is to eliminate the drawbacks of such conventional optical information recording devices and form bits that can provide good reproduction output by irradiating a recording medium with high thermal conductivity with an appropriate light pulse. Another object of the present invention is to provide an optical information recording device that is free from the risk of recording destruction due to irradiation with a reading moonlight beam or the like.

以下に本発明をこつき図面を参照して詳しく説明する。The present invention will be explained in detail below with reference to the drawings.

第1図は本発明の光学的情報記録装置の一実施例を示す
略図である。信号源1は記録したい情報に対応した信号
を信号線12を介してレーザ駆動回路2に供給する。レ
ーザ駆動回路2は信号線12より入力する信号に応じて
、信号線′13を介して半導体レーザ3にパルス的に電
流を供給下る。半導体レーザ3は信号線13から供給さ
れる電流ζこよりその電流値に対応した強さの光をパル
ス的に発光する。半導体レーザ3から発光された発散性
のレーザ光はコリメークレンズ4によって平行なレーザ
光束に変えられる。集束レンズ5は平行なレーザ光束を
集束させ、記録担体6上の媒体11の表面に光の微小ス
ボッ)+形成させる。記録担体6は円板状になっており
、スピンドルモータ7にまって回転されるから媒体11
の表面に形成される情報記録トラックは概ね同心円状に
なる。集束レンズ5の位置は媒体11の表面の所定の位
置に微小光スポットが集束されて当るように、位置制御
されるが、本発明の趣旨には直接関係がないので説明を
省略する。
FIG. 1 is a schematic diagram showing an embodiment of the optical information recording device of the present invention. A signal source 1 supplies a signal corresponding to information to be recorded to a laser drive circuit 2 via a signal line 12. The laser drive circuit 2 supplies a pulsed current to the semiconductor laser 3 via the signal line '13 in response to a signal input from the signal line 12. The semiconductor laser 3 emits light in a pulsed manner from the current ζ supplied from the signal line 13 with an intensity corresponding to the current value. Divergent laser light emitted from the semiconductor laser 3 is converted into a parallel laser beam by a collimating lens 4. The focusing lens 5 focuses the parallel laser beam to form a minute spot of light on the surface of the medium 11 on the record carrier 6. The record carrier 6 has a disk shape and is rotated by a spindle motor 7, so that the medium 11
The information recording tracks formed on the surface are generally concentric circles. The position of the focusing lens 5 is controlled so that a minute light spot is focused and hits a predetermined position on the surface of the medium 11, but this is not directly related to the gist of the present invention, so a description thereof will be omitted.

微小光スポットが照射されり媒体11の表面上のある地
点は光の熱エネルギーによって温度が上昇し、その温度
が媒体変質の閾値を超えると記録が行なわれる。この場
合媒体11の対象地点の温度上昇は照射された元エネル
ギーの量に単純に比例することはなく、媒体11の熱伝
導によ′って熱エネルギーが四方に拡散するため媒体1
1の温度上外は照射された光のエネルギーlこ比して小
さなものとなる。特に、熱伝導度の大きな媒体では熱エ
ネルギーの拡散が大きく、媒体の温I!上外に寄与する
エネルギーの割合はごくわずかなものになりやすい。
The temperature of a certain point on the surface of the medium 11 that is irradiated with a minute light spot increases due to the thermal energy of the light, and when the temperature exceeds a threshold value for medium deterioration, recording is performed. In this case, the temperature rise at the target point of the medium 11 is not simply proportional to the amount of original energy irradiated, but because the thermal energy is diffused in all directions by heat conduction of the medium 11,
Above a temperature of 1, the energy of the irradiated light is small compared to l. In particular, in a medium with high thermal conductivity, the diffusion of thermal energy is large, and the temperature of the medium I! The proportion of energy that contributes upward and outward tends to be very small.

