JPS60249900A - Output control system of atomic power generator connected with dc system - Google Patents

Output control system of atomic power generator connected with dc system

Info

Publication number
JPS60249900A
JPS60249900A JP59102570A JP10257084A JPS60249900A JP S60249900 A JPS60249900 A JP S60249900A JP 59102570 A JP59102570 A JP 59102570A JP 10257084 A JP10257084 A JP 10257084A JP S60249900 A JPS60249900 A JP S60249900A
Authority
JP
Japan
Prior art keywords
generator
valve
power
nuclear power
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59102570A
Other languages
Japanese (ja)
Inventor
Tatsumi Ichikawa
市川 建美
Yukio Yoshida
幸雄 吉田
Akira Isono
磯野 昭
Toshihiko Nakao
俊彦 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Pioneer Corp
Original Assignee
Central Research Institute of Electric Power Industry
Pioneer Corp
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Pioneer Corp, Pioneer Electronic Corp filed Critical Central Research Institute of Electric Power Industry
Priority to JP59102570A priority Critical patent/JPS60249900A/en
Publication of JPS60249900A publication Critical patent/JPS60249900A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Protection Of Generators And Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To prevent an atomic reactor from stopping due to overspeed of a turbine by rapidly throttling a control valve to reduce the input of the turbine when a DC system is stopped and rapidly opening the valve when the DC system is restarted. CONSTITUTION:The output command value of a generator from a central power supply station is compared with the sum of transmission enabling power of transmission lines, and smaller value is applied as a load set value of the generator to an automatic load regulator 101. On the other hand, the output of a time delay circuit 11 which inputs a load set value is compared with the load set value, and a bias signal in response to the difference is applied to a control valve control signal if the difference is the prescribed value or higher. Thus, it can prevent an atomic reactor from stopping due to the overspeed of the turbine.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子力発電機の電力を直流送電する系統で直流
系が一時的に停止し、原子力発電機のタービン加減弁が
閉じられ、それに伴ってバイパス弁が開かれるときのタ
ービン加減弁の急閉による速度上昇抑制方式及び直流系
の再起動によシ高速に送電電力を回復する方式に関する
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a system for transmitting DC power from a nuclear power generator, in which the DC system is temporarily stopped, the turbine control valve of the nuclear power generator is closed, and the The present invention relates to a method for suppressing speed increase by rapidly closing a turbine control valve when a bypass valve is opened, and a method for quickly restoring transmitted power by restarting a DC system.

〔発明の背景〕[Background of the invention]

電力系統の電源は立地上の問題から負荷の遠隔地に大容
量電源を設置し、発電機は経済上有利な原子力機を用い
る傾向にある。送電方法としては遠隔地からの大容量送
電に有利な直流送電が計画されている。
Due to locational issues, large-capacity power sources for power systems are installed in remote locations, and there is a tendency to use economically advantageous nuclear power generators as generators. As a power transmission method, DC power transmission is planned, which is advantageous for large-capacity power transmission from remote areas.

第1図はこの直流送電系統を示す。こ\で11Fi原子
力発電機、12〜14Fi受電側の発電機、21〜28
は変圧器、31.32は交直変換用の順変換器、41.
42は交直変換用の逆変換器、51〜53は負荷、61
は直流送電線の故障点を示す。
Figure 1 shows this DC transmission system. 11Fi nuclear power generator, 12~14Fi power receiving side generator, 21~28
31.32 is a forward converter for AC/DC conversion; 41. is a transformer; 31.32 is a forward converter for AC/DC conversion;
42 is an inverse converter for AC/DC conversion, 51 to 53 are loads, 61
indicates the failure point of the DC transmission line.

