JPS60250243A - Uniform velocity electrophoretic apparatus - Google Patents

Uniform velocity electrophoretic apparatus

Info

Publication number
JPS60250243A
JPS60250243A JP59107163A JP10716384A JPS60250243A JP S60250243 A JPS60250243 A JP S60250243A JP 59107163 A JP59107163 A JP 59107163A JP 10716384 A JP10716384 A JP 10716384A JP S60250243 A JPS60250243 A JP S60250243A
Authority
JP
Japan
Prior art keywords
voltage
electrophoresis
electrode
electrophoretic
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59107163A
Other languages
Japanese (ja)
Other versions
JPH0519656B2 (en
Inventor
Shingo Matsumoto
慎吾 松本
Shunei Mizuno
水野 俊英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP59107163A priority Critical patent/JPS60250243A/en
Publication of JPS60250243A publication Critical patent/JPS60250243A/en
Publication of JPH0519656B2 publication Critical patent/JPH0519656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44713Particularly adapted electric power supply

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To enable the lowering of an electrophoretic voltage by providing an electrode moving means (or an electrophoretic tube moving means) for bringing the electrode in a terminal electrolytic liquid tank close to a potential gradient detector and a voltage detector for monitoring an electrophoretic voltage. CONSTITUTION:An electrode 21 in a terminal electrolytic liquid tank 2 is moved horizontally in the axial direction of an electrophoretic tube 4 through a liquidtight packing 23 while an electrode moving section 22 is provided having a rack pinion mechanism and a stepping motor. Also a control section 51 is provided which has a voltage detector for monitoring a voltage between poles of electrodes 21 and 31. Then, when the detection voltage exceeds a specified value, a signal is sent to the electrode moving section 22 to move the electrode 21 gradually to a potential gradient detector 42 whereby it is controlled to keep the detection voltage from exceeding the value. Thus, the capacity of an electrophoretic power source, especially the maximum voltage can be lowered by holding down the electrophoretic voltage requiring a high voltage.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、等速電気泳動装置に関する。さらに詳しく
は、電気泳動中の両極間の泳動電圧を改善させた等速電
気泳動装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an isokinetic electrophoresis device. More specifically, the present invention relates to an isotachophoresis device that improves the electrophoresis voltage between the two electrodes during electrophoresis.

(2))従来技術 等速電気泳動分析法は、泳動管内部にターミナル電解液
とリーディング電解液とを充填し、この両電解液の境界
面に荷電しうる物質、例えばアミノ酸類、ペプチド類、
生体物質等の試料を注入して定電流下電気泳動を行ない
、易動度の差によって被検出物を単一ゾーンに分離し適
宜検出器にて定性や定量を行なう方法であり、上述のよ
うな試料の微量分析に好適な方法である。
(2)) Conventional isotachophoresis analysis method involves filling a migration tube with a terminal electrolyte and a leading electrolyte, and placing a substance that can be charged at the interface between the two electrolytes, such as amino acids, peptides, etc.
This is a method in which a sample such as a biological substance is injected and subjected to constant current electrophoresis, and the target substance is separated into a single zone based on the difference in mobility, and qualitative and quantitative analysis is performed using a detector as appropriate. This method is suitable for microanalysis of large samples.

しかしながら、従来の等速電気泳動装置においてかよう
な分析を意図して電気泳動を行なうと、導電率の小さい
ターミナル電解液のゾーンが泳動と共に両極間に増加す
るため両極間電圧がしばしば高い値(例えば20KV)
を示す。そのため、泳動用電源の容量を大きくしなけれ
ばならず、さらに、ベース電圧が高くなるので目的の試
料のゾーンの分離検知が困難となりしかも系全体の絶縁
性を向上させる必要がある等の多くの問題点があった。
However, when electrophoresis is performed with the intention of such analysis in a conventional isotachophoresis apparatus, the terminal electrolyte zone with low conductivity increases between the two electrodes as the electrophoresis progresses, so the voltage between the two electrodes often reaches a high value ( For example, 20KV)
shows. Therefore, the capacity of the power supply for electrophoresis must be increased, and the base voltage becomes high, making it difficult to separate and detect the target sample zone.In addition, there are many problems such as the need to improve the insulation of the entire system. There was a problem.

e) 目的 この発明は、かような状況に鑑みなされたものであり、
泳動電圧を低下しうる等速電気泳動装置を提供しようと
するものである。
e) Purpose This invention was made in view of the above situation,
The present invention aims to provide an isokinetic electrophoresis device that can reduce the electrophoresis voltage.