この熱エネルギーの拡散の速さは媒体11の熱拡散率で
示Tことができる。熱拡散4は媒体11の熱伝導度と体
積当りの熱容量の比で与えられ、単位時間でどれだけの
面偵昏こ熱が広がるかを示す値である。例&ばテルル(
Te )では熱伝導度がOΩ15J4【・”(legで
あり、熱容量が125J/degcrd であるから、
熱拡散率は約1.2μゴ/μsとなる。また鉄(Fe 
)は熱伝導度はQ、5 J /Cf1bec d6g 
であり、熱谷螢が3.6J/degfflであるので、
熱拡散率はほぼ14μd/μs となる。熱拡散率の大
きな媒体111こ対し元スポットを長時間照射しても大
部分の熱エネルギーは拡散してしまい、媒体を変質させ
る温度上昇には寄与しないが、情報の記録のためには短
時間で大きなパワーの光を照射することが有効さなる。
The speed of diffusion of this thermal energy can be expressed by the thermal diffusivity T of the medium 11. Thermal diffusion 4 is given by the ratio of the thermal conductivity of the medium 11 to the heat capacity per volume, and is a value indicating how much surface heat spreads per unit time. Example & example tellurium (
Te), the thermal conductivity is OΩ15J4[・”(leg), and the heat capacity is 125J/degcrd, so
The thermal diffusivity is approximately 1.2 μg/μs. Also, iron (Fe
) has a thermal conductivity of Q, 5 J /Cf1bec d6g
And since Atsutani Firefly is 3.6J/degffl,
The thermal diffusivity is approximately 14 μd/μs. Even if the original spot is irradiated for a long time on a medium with a high thermal diffusivity, most of the thermal energy will be diffused and will not contribute to the temperature rise that changes the quality of the medium. It is effective to irradiate light with high power.

また媒体11の移動速度を高速にしても、媒体上のそ′
れぞれの地点にとっては光が照射される時間が短くなっ
たのと同じことになり、短時間照射と同様の効果を上げ
ることが出来る。逆に元のパワーが小さけれは、熱拡散
率の太きfig体11では長時開光を照射しても温度上
昇は極めて小さく、媒体11が停止していても記録が行
なわれ、あるいは既に記録された情報が破壊される危険
性は殆んど無い。本発明の装置においては媒体11を熱
拡散率が5μゴ/μs以上のものとすることにより、長
時間の読み出し元ビームの照射によっても変質等が起り
に<<、情報の保存性の良いものとしている。
Furthermore, even if the moving speed of the medium 11 is increased, the
For each point, it is the same as shortening the time that light is irradiated, and it is possible to achieve the same effect as short-time irradiation. On the other hand, if the original power is small, the temperature rise will be extremely small even if the medium 11 is irradiated with open light for a long time in the figure 11 with a large thermal diffusivity, and even if the medium 11 is stopped, recording will occur, or even if the medium 11 has already been recorded. There is almost no risk of the information being destroyed. In the apparatus of the present invention, by making the medium 11 have a thermal diffusivity of 5 μg/μs or more, deterioration etc. will not occur even when irradiated with the readout source beam for a long time, and the information can be preserved easily. It is said that

このような媒体11の材料としてはBi 、C+Fe 
、Or等多くの金属あるいは半金属が使用可能であるが
、前記したように熱拡散率が1.2μm′/μsとなる
Teは適さない。以上のような熱拡散率の大きな媒体1
1は弱い光の長時間照射に対しては見かけ上の記録感度
が低く、従って読み出し州党ビーム等による変質の危険
性は小さいが、太、(lワーの光〕々ルスの短時間照射
あるいは、媒体11を晶速移動させた状態での記録に対
しては熱拡散率の1氏い(オ料と同等の記録感度を示し
得る。
Materials for such a medium 11 include Bi, C+Fe.
Although many metals or metalloids such as Or, etc. can be used, Te, which has a thermal diffusivity of 1.2 μm'/μs as described above, is not suitable. Medium 1 with high thermal diffusivity as above
1 has low apparent recording sensitivity when exposed to long-term irradiation with weak light, and therefore there is little risk of deterioration due to readout beams, etc.; For recording when the medium 11 is moved at a crystal velocity, the thermal diffusivity is 1 degree lower (it can exhibit recording sensitivity equivalent to that of the optical material).