第1図のような原子力発電機の出力を直流で送電する系
統はまだ実現してないが、故障61が発生した場合、一
般の直流系の制御と同様に順、逆変換器32.42を一
時停止し、故障消滅後高速に再起動し、発電機負荷の低
下による発電機速度上昇を押える必要があると考えられ
ている。この場合における原子力発電機側の問題を第2
図、第3図で説明する。第2図で11〜32は第1図と
同じ、71は原子炉、72はタービン、73は復水器、
81は加減弁、82はバイパス弁、91は低値ゲート、
101はALR(自動負荷調整装置)を示す。発電機の
出力設定値に従って原子炉の出力を出し、この出力によ
る圧力が一定になるよう加減弁を制御する。発電機の速
度偏差側からの信号は負荷設定値に10%程度のバイア
スを持ち常時は低値ゲート91に上シ圧力設定値が加減
弁を制御する。速度偏差側からの信号が選択されるのは
速度が定格値より0.5%程度以上高くなった場合であ
る。
Although a system that transmits the output of a nuclear power generator as DC power as shown in Figure 1 has not yet been realized, if a failure 61 occurs, the forward and reverse converters 32 and 42 are activated in the same way as in the control of a general DC system. It is believed that it is necessary to temporarily stop the generator, restart it at high speed after the fault disappears, and suppress the increase in generator speed due to a decrease in the generator load. The problem on the nuclear power generator side in this case is discussed in the second section.
This will be explained with reference to FIG. In Fig. 2, 11 to 32 are the same as in Fig. 1, 71 is a nuclear reactor, 72 is a turbine, 73 is a condenser,
81 is a control valve, 82 is a bypass valve, 91 is a low value gate,
101 indicates an ALR (automatic load adjustment device). The output of the reactor is output according to the output setting value of the generator, and the regulating valve is controlled so that the pressure caused by this output is constant. The signal from the speed deviation side of the generator has a bias of about 10% to the load set value, and the upper pressure set value is normally applied to the low value gate 91 to control the control valve. The signal from the speed deviation side is selected when the speed becomes higher than the rated value by about 0.5% or more.

原子力発電機の速度は通常の交流系に接続されていると
きは他の発電機群の速度制御により一定に保たれている
。原子力機が直流系のみで電力系統に接続される場合は
第3図のように直流系の順変換器出力の設定値に発電機
の速度偏差からの信号を加えて発電機速度を定格値にな
るよう直流系の出力即ち発電機の出力を制御する。
When connected to a normal AC system, the speed of a nuclear power generator is kept constant by controlling the speeds of other generators. If the nuclear power plant is connected to the power grid only through the DC system, add the signal from the generator speed deviation to the DC system forward converter output setting value to adjust the generator speed to the rated value, as shown in Figure 3. The output of the DC system, that is, the output of the generator, is controlled so that the

第1図の61で故障が発生した場合、前述のように一時
的に順、逆変換器32.42を一時停止し、故障消滅後
高速に再起動する。この場合、通常、故障は1秒弱で消
滅し、故障発生から再起動完了まで1秒程度と考えられ
ている。変換器停止中は発電機負荷が低下し、速度が増
加し、第2図の加減弁81の制御は圧力によるループか
ら速度によるループに変わシ、加減弁81は閉じられる
If a failure occurs at 61 in FIG. 1, the forward and inverse converters 32 and 42 are temporarily stopped as described above, and restarted quickly after the failure disappears. In this case, the failure usually disappears in less than one second, and it is thought that it takes about one second from the occurrence of the failure to the completion of restart. When the converter is stopped, the generator load decreases, the speed increases, the control of the control valve 81 in FIG. 2 changes from a pressure-based loop to a speed-based loop, and the control valve 81 is closed.

しかし故障によシ発電機負荷の低下している時間は短く
、再起動が完了すれば再び加減弁は圧力による制御にも
どり加減弁はほとんど動作しない。
However, the period during which the generator load is reduced due to a failure is short, and once the restart is complete, the regulating valve returns to pressure control and hardly operates.

しかしこの故障系統の割合が大きく速度上昇が急激の場
合や故障回復が遅れたり、何らかの理由で高速再起動に
失敗し発電機の速度上昇により加減弁81制御信号変化
が大きい場合は、加減弁が急速に絞られ、第2図のバイ
パス弁82が開く。
However, if the proportion of faulty systems is large and the speed increases rapidly, failure recovery is delayed, or high-speed restart fails for some reason and the change in the control signal of the regulator valve 81 is large due to the generator speed increase, the regulator valve 81 control signal changes greatly. It is rapidly throttled and the bypass valve 82 of FIG. 2 opens.

加減弁が急速に絞られてもバイパス弁容量の大きい全容
量バイパス弁を有する原子炉は運転を続けられるが、バ
イパス弁容量の小さい部分容量バイパス弁を有する原子
炉がバイパス弁容量以上加減弁急閉によジタービンへの
蒸気流量を減らした場合は原子炉圧力が高くなり、中性
子束が高くなって原子炉をスクラム(運転停止)してし
まい、再び出力をだすためには長時間を要する。
A reactor with a full-capacity bypass valve with a large bypass valve capacity can continue to operate even if the regulator valve is rapidly throttled, but a reactor with a partial-capacity bypass valve with a small bypass valve capacity can continue operating even if the regulator valve is rapidly throttled beyond the bypass valve capacity. If the flow rate of steam to the turbine is reduced by closing the reactor, the reactor pressure will increase, the neutron flux will increase, and the reactor will be scrammed (shut down), and it will take a long time to produce output again.