に)構成 かくしてこの発明によれば、ターミナル電解液槽とリー
ディング電解液槽とを泳動管で接続すると共1ここの泳
動管に試料注入口及び電位勾配検出器を設けてなる等速
電気泳動装置において、ターミナル電解液槽内憂こ設定
された電極を電位勾配検出型に近接させうろ電極移動手
段又は泳動管移動手段と、電気泳動中の泳動電圧をモニ
ターする電圧検知器を備え、泳動電圧が所定の値を越え
た時に上記移動手段を動作させて泳動電圧の上昇防止又
は低下を行ないうるよう構成してfJる等速亀気泳動装
置が提供される。
B) Structure According to the present invention, there is provided an isokinetic electrophoresis device in which a terminal electrolyte tank and a leading electrolyte tank are connected by a migration tube, and the migration tube is provided with a sample injection port and a potential gradient detector. The terminal is equipped with electrode moving means or electrophoresis tube moving means for moving the electrode set in the terminal electrolyte tank close to the potential gradient detection type, and a voltage detector for monitoring the electrophoresis voltage during electrophoresis. There is provided a constant-velocity electrophoresis apparatus which is configured to operate the moving means to prevent or reduce the electrophoresis voltage when the voltage exceeds a predetermined value.

上記泳動電圧の所定値とIJ、少なくとも電極又は泳動
管移動手段を動作させないで電気泳動分析を行ないうる
泳動電圧より低い試圧値を意味し、電位勾配検出器の性
能、電源の容1等が許答しうる電圧内でできるだけ低い
値を設定するのが適当である。通常、電極や泳動管の移
動距離を調整することにより従来装置で要する最大極間
電圧の70〜80%をカットした値に設定することが可
能である。
The predetermined value of the electrophoresis voltage and IJ mean a test pressure value that is lower than the electrophoresis voltage that allows electrophoresis analysis to be performed at least without operating the electrode or the electrophoresis tube moving means, and the performance of the potential gradient detector, the capacity of the power supply, etc. It is appropriate to set the value as low as possible within the allowable voltage range. Usually, by adjusting the moving distance of the electrodes and the migration tube, it is possible to set the voltage to a value that cuts 70 to 80% of the maximum electrode-to-electrode voltage required in conventional devices.

(ホ)実施例 以下、この発明の等速電気泳動装置を実施例憂こより詳
説する。
(e) Examples The isokinetic electrophoresis apparatus of the present invention will be described in detail below using examples.

第1図に示す(IA)は、この発明の等速電気泳動装置
の一実施例を示す構成説明図である。図において電気泳
動装置(IA)は、ターミナル電解液槽(2)とリーデ
ィング電解液槽(3)とを泳動管(4)で接続してなり
、泳動管のターミナル電解液槽側には試料注入口(41
)が、リーディング電解液槽側には電位勾配検出器(4
2が設けられている。そして、ターミナル電解液槽(2
+及びリーディング電解液槽(3)内にはそれぞれ電極
e2]1.4’l11が装着されておりこれらは定電流
直流電源(5)に接続されて電気泳動電圧を印加できる
ように設定されているが、ターミナル電解液槽(21内
の電PjAし1)は、液密なパツキン(ロ)を介して泳
動管(4)の軸方同に水平移動可能となってお8− り、ラックピニオン機構とステッピングモーターを備え
tコミ極移動部(2り5こまって支持されている。
(IA) shown in FIG. 1 is a configuration explanatory diagram showing an embodiment of the isotachophoresis apparatus of the present invention. In the figure, the electrophoresis apparatus (IA) consists of a terminal electrolyte tank (2) and a leading electrolyte tank (3) connected by a migration tube (4). Entrance (41
), but there is a potential gradient detector (4) on the leading electrolyte tank side.
2 is provided. Then, the terminal electrolyte tank (2
Electrodes e2]1.4'l11 are installed in the + and leading electrolyte tanks (3), respectively, and these are connected to a constant current DC power supply (5) and set so that an electrophoresis voltage can be applied. However, the terminal electrolyte tank (electrolyte PjA 1 in 21) can be moved horizontally along the axis of the migration tube (4) via a liquid-tight gasket (B), and can be mounted on the rack. It is equipped with a pinion mechanism and a stepping motor, and is supported in two or five pieces.