このような熱拡散率の大きな媒体11を移動させて元ス
ポットを照射すると、熱エネルギーの拡散のために、媒
体11上の照射が開始された地点の温度上昇は比較的小
さくなる。−万、照射開始点より後方の地点ではその地
点に照射される元のエネルギーに加えて、前方の地点よ
り拡散による熱エネルギーが伝わってくるから、照射さ
れる元エネルギーに別して比較的高い温度上昇が起る。
When the medium 11 having such a high thermal diffusivity is moved and the original spot is irradiated, the temperature rise at the point on the medium 11 where the irradiation is started becomes relatively small due to the diffusion of thermal energy. - At a point behind the irradiation start point, in addition to the original energy irradiated to that point, thermal energy due to diffusion is transmitted from a point in front, so the temperature rise is relatively high depending on the original energy irradiated. happens.

このような現象は媒体11の移動速度が媒体11の熱拡
散率(即ち熱伝導の速度)に比べて大きな場合、あるい
は媒体11の熱拡散率が非常に小さい場合ζこは、はっ
きりとは現われないが、媒体11の移動速度が熱拡散率
と同じ程度かそれよりやや小さな場合において顕著に現
われる。このため媒体11の移動方向に沿って細長く形
成されるビットは先端部で変質の度合いが小さく、後方
になるほど大きく変質することになり、例えば先細りの
形のビットが形成されることになる。このようなビット
を読み出すさ、先端部でレベルが低く、後方にイ1くに
従ってレベルが大きくなる再生波形となる。このような
ビレトの記録状態は、高精度、高密度の記録再生にとっ
て好ましくないが、このようなビットが形成されるのは
、ビット形成部の先端から後端まで一様なパワーの光か
照射され1こ場合であり、ビット形成部(情報記録部)
の先端にその後方より大きなパワーの光を照射するよう
ζこ丁れば、先端部においても十分なfAIEl上件が
得られ、ビット先端部から後端までにわたってほぼ均一
な変質が起る。本発明の光学的惰報記録装象においては
、信号線13を介して半導体レーザ3に供給される。″
!lルス屯流の先端部の電流値をその後方部の値より太
きくTることにより、媒体INこ照射される半導体レー
ザ3からのレーザ光パルスの先端部の光強度(パワー)
をその後方部の強度より強くして、ビット全域にわたっ
てほぼ均一な変質が起るようにしている。これにより、
読み出し出力の波形は先端から後端までほぼ一定のレベ
ルとなり、高Mll!−1高密度の記録再生が行なわれ
る。
This phenomenon does not appear clearly when the moving speed of the medium 11 is large compared to the thermal diffusivity of the medium 11 (i.e., the speed of heat conduction), or when the thermal diffusivity of the medium 11 is very small. However, it becomes noticeable when the moving speed of the medium 11 is about the same as or slightly smaller than the thermal diffusivity. For this reason, a bit that is formed long and thin along the moving direction of the medium 11 has a small degree of deterioration at the tip, and the deterioration becomes greater toward the rear, resulting in, for example, a tapered bit. When such bits are read out, a reproduced waveform is obtained in which the level is low at the leading end and the level increases as it approaches the rear. This type of billet recording condition is not favorable for high-precision, high-density recording and reproduction, but such bits are formed when light or light of uniform power is irradiated from the leading edge to the trailing edge of the bit forming area. In this case, the bit forming section (information recording section)
If the tip of the bit is irradiated with a light having a higher power than the back of the bit, a sufficient fAIEl condition can be obtained even at the tip, and almost uniform deterioration occurs from the tip to the rear end of the bit. In the optical coasting information recording system of the present invention, the signal is supplied to the semiconductor laser 3 via the signal line 13. ″
! The light intensity (power) at the tip of the laser light pulse from the semiconductor laser 3 that is irradiated onto the medium can be increased by making the current value at the tip of the lulus current larger than the value at the rear.
The strength of the bit is made stronger than that of the rear part, so that deterioration occurs almost uniformly over the entire bit area. This results in
The waveform of the readout output is at a nearly constant level from the tip to the rear end, and has a high Mll! -1 High-density recording and reproduction is performed.