また全容量バイパス弁を有する原子炉でも、送電系統の
停止の比率が大きい場合、速度の上昇が大きくなシ、万
一速度が10%程度以上上昇すれば原子炉を停止するこ
とになシ、より速度上昇を抑制する方法が望ましい。
In addition, even for a reactor with a full capacity bypass valve, if the ratio of power transmission system outages is large, the speed will increase significantly, and if the speed increases by about 10% or more, the reactor will not have to be shut down. A method that further suppresses speed increases is desirable.

〔発明の目的〕[Purpose of the invention]

本発明の目的は直流系の停止により原子力機の出力が低
下したとき、タービン入力を必要な量だけ急速に減少さ
せタービン過速による原子炉の停止を防ぎ、かつ直流系
の再起動により高速に送電電力を回復することである。
The purpose of the present invention is to rapidly reduce the turbine input by the necessary amount when the output of a nuclear power plant decreases due to a shutdown of the DC system, to prevent the reactor from shutting down due to turbine overspeed, and to increase the speed by restarting the DC system. The goal is to restore transmitted power.

〔発明の概要〕[Summary of the invention]

本発明は直流系の全て又は一部が停止し、その故障回復
が遅れたとき、直流系停止前の電力を健全回線で送電で
きる電力との差だけタービン入力を減少するよう加減弁
を急速に絞り、故障した直流系が再起動したときこれに
見合う送電々力増加分だけ急速に加減弁を開けるよう制
御するものである。
When all or part of the DC system is stopped and recovery from the failure is delayed, the present invention rapidly operates the regulating valve to reduce the turbine input by the difference between the power before the DC system stopped and the power that can be transmitted through a healthy line. When the failed DC system is restarted, the control valve is controlled to open rapidly by the corresponding increase in power transmission power.

この場合加減弁急閉によるタービン入力は直流系故障に
より減少した送電々カブラスαとして発電機の加速をよ
り速く抑制してもよい。また部分バイパス弁を有するタ
ービンの加減弁より全容量バイパス弁を有するタービン
の加減弁の急閉を優先する。
In this case, the turbine input due to the sudden closing of the regulating valve may suppress the acceleration of the generator more quickly as the power transmission coefficient α is reduced due to the DC system failure. Also, priority is given to quick closing of the control valve of a turbine having a full capacity bypass valve over the control valve of a turbine having a partial bypass valve.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第4図〜第6図に示すっ第4図で中給
からの発電機出力指令値と各々の送電線の送電可能電力
の和とを比較し、小さい方の値を発電機の負荷設定値と
する。各々の送電線は故障により送電できない間は送電
可能電力の和から除かれ、再起動すればその和に加えら
れる。
Embodiments of the present invention are shown in Figures 4 to 6. In Figure 4, the generator output command value from the intermediate supply and the sum of the transmittable power of each transmission line are compared, and the smaller value is selected. This is the generator load setting value. Each power transmission line is excluded from the sum of transmittable power while it is unable to transmit power due to a failure, and is added to the sum when restarted.

第5図で91〜101は第2図と同じ111は時間遅れ
回路を示す。第4図での負荷設定値を単に第2図の負荷
設定値としたのではALRIOIによシ実際に発電機に
与えられる設定値変更がゆつくシになる。これをさける
ため第5図のように負設定値と負荷設定値の時間遅れ回
路111を通した値との差をとり負荷設定値が急激に大
きく減少したとき一時的に速度信号側に指令を与え、高
速に加減弁を閉じる。時間の経過と共にこの信号。
In FIG. 5, 91 to 101 are the same as in FIG. 2, and 111 represents a time delay circuit. If the load set value in FIG. 4 is simply changed to the load set value in FIG. 2, it will be difficult to change the set value actually applied to the generator due to ALRIOI. To avoid this, as shown in Figure 5, the difference between the negative set value and the value passed through the load set value time delay circuit 111 is taken, and when the load set value suddenly decreases, a command is temporarily sent to the speed signal side. and close the control valve at high speed. This signal over time.