また、(51)は両極間の電圧をモニターする電圧検知
器を備えた制御部であり、この検知電圧が所定値(例え
ば4KV)を越えた時に電極移動部(22に信号を送り
電極(21)を電位勾配検出器の方向に除々に移動させ
て検知電圧が所定値を越えないようにフィードバック制
御しうるプログラムが内在されている。
Further, (51) is a control unit equipped with a voltage detector that monitors the voltage between the two electrodes, and when this detected voltage exceeds a predetermined value (for example, 4 KV), it sends a signal to the electrode moving unit (22). ) is gradually moved in the direction of the potential gradient detector to perform feedback control so that the detected voltage does not exceed a predetermined value.

かかる等速電気泳動装置の動作について以下説明する。The operation of such an isotachophoresis apparatus will be explained below.

まず、第4図は等速電気泳動における泳動管内部のゾー
ンの状態の経時変化を示すものであり、Aは電気泳動開
示時でありσ)はターミナル電解液、(S)は注入試料
、(L)はリーディング電解液を意味する。電気泳動が
進むにつnてゾーンはB、Cの状!fMを経てDの状態
となり例えば試料中の成分(SA)(SR)が分離され
等速ゾーンとなって電位勾配検出型缶に移送されること
となる。この際(図中、D)の電位曲線を第5図に示し
た。このように、電4− 位勾配はターミナル電解液が最も大(Po−P2)でリ
ーディング電解液が最も小(P4−P)であり、その間
にSBとsA の勾配(P2→P8)(P8→p4)が
存在しているが、泳動が進むにつれてA−Dのようにタ
ーミナル電解液Tが検出器(椙の方に移動するため結果
的に泳動TIIFJ’JdKいものとなる(図中P−,
−Po)。
First, Figure 4 shows the change over time in the state of the zone inside the migration tube during isokinetic electrophoresis, where A is the start of electrophoresis, σ) is the terminal electrolyte, (S) is the injected sample, ( L) means leading electrolyte. As electrophoresis progresses, the zones become B and C! After passing through fM, the state becomes D, and for example, the components (SA) and (SR) in the sample are separated and become a constant velocity zone, and are transferred to the potential gradient detection type can. The potential curve at this time (D in the figure) is shown in FIG. In this way, the potential gradient of the terminal electrolyte is the largest (Po-P2) and the leading electrolyte is the smallest (P4-P), while the gradient of SB and sA (P2→P8) (P8 →p4) However, as the electrophoresis progresses, the terminal electrolyte T moves toward the detector (see A-D), resulting in electrophoresis TIIFJ'JdK (P in the figure). −、
-Po).

しかしながら、前記実施例の装置においては、第4図E
のごとくターミナル電解液の移動と共にある時点(例え
ば、電圧がJKVを越えた時点)から電極自体が検出器
(42方向に移動(第4図、E参照)するため第5図に
おけるPl−Po間の電圧がカットされ、泳動電圧はP
−Pl となり無駄な電圧消費を避けることができる。
However, in the apparatus of the above embodiment, FIG.
As the terminal electrolyte moves, from a certain point (for example, when the voltage exceeds JKV), the electrode itself moves in the direction of the detector (42 (see Fig. 4, E)). voltage is cut, and the electrophoresis voltage becomes P
-Pl, and unnecessary voltage consumption can be avoided.

そして、成分(SA)(SR)の電位勾配についても不
都合は生じない。
Further, no problem occurs with respect to the potential gradient of the components (SA) and (SR).