第2図は媒体停止時の光照射時間と媒体の照射地点に蓄
積される熱エネルギーとの関係を示す図である。この図
は計算機ンミュレーンヨンによりめられ、グラフの縦軸
は光スポットが当った中心部の単位表面積当りの工坏ル
ギー(nJ/μ−)を示しており、これを単位表面積当
りの熱容量で割ると、その部分の温度上昇が得られる。
FIG. 2 is a diagram showing the relationship between the light irradiation time when the medium is stopped and the thermal energy accumulated at the irradiation point of the medium. This figure was created using a computer called Luminion, and the vertical axis of the graph shows the energy per unit surface area (nJ/μ-) of the center area hit by the light spot, which is divided by the heat capacity per unit surface area. , the temperature rise in that area can be obtained.

曲線aは熱拡散率が0.2μlTl1/μsの材料の特
性を示す。熱拡散率が小さいと光照射時間とともlこ熱
エネルギー(温度)が大きく上昇する。曲線すは熱拡散
率が1.0μ−/μsの材料の特性を示し、曲線Cは熱
拡散率が5μ♂/μS の材料、曲線dは熱拡散率が1
0μt111/μSの材料の特性をそれぞれ示す。この
図より熱拡散率が大きくなるほど時間経過に対する温度
上昇の傾きがゆるくなるのが分る。即ぢ、熱拡散率が1
.0μd/μs以下の媒体では100nsのパルス幅で
元を照射し記録する際の4の光パワーでも1μsの時間
照射すると記録が行なわれてしまうが、熱拡散率が5μ
♂/μs 以上の媒体では100nsのパルス幅で記録
する際の173以下の光パワーとすれば殆んど記録が行
なわれる可能性がなくなる。従って熱拡散率が5μrr
?/ltS 以上の媒体を使用すれは、読み出し月光ビ
ーム照射による媒体変質の危険性は概ね十分な余裕を持
っそ除力)れると考えられる。
Curve a shows the properties of a material with a thermal diffusivity of 0.2 μlTl1/μs. If the thermal diffusivity is small, the thermal energy (temperature) increases significantly with the light irradiation time. The curves show the characteristics of a material with a thermal diffusivity of 1.0μ-/μs, the curve C shows the characteristics of a material with a thermal diffusivity of 5μ♂/μS, and the curve d shows the characteristics of a material with a thermal diffusivity of 1.
The characteristics of the material at 0μt111/μS are shown respectively. From this figure, it can be seen that as the thermal diffusivity increases, the slope of temperature rise over time becomes gentler. Immediately, the thermal diffusivity is 1
.. With a medium of 0μd/μs or less, even if the optical power is 4 when recording by irradiating the source with a pulse width of 100ns, recording will be performed if the source is irradiated for 1μs, but if the thermal diffusivity is 5μ
For a medium of ♂/μs or more, if the optical power is 173 or less when recording with a pulse width of 100 ns, there is almost no possibility of recording. Therefore, the thermal diffusivity is 5μrr
? /ltS or more, it is considered that the risk of medium deterioration due to reading moonlight beam irradiation can be eliminated with a sufficient margin.