は零になシ、変ってALRIOI側からの指令値が入っ
て来る。一時的に速度信号側に与えられる指令はあるレ
ベル以下では速度信号側への入力はカットされるように
し、またこの入力がある場合には約10%ある負荷設定
値のバイアスを一時的に変更する(例えばバイアスを零
にする)。これによシ急速な加減弁の制御が生じ発電機
の速度上昇が抑制される。
The command value from the ALRIOI side changes from zero to zero. If the command temporarily given to the speed signal side is below a certain level, the input to the speed signal side will be cut off, and if this input is present, the bias of the load setting value, which is about 10%, will be temporarily changed. (for example, set the bias to zero). This causes rapid control of the control valve and suppresses the speed increase of the generator.

第6図は部分容量バイパス弁を有する発電機がある場合
の直流系故障による送電可能電力減少時の制御方法実施
例である。第2図、第4図及び第5図では発電機は1台
に集約して説明したが、実際には発電機は数台が並列運
転されているのが普通である。この内に部分容量バイパ
ス弁を有する発電機がある場合には、第6図に示すよう
に直流系故障後の発電機群全体の負荷設定値が部分容量
バイパス弁を有する発電機のバイパス弁全開後の出力よ
り小さく、かつその状態が時間Tより長く続けば必要な
だけの部分容量バイパス弁を有する発電機の組合せに対
し、その加減弁を全閉し発電機を停止し、残りの発電機
の運転を継続する。
FIG. 6 is an embodiment of a control method when transmittable power decreases due to a DC system failure when there is a generator having a partial capacity bypass valve. In FIG. 2, FIG. 4, and FIG. 5, the generators are explained as one unit, but in reality, several generators are usually operated in parallel. If one of these generators has a partial capacity bypass valve, as shown in Figure 6, the load setting value of the entire generator group after a DC system failure is set to fully open the bypass valve of the generator with the partial capacity bypass valve. For combinations of generators that have as many partial capacity bypass valves as necessary, the output is smaller than the previous output, and if this condition continues for longer than time T, the control valve is fully closed and the generators are stopped, and the remaining generators are continue to operate.

部分容量バイパス弁を有する発電機がある時の他の制御
方式例について述べる。第5図で負荷設定値の急減があ
った場合、負荷設定値と負荷設定値の時間遅れ回路11
1を通した値との差を取シだす回路に出力があったとき
負荷設定値のバイアスを変更している。このバイアス値
に差を付け、それによって加減弁を閉じる。例えば全容
量ノ(イバス弁を有する発電機は全てバイアス10チ→
0チ、部分容量バイパス弁を有する発電機Aは10チ変
更なし、同じく発電機Bは10%→20%とする。これ
により負荷設定値が急減したとき、全容量バイパス弁を
有する発電機、部分容量バイパス弁を有する発電機A1
同じくBの順に加減弁が閉じられて行き、全機が運転継
続不可能の場合には発電機A、Bの順で停止される。
Another example of a control method when there is a generator with a partial capacity bypass valve will be described. When there is a sudden decrease in the load setting value in Fig. 5, the time delay circuit 11 between the load setting value and the load setting value
When there is an output from the circuit that takes out the difference from the value passed through 1, the bias of the load setting value is changed. A difference is added to this bias value and the control valve is closed accordingly. For example, all generators with full capacity (Ibus valve) have a bias of 10 cm →
Generator A, which has a partial capacity bypass valve, remains unchanged at 10 cm, and generator B changes from 10% to 20%. As a result, when the load setting value suddenly decreases, the generator with a full capacity bypass valve and the generator A1 with a partial capacity bypass valve
Similarly, the control valves are closed in the order of B, and if all machines cannot continue operating, generators A and B are stopped in that order.

また原子炉自体の出力を減少させた場合、直流系の故障
が回復しても再び原子炉の出力を上昇するためには長時
間を要し、その間発電機は必要な電力をだせなくなる。
Furthermore, if the output of the reactor itself is reduced, even if the fault in the DC system is recovered, it will take a long time to increase the reactor's output again, and during that time the generator will not be able to output the necessary power.

これを避けるため、原子炉への負荷整定値の変更は故障
がある設定時間以上続いたときだけとする方法もある。
In order to avoid this, there is a method in which the load setting value for the reactor is changed only when a failure continues for a set period of time.