なお、前記実施例においては、電極を移動させる手段を
備えたものについて説明したが、基本的に電極と電位勾
配検出器に近接させうる構成であればよく、例えば、第
2図に示すととく泳動管(4)とターミナル電解液槽(
2)との接続部を液密状態で摺動しうろ二重管(梠描造
としかつ泳動管(4)を電極しl)に近接させうろ泳動
管移動ブロック(財)を設けること1こより、泳動性移
動部(四に」:って前記と同様に泳動電圧を制御しうる
よう構成してもまい。まL−1第3図5こ示すごとく、
ターミナル電極槽+21における電極を主電極(21a
)と補助電極(21b)から構成し7、補助電極(21
+))を第1図の電極(21)と同様に移動可能に構成
しかつ電源(5)の一部の電圧をここへ印加しうるよう
構成することもできる。なお(51)は電圧供給部も含
む制御部である。
Although the above embodiments have been described as having means for moving the electrodes, basically any structure that allows the electrodes to be brought close to the potential gradient detector may be used. For example, as shown in FIG. Transfer tube (4) and terminal electrolyte tank (
2) Providing an electrophoresis tube moving block (goods) that slides the connection part with the electrophoresis tube in a liquid-tight state and brings it close to the electrophoresis double tube (with a transparent structure and the electrophoresis tube (4) as an electrode). The electrophoretic transfer unit (4) may be configured to control the electrophoretic voltage in the same manner as described above.As shown in FIG. 3 of L-1,
The electrode in the terminal electrode tank +21 is the main electrode (21a
) and an auxiliary electrode (21b) 7, an auxiliary electrode (21
+)) can be configured to be movable in the same way as the electrode (21) in FIG. 1, and configured so that a part of the voltage from the power source (5) can be applied thereto. Note that (51) is a control section that also includes a voltage supply section.

(へ)効果 以上述べたごとくこの発明の等速電気泳動装置は、高電
圧が必要とされていtコ泳動電圧を低下させろことがで
きる。従って、泳動用電源の容量ことに最大電圧を低く
することができる、試料のアイソレーション技術が簡単
となる、系の絶縁性を向−ヒさせる対策が特に不要であ
る、取り扱い上の安全性を向上できる、等の種々の利点
を備え有用なものである。
(f) Effects As described above, the isotachophoresis apparatus of the present invention requires a high voltage, and it is possible to lower the electrophoresis voltage. Therefore, the capacity and maximum voltage of the power supply for electrophoresis can be lowered, the isolation technique for the sample is simplified, there is no need to take special measures to improve the insulation of the system, and handling safety is improved. It is useful because it has various advantages such as improved performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の等速電気泳動装置の一実施例を示
す構成説明図、第2図及び第3図は同じく他の実施例を
それぞれ示す構成説明図、第4図A−Eはこの発明の電
気泳動分析装置による使用状態を説明するための模式図
、第5図は同じく使用時の各ゾーンと電位との関係を説
明するためのグラフ図である。 (iA、)(IB)(IC)・・・等速電気泳動装置、
(21・・・ターミナル電解液槽、 (3)・・・リーディング電解液槽、 (4)・・・泳動管、 (6)・・・定電流直流電源、
H,H・・・電極、 (21a)−主電極、(21b)
・・・補助電極、(22!・・・電極移動部、(22・
・・泳動性移動部、(冒・・・パツキン、伐41・・・
移動ブロック、(41)・・・試料注入口、(4′4・
・・電位勾配検出器、 (4→・・・二重管、(51)
、(51)・・・制御部。 第3図 第4図 第5図
FIG. 1 is a structural explanatory diagram showing one embodiment of the isokinetic electrophoresis device of the present invention, FIGS. 2 and 3 are structural explanatory diagrams showing other embodiments, respectively, and FIGS. 4A to 4E are FIG. 5 is a schematic diagram for explaining the state of use of the electrophoretic analyzer of the present invention, and a graph diagram for explaining the relationship between each zone and the potential during use. (iA,) (IB) (IC)... isotachophoresis device,
(21...Terminal electrolyte tank, (3)...Leading electrolyte tank, (4)...Migration tube, (6)...Constant current DC power supply,
H, H... electrode, (21a) - main electrode, (21b)
... Auxiliary electrode, (22! ... Electrode moving part, (22.
...Migration moving part, (exploitation... Patsukin, 41...
Moving block, (41)...Sample injection port, (4'4・
...Potential gradient detector, (4→...double tube, (51)
, (51)...control unit. Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、ターミナル電解液槽とリーディング電解液槽とを泳
動管で接続すると共にとの泳動管に試料注入口及び電位
勾配検出器を設けてなる等速電気泳動装置におい“C。 ターミナル電解液槽内に設定された電極を電位勾配検出
器に近接させうる電極移動手段又は泳動管移動手段と、
電気泳動中の泳動電圧をモニターする電圧検出器を備え
、泳動電圧が所定の値を越えた時に上記移動手段を動作
させて泳動電圧の上昇防止又は低下を行ないうるよう構
成してなる等速電気泳動装置。
[Claims] 1. In an isotachophoresis apparatus in which a terminal electrolyte tank and a leading electrolyte tank are connected by a migration tube, and a sample injection port and a potential gradient detector are provided in the migration tube, "C" is used. an electrode moving means or an electrophoresis tube moving means capable of bringing an electrode set in a terminal electrolyte tank close to a potential gradient detector;
A constant-velocity electrophoresis device that is equipped with a voltage detector that monitors electrophoresis voltage during electrophoresis, and is configured to operate the moving means to prevent or reduce the electrophoresis voltage when the electrophoresis voltage exceeds a predetermined value. Electrophoresis device.
JP59107163A 1984-05-25 1984-05-25 Uniform velocity electrophoretic apparatus Granted JPS60250243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107163A JPS60250243A (en) 1984-05-25 1984-05-25 Uniform velocity electrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107163A JPS60250243A (en) 1984-05-25 1984-05-25 Uniform velocity electrophoretic apparatus