第3図は第1図の装置に使用されるレーザ駆動回路2の
一構成例を示す図である。差動増幅器20は信号線12
を介して入力する信号に応じて互いに極性の異なる差動
信号を信号線31および32う一介して差動出力器を構
成するトランジスタ21および22にそれぞれ供給する
。抵抗33および34はインピータンス整合により波形
歪みを除くためのものである。トランジスタ22のコレ
クタは信号線13につながり、半導体レーザ3に発生の
ための電流を供給する。トランジスタ23および抵抗3
5は電流制御回路を構成し、トランジスタ23のベース
に加えられる電圧に応じてトランジスタ21および22
&こよる差動出力器の出力電流を制御する。抵抗36お
よび定電圧ダイオード25ζこよる定電圧回路は一定の
規準電圧を発生し、抵抗37を介して、トランジスタ2
3のベースにその規準電圧を加える。これにより、コン
デンサ38ソ通ってトランジスタ23のベースζこ加え
られる信号がなければトランジスタ23はトランジスタ
21および22による差動出力器が、前記規準電圧に対
応下る一定レベルの電流パルスを出力するようにそのコ
レクタ電流を一定に保つ。トランジスタ24は信号線3
2ヲ介してトランジスタ22に供給される信号を受け同
じ極性のパルスを出力する電圧バッファとして働く。可
変抵抗26はトランジスタ24のエミッタより出力され
る電圧パルスを適正なレベルに減哀させてコンデンサ3
8の一端に加える。コンデンサ38は可変抵抗26の出
力の直流分をカットし、電圧パルスの変化分(立ぢ上が
り及び立ち下がりのエツジ部分)のみをトランジスタ%
のベースに加える。このコンデンサ38の直流力、ト(
微分動作)の時定数はコンデンサ38の容量値と、抵抗
37の値との積で与えられる。このトランジスタ24お
よびコンデンサ38の働きにより、トランジスタ22に
供給される信号の立ち上がり時および立ち下がり時に、
それぞれ正のエツジパルス(微分パルス)および負のエ
ツジパルスがトランジスタ%のベースをこ加えられ、ト
ランジスタ23のコレクタ電流を変化させる。こわによ
り、トランジスタ22に正のパルスが供給されトランジ
スタ22がオンとなって半導体レーザ3にパルス軍、流
を供給する際のパルスの先端部において、前記正のエツ
ジパルスの分だけ大きなレベルの電流が半導体レーザ3
に供給され、半導体レーザ3はそれだけ大きなパワーの
光を発光する。一方、トランジスタ224こ供給される
パルスが立ち上がるときは、負のエツジパルスがトラン
ジスタ23のベースに加えられトランジスタ%のコレク
タ電流は減少するが、このときはトランジスタ21がオ
ンとなり、トランジスタ22はオフとなっているため、
この電流の減少は半導体レーザ3に供給される電流には
影響を与えない。このようなレーザ駆動回路2Iこよっ
て媒体11に照射されるレーザ光パルスの先端部の光パ
ワーがその後・部より大きくなり、熱拡散率の太き、な
媒1体11に対して均一な変質の起きたビットを形成す
ることが可能となる。尚、容易に分るようにトランジス
タ24およびコンデンサ38ヲ省くか、可変抵抗26を
変化させてコンデンサ38の一端に加わるパルスのレベ
ルを殆んど0と丁れは、半導体レーザ3に供給されるパ
ルス電流のレベルは均一となり、レーザ光パルスのレベ
ルも均一となる。
FIG. 3 is a diagram showing an example of the configuration of the laser drive circuit 2 used in the apparatus shown in FIG. 1. The differential amplifier 20 is connected to the signal line 12
Differential signals having mutually different polarities are supplied to transistors 21 and 22 constituting a differential output device via signal lines 31 and 32, respectively, in accordance with signals inputted through the differential output terminal. Resistors 33 and 34 are for eliminating waveform distortion by impedance matching. The collector of the transistor 22 is connected to the signal line 13 and supplies a current to the semiconductor laser 3 for generation. Transistor 23 and resistor 3
5 constitutes a current control circuit, which controls transistors 21 and 22 according to the voltage applied to the base of transistor 23.
& controls the output current of the differential output device. A constant voltage circuit consisting of a resistor 36 and a constant voltage diode 25ζ generates a constant reference voltage, which is connected to the transistor 2 via a resistor 37.
Apply that reference voltage to the base of 3. As a result, if there is no signal applied to the base of the transistor 23 through the capacitor 38, the transistor 23 will cause the differential output device formed by the transistors 21 and 22 to output a current pulse at a constant level corresponding to the reference voltage. Keep its collector current constant. Transistor 24 is connected to signal line 3
It functions as a voltage buffer that receives the signal supplied to the transistor 22 through the transistor 2 and outputs a pulse of the same polarity. The variable resistor 26 reduces the voltage pulse output from the emitter of the transistor 24 to an appropriate level and connects the capacitor 3.
Add to one end of 8. The capacitor 38 cuts the DC component of the output of the variable resistor 26, and transfers only the voltage pulse change (rising and falling edge portions) to the transistor.
Add to the base. The DC power of this capacitor 38,
The time constant of the differential operation is given by the product of the capacitance value of the capacitor 38 and the value of the resistor 37. Due to the function of the transistor 24 and the capacitor 38, when the signal supplied to the transistor 22 rises and falls,
A positive edge pulse (differential pulse) and a negative edge pulse, respectively, are applied to the base of transistor 23 to change the collector current of transistor 23. Due to the stiffness, a positive pulse is supplied to the transistor 22 and the transistor 22 is turned on to supply a pulse current to the semiconductor laser 3. At the tip of the pulse, a current with a level as large as the positive edge pulse is generated. Semiconductor laser 3
is supplied, and the semiconductor laser 3 emits light with a correspondingly large power. On the other hand, when the pulse supplied to transistor 224 rises, a negative edge pulse is applied to the base of transistor 23 and the collector current of transistor % decreases, but at this time transistor 21 is turned on and transistor 22 is turned off. Because
This decrease in current does not affect the current supplied to the semiconductor laser 3. As a result of such a laser drive circuit 2I, the optical power at the leading end of the laser light pulse irradiated onto the medium 11 is greater than that at the rear end, resulting in uniform deterioration of the medium 11 with a large thermal diffusivity. This makes it possible to form bits in which this occurs. As can be easily seen, the transistor 24 and the capacitor 38 can be omitted or the variable resistor 26 can be changed so that the level of the pulse applied to one end of the capacitor 38 is almost 0, which is supplied to the semiconductor laser 3. The level of the pulse current becomes uniform, and the level of the laser light pulse also becomes uniform.