なお以上の説明は原子力発電機のみの場合について説明
したが、火力機、水力機を含む場合もこれを全容量バイ
パス弁を有する発電機同様優先的に出力減少をする発電
機として扱えばよい。また送電線が直流のほか交流が並
列にある場合も交流系の送電容量の限界に応じて第4図
の送電可能電力に加えれば同様に扱える。
Note that the above explanation has been given for the case of only a nuclear power generator, but even if a thermal power plant or a hydraulic power plant is included, this may be treated as a power generator whose output is preferentially reduced like a power generator having a full capacity bypass valve. Furthermore, even if the power transmission line has AC as well as DC in parallel, it can be treated in the same way by adding the power that can be transmitted in Figure 4 according to the limit of the power transmission capacity of the AC system.

〔発明の効果〕〔Effect of the invention〕

以上本発明によれば原子力発電機出力を直流で送電する
場合−1直流系の全てまたは一部が故障し、高速に再起
動できないときの原子炉停止の可能性が小さくなり、原
子力発電機をより安定に運転継続できるようになる。
As described above, according to the present invention, when transmitting nuclear power generator output by direct current, the possibility of nuclear reactor shutdown is reduced when all or part of the DC system fails and a rapid restart is not possible, and the nuclear power generator is This allows for more stable operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の対象とする系統の一例、第2図は直流
系に接続された原子力発電装置の構成、第3図は順変換
器の出力設定法の説明、第4図及び第6図は本発明の実
施例を示す発電機負荷の設定法の説明であり、第5図は
本発明の実施例を示すタービン加減弁の制御方法である
。 11・・・原子力発電機、12〜14・・・受電側発電
機、21〜28・・・変圧器、31〜32・・・順変換
器、41〜42・・・逆変換器、51〜53・・・負荷
、61・・・故障点、71・・・原子炉、72・・・タ
ービン、73・・・復水器、81・・・加減弁、82・
・・バイパス弁、71図 ¥3図
Figure 1 is an example of a system targeted by the present invention, Figure 2 is the configuration of a nuclear power generation device connected to a DC system, Figure 3 is an explanation of the method for setting the output of a forward converter, and Figures 4 and 6 are The figure is an explanation of a generator load setting method showing an embodiment of the present invention, and FIG. 5 is a control method of a turbine control valve showing an embodiment of the present invention. 11... Nuclear power generator, 12-14... Power receiving side generator, 21-28... Transformer, 31-32... Forward converter, 41-42... Inverse converter, 51- 53... Load, 61... Failure point, 71... Nuclear reactor, 72... Turbine, 73... Condenser, 81... Control valve, 82...
...Bypass valve, 71 diagram ¥3 diagram

Claims (1)