Publications (2)

Publication Number Publication Date
JPS60250243A true JPS60250243A (en) 1985-12-10
JPH0519656B2 JPH0519656B2 (en) 1993-03-17

Family

ID=14452083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107163A Granted JPS60250243A (en) 1984-05-25 1984-05-25 Uniform velocity electrophoretic apparatus

Country Status (1)

Country Link
JP (1) JPS60250243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242084A (en) * 2011-05-13 2012-12-10 Sharp Corp Electrophoretic method and electrophoretic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242084A (en) * 2011-05-13 2012-12-10 Sharp Corp Electrophoretic method and electrophoretic apparatus

Also Published As

Publication number Publication date
JPH0519656B2 (en) 1993-03-17

Similar Documents

Publication Publication Date Title
Burgi Large volume stacking of anions in capillary electrophoresis using an electroosmotic flow modifier as a pump
Schwer et al. Analytical and micropreparative separation of peptides by capillary zone electrophoresis using discontinuous buffer systems
Huang et al. Quantitative determination of low molecular weight carboxylic acids by capillary zone electrophoresis/conductivity detection
Wahl et al. Use of small‐diameter capillaries for increasing peptide and protein detection sensitivity in capillary electrophoresis‐mass spectrometry
EP0746763B1 (en) On line ion contaminant removal apparatus and method for capillary electrophoresis
US5141621A (en) Capillary electrophoresis injection device and method
JP3011914B2 (en) On-column conductivity detector for electrokinetic separation by microcolumn
Dolnik et al. Capillary zone electrophoresis of dilute samples with isotachophoretic preconcentration
EP3226993B1 (en) Apparatus and method for separating molecules
Wallingford et al. Characterization of a microinjector for capillary zone electrophoresis
US5614073A (en) Method and apparatus for detection of underivatized amines and amino acids utilizing end column addition of Ru(bpy)32+
Clarke et al. On-line desalting of physiologically derived fluids in conjunction with capillary isoelectric focusing-mass spectrometry
Huang et al. Simultaneous determination of inorganic cations and anions in microchip electrophoresis using high-voltage relays
Thormann et al. Detection of transient and steady states in electrophoresis: Description and applications of a new apparatus with 255 potential gradient detectors along the separation trough
JPS60250243A (en) Uniform velocity electrophoretic apparatus
Liu et al. On‐line microwave‐induced helium plasma atomic emission detection for capillary zone electrophoresis
Hirokawa et al. Preparative isotachophoretic analyser equipped with a dropwise fractionating device
Hochstrasser et al. An improved column for preparative electrophoresis
US6190521B1 (en) Method and apparatus for feeding a sample into a capillary electrophoresis apparatus
Jenkins Clinical applications of capillary electrophoresis: Status at the new millennium
Qin et al. Quantitative study on selective stacking of zwitterions in large‐volume sample matrix by moving reaction boundary in capillary electrophoresis
JPH03118463A (en) Electrophoresis apparatus
JPH0243135B2 (en)
JP2943271B2 (en) Capillary electrophoresis device
DE19613867C1 (en) Capillary electrophoretic technique applying flow envelope fractionation