第4図四、但)は第1図に示す装置におけるレーザ光パ
ルスの強度波形と媒体11上の光照射部の温度上昇の関
係を概略的に示す図である。第4図(2)は均一なレベ
ルの光パルスが照射される場合を示す。光パルス強度1
03 aが図のように矩形波状に変化Tると、その先端
部では熱拡散のため媒体11の温度はあまり上昇せず、
温度上昇波形104 aに示Tまうζこ先端が下がった
状態になる。媒体11が移動し、照射光スポットの位置
が後方に進むと、媒体の前方が拡散されて伝イっってく
る熱エネルギーと照射光のエネルギーが加イっって、媒
体の温度は先端部より上昇Tるようになる。この傾向は
光スポットが後方に進むほど強くなるから温度上昇波形
104aは図に示Tように、しり上がすなものとなり、
このような東件で記録さ11たビットを読み出すと、こ
の温度上外波形104. aと類似なしり上がりの読み
出し波形が出力されることζこなる。
FIG. 4 (4) is a diagram schematically showing the relationship between the intensity waveform of the laser light pulse and the temperature rise of the light irradiation part on the medium 11 in the apparatus shown in FIG. FIG. 4(2) shows a case where a light pulse of a uniform level is irradiated. Light pulse intensity 1
03 When a changes T in the shape of a rectangular wave as shown in the figure, the temperature of the medium 11 does not rise much at its tip due to thermal diffusion,
The tip of ζ shown in the temperature rise waveform 104a is in a lowered state. When the medium 11 moves and the position of the irradiation light spot advances backward, the temperature of the medium increases at the tip due to the addition of the thermal energy diffused and transmitted from the front of the medium and the energy of the irradiation light. The temperature will rise even more. This tendency becomes stronger as the light spot moves backward, so the temperature rise waveform 104a rises as shown in the figure.
When the 11 bits recorded in this case are read out, this temperature waveform 104. This means that a readout waveform with a rising edge similar to a is output.