【特許請求の範囲】 1、原子力発電機を含む電源から発生電力の全て又はそ
の一部を直流送電線で送電する系統において、直流系の
全て又は一部が停止し、直流系停止前の電力を健全回線
で送電できないとき、直流系停止前の電力と健全回線で
送電できる電力との差プラスα(αは加速した発電機を
減速するための余裕)だけタービン入力を減するよう原
子力発電機のタービン加減弁を急速に絞り、故障した直
流系が再起動したときこれを検出してこれによる送電力
増加に見合う電力を急速に増加するよう加減弁を制御す
ることを特徴とする直流系に接続された原子力発電機の
出力制御方式。 2、特許請求の範囲第1項において加減弁急閉に際して
、発電機により優先順位を付け、加減弁の大幅な絞りが
生じたとしても原子炉スクラムの生じる恐れのない原子
力発電機の加減弁急閉を優先し、加減弁の急速な絞りに
よる発電機出力域で不十分の場合には、必要とする出力
域より大きくなる最小限の出力の組合となるようにバイ
パス弁容量分以上加減弁が絞られると原子炉がスクラム
する部分容量バイパス弁を有する発電機の加減弁を完全
に閉鎖することを特徴とする直流系に接続された原子力
発電機の出力制御方式。 3、特許請求の範囲第1項における原子力発電機におい
て加減弁急閉に際して、発電機により優先順位をつけ、
加減弁の大幅な絞りが生じても原子炉がスクラムしない
発電機の加減弁急閉を最優先し、部分容量バイパス弁を
有する発電機には各機ごとに優先順位をつけて、同時に
全ての部分容量バイパス弁を有する発電機がスクラム条
件とならないよう制御することを特徴とする直流系に接
続された原子力発電機の出力制御方式。 4、特許請求の範囲第1項における原子力発電機におい
て加減弁急閉に際して、故障した直流系の故障が高速再
起動に成功したときのような短時間のみの負荷急減時に
は原子炉の出力には減少指令を与えないことを特徴とす
る直流系に接続された原子力発電機の出力制御方式。
[Claims] 1. In a system that transmits all or part of the generated power from a power source including a nuclear power generator via a DC transmission line, when all or part of the DC system is stopped, the power before the DC system is stopped is When power cannot be transmitted over a healthy circuit, the nuclear power generator is designed to reduce turbine input by the difference between the power before the DC system is stopped and the power that can be transmitted through a healthy circuit, plus α (α is the margin for decelerating the accelerated generator). The DC system is characterized by rapidly throttling the regulator valve of the turbine, detecting when the failed DC system restarts, and controlling the regulator valve to rapidly increase the electric power commensurate with the increase in transmitted power. Output control method for connected nuclear power generators. 2. In claim 1, when suddenly closing the regulating valve, priority is given to the generator, and even if the regulating valve is drastically throttled, there is no risk of causing a reactor scram. Prioritize closure, and if the generator output range due to rapid throttling of the regulator valve is insufficient, the regulator valve is increased by more than the capacity of the bypass valve to achieve the minimum output combination that is larger than the required output range. An output control method for a nuclear power generator connected to a direct current system, characterized by completely closing a regulator valve of the generator, which has a partial capacity bypass valve that causes the reactor to scram when throttled. 3. In the nuclear power generator according to claim 1, when the control valve is suddenly closed, priority is given to the generator,
The priority is to quickly close the regulator valves of generators so that the reactor will not be scrammed even if the regulator valves are significantly throttled, and for generators with partial capacity bypass valves, priority is given to each generator, and all generators are closed at the same time. An output control method for a nuclear power generator connected to a direct current system, characterized in that a generator having a partial capacity bypass valve is controlled so as not to reach a scram condition. 4. When the regulator valve is suddenly closed in the nuclear power generator according to claim 1, when the load suddenly decreases for only a short period of time, such as when a faulty DC system successfully restarts at high speed, the output of the reactor does not change. An output control method for a nuclear power generator connected to a DC system, characterized by not giving a reduction command.
JP59102570A 1984-05-23 1984-05-23 Output control system of atomic power generator connected with dc system Pending JPS60249900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59102570A JPS60249900A (en) 1984-05-23 1984-05-23 Output control system of atomic power generator connected with dc system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59102570A JPS60249900A (en) 1984-05-23 1984-05-23 Output control system of atomic power generator connected with dc system

Publications (1)

Publication Number Publication Date
JPS60249900A true JPS60249900A (en) 1985-12-10

Family

ID=14330881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59102570A Pending JPS60249900A (en) 1984-05-23 1984-05-23 Output control system of atomic power generator connected with dc system

Country Status (1)

Country Link
JP (1) JPS60249900A (en)

Similar Documents

Publication Publication Date Title
JPS6396405A (en) Feedwater flow control method to steam generator
JPS60249900A (en) Output control system of atomic power generator connected with dc system
JP7369732B2 (en) Output control device and output control method for nuclear power plant
JP2863581B2 (en) Turbine steam control valve controller
CN114688520B (en) Auxiliary control method and system for liquid level of steam generator of nuclear power station
JPS5828689A (en) Method and device for controlling reactor power at load loss
JPS63120297A (en) Speed controller for steam turbine
JP3057629B2 (en) Core flow control system
JPS62131903A (en) Speed control device for steam turbine
JPS6158903A (en) Turbine controller for nuclear reactor
JPH0335481B2 (en)
JPS62195404A (en) Turbine control device
JPS639082B2 (en)
JPS58211505A (en) High speed valve control system
JPH09257980A (en) Internal pump system
JPS61278790A (en) Selection control insertion controller
JPS6053895A (en) Quick opening controller for turbine bypass valve of boiling-water type nuclear power plant
JPH01110813A (en) Turbine controller
JPS60129694A (en) Controller for pressure of nuclear power plant
JPH0441798B2 (en)
JPS6149106A (en) Turbine control device of nuclear reactor
JPS62165195A (en) Output controller for boiling water type reactor
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPH0241720B2 (en)
JPH05927B2 (en)