第4図0はレーザ光パルスの先端部の元パワーを強くし
て照射する場合そ示す。光パルス強If 103bが図
のように先端部で大きくなるようにレーザ光を照射する
と、熱拡散のため媒体11の温度が上昇しにくい先端部
lこおいて光パワーが太きいため媒体11のビットが形
成される先端部でも温度上外波形104bに示すように
温度は急激に上昇し、先端部の温度が低くなる状態はな
くなる。この場合も熱拡散が起り、ビット前方における
熱エネルギーの一部は後方に伝わっていくが、ビット後
方を照射下る光パワーは先端部に比べて小さくなってお
り、ビット後方部の温度上昇は先端部における温度上昇
とほぼ等しくなり、温度上外波形104 bは図に示す
ようにビット全域にわたってほぼ均一なレベルの矩形波
(あるいは台形)状のものとなる。
FIG. 40 shows the case where the original power of the tip of the laser light pulse is increased and irradiated. If the laser beam is irradiated so that the optical pulse intensity If 103b becomes larger at the tip as shown in the figure, the optical power is greater at the tip where the temperature of the medium 11 is difficult to rise due to thermal diffusion, and the medium 11 is heated. Even at the tip where the bit is formed, the temperature rises rapidly as shown in the temperature rise/external waveform 104b, and there is no longer a state where the temperature of the tip becomes low. Heat diffusion also occurs in this case, and some of the thermal energy in the front of the bit is transmitted to the rear, but the optical power irradiating the back of the bit is smaller than that at the tip, and the temperature rise at the rear of the bit is less than the temperature at the tip. As shown in the figure, the temperature rise in the bit area is approximately equal to the temperature rise in the bit area, and the temperature rise waveform 104b has a rectangular wave (or trapezoidal) shape with an approximately uniform level over the entire bit area, as shown in the figure.

このようをこ記録されたビットを読み出すと、この温度
上昇波形104bと類似な矩形波に近い読み出し波形が
出力され、高密度、高精度の光学的情報の記録再生が可
能となる。
When the bits recorded in this manner are read out, a readout waveform similar to a rectangular wave similar to this temperature rise waveform 104b is output, making it possible to record and reproduce optical information with high density and high precision.

以上の如く本発明によれば、読み出し用光ビーム等によ
る媒体破損の危険性が少なく、かつ、良質な形状のビッ
トを形成し、高密度高品質の記録を行なうことが可能な
光学的情報記録装置が実現される。
As described above, according to the present invention, there is little risk of medium damage due to a readout light beam, etc., and optical information recording is possible that forms bits with a good quality shape and performs high-density and high-quality recording. A device is realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学的情報記録装置の一実施例を示す
略図、第2図は本発明を説明するための媒体停止時の光
照射時間と媒体の照射地点に蓄積される熱エネルギーと
の関係を示す図、第3図は第1図の装置に使用されるレ
ーザ駆動回路2の一構成例を示す図、第4図り、但)は
第1図に示す装置におけるレーザ光パルスの強度波形と
媒体11上の光照射部の温度上昇の関係を概略的に示す
図である。図中1は信号源、2はレーザ駆動回路、3は
半導体レーザ、4はコリメータレンズ、5は集束レンズ
、6は記録担体、7はスピンドルモータ、11は光記録
媒体を示す。 〔(D人ブr埋士内原 晋1′ で入 、ユj・″ 71−1 図 72図 光照射時間 第4図(A)′ 第41¥1(B) +04b −−八一
FIG. 1 is a schematic diagram showing an embodiment of the optical information recording device of the present invention, and FIG. 2 is a diagram showing the light irradiation time when the medium is stopped and the thermal energy accumulated at the irradiation point of the medium to explain the present invention. Figure 3 is a diagram showing an example of the configuration of the laser drive circuit 2 used in the apparatus shown in Figure 1, Figure 4 shows the intensity of the laser light pulse in the apparatus shown in Figure 1 3 is a diagram schematically showing the relationship between a waveform and a temperature rise of a light irradiation part on a medium 11. FIG. In the figure, 1 is a signal source, 2 is a laser drive circuit, 3 is a semiconductor laser, 4 is a collimator lens, 5 is a focusing lens, 6 is a record carrier, 7 is a spindle motor, and 11 is an optical recording medium. [(Entered by Susumu Uchihara 1', Yuj・'' 71-1 Figure 72 Light irradiation time Figure 4 (A)' 41 yen 1 (B) +04b -- Yaichi

Claims (1)

【特許請求の範囲】[Claims] レーザ光束を集束して記録媒体面上に照射し、前記光束
の熱エネルギーにより前記記録媒体表面を変質させて、
情報の記録を行なう光学的情報記録装置において、前記
記録媒体として、媒体面内方向の熱拡散率が5μゴ/μ
s 以上である光記録媒体を使用し、前記記録媒体に記
録のために照射されるレーザ光パルスのそれぞれの先端
部におけるレーザ光強度をパルスの後部における強度よ
り大きくして情報の記録を行うことを特徴とする光学的
情報記録装置。
Focusing a laser beam and irradiating it onto the surface of the recording medium, altering the surface of the recording medium with the thermal energy of the beam,
In an optical information recording device for recording information, the recording medium has a thermal diffusivity of 5 μg/μ in the in-plane direction of the medium.
s or more, and record information by making the laser light intensity at the tip of each laser light pulse irradiated onto the recording medium for recording greater than the intensity at the rear of the pulse. An optical information recording device characterized by:
JP58134110A 1983-07-22 1983-07-22 Optical information recording device Pending JPS6025032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58134110A JPS6025032A (en) 1983-07-22 1983-07-22 Optical information recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58134110A JPS6025032A (en) 1983-07-22 1983-07-22 Optical information recording device

Publications (1)

Publication Number Publication Date
JPS6025032A true JPS6025032A (en) 1985-02-07

Family

ID=15120686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58134110A Pending JPS6025032A (en) 1983-07-22 1983-07-22 Optical information recording device

Country Status (1)

Country Link
JP (1) JPS6025032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626443A (en) * 1985-06-26 1987-01-13 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Thermal induction recording
JPS6289232A (en) * 1985-10-16 1987-04-23 Hitachi Ltd Control method for irradiation of optical memory
US4774522A (en) * 1986-10-29 1988-09-27 U.S. Philips Corporation Method of recording a binary signal on an optically readable record carrier and apparatus for carrying out the method
EP1381036A3 (en) * 2002-07-03 2006-07-12 Ricoh Company, Ltd. Light source drive circuit, optical information recording apparatus and optical information recording method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626443A (en) * 1985-06-26 1987-01-13 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Thermal induction recording
JPS6289232A (en) * 1985-10-16 1987-04-23 Hitachi Ltd Control method for irradiation of optical memory
US4774522A (en) * 1986-10-29 1988-09-27 U.S. Philips Corporation Method of recording a binary signal on an optically readable record carrier and apparatus for carrying out the method
EP1381036A3 (en) * 2002-07-03 2006-07-12 Ricoh Company, Ltd. Light source drive circuit, optical information recording apparatus and optical information recording method
US7193957B2 (en) 2002-07-03 2007-03-20 Ricoh Company, Ltd. Light source drive, optical information recording apparatus, and optical information recording method
US7480230B2 (en) 2002-07-03 2009-01-20 Ricoh Company, Ltd. Light source drive, optical information recording apparatus, and optical information recording method

Similar Documents

Publication Publication Date Title
KR970011225B1 (en) Laser reproducing apparatus
JPS63205819A (en) Optical information recorder
JP3553094B2 (en) Optical recording / reproducing device
JPS63253536A (en) Information recording method utilizing reversible phase change
JPS6025032A (en) Optical information recording device
JPS6343819B2 (en)
JPS60239929A (en) Optical recording and reproducing device
JP2560298B2 (en) Optical disk recorder
JP2712159B2 (en) Optical media recording method
JPS60143438A (en) Information recording and reproducing device
JPH05114183A (en) Optical magnetic disk device
JPH0378695B2 (en)
JPS5914814B2 (en) Kogaku Tekijiyouhouki Kakusaisei Souchi
JPS592235A (en) Servo device of optical information reader
JPS6180529A (en) Track servo system
JP3760451B2 (en) Laser output control circuit for optical disc recording / reproducing apparatus
JPH0258737A (en) Controller for semiconductor laser writing
JPS63304428A (en) Optical disk device
JPH01191325A (en) Optical information processor
JPH0565939B2 (en)
JPS6132224A (en) Optical information recording and reproducing device
JPH04259915A (en) Optical information recording method and optical information recording device
JPH01191326A (en) Optical information processor
JPS6412013B2 (en)
JPS59171086A (en) Tracking device of disk head