JPS60249626A - Flow divider for gas turbine - Google Patents

Flow divider for gas turbine

Info

Publication number
JPS60249626A
JPS60249626A JP10459584A JP10459584A JPS60249626A JP S60249626 A JPS60249626 A JP S60249626A JP 10459584 A JP10459584 A JP 10459584A JP 10459584 A JP10459584 A JP 10459584A JP S60249626 A JPS60249626 A JP S60249626A
Authority
JP
Japan
Prior art keywords
pressure
flow divider
fuel
gas turbine
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10459584A
Other languages
Japanese (ja)
Inventor
Yasumasa Nishijima
西島 庸正
Shinji Use
鵜瀬 真二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP10459584A priority Critical patent/JPS60249626A/en
Publication of JPS60249626A publication Critical patent/JPS60249626A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/228Dividing fuel between various burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

PURPOSE:To make it possible to appropriately drive a flow divider even upon abnormal operation, by controlling the output pressure of a fuel pump for a gas turbine such that it is made equal to the pressure which is the sum of the internal pressure of a burner, differential pressure of a fuel nozzle and the differential pressure of the flow divider. CONSTITUTION:Fuel whose pressure is boosted up by a fuel pump 11 is led to a flow divider 15 through a high pressure fuel filter 14, and then is fed into a burner 18 through a check valve 16 and a fuel nozzle 17. The flow divider 15 is controlled to be driven by a variable speed motor 27 in accordance with a set flow rate signal 21. At this stage the difference between the inlet pressure of the flow divider 15, that is, the outlet pressure of the fuel pump 11 and the outlet pressure of the flow divider 15 is made as small as possible in order to decrease the drive force of the flow divider 15. Further, a fuel bypass valve 10 is controlled such that the outlet pressure of the fuel pump 11 is made equal to the sum of the internal pressure of the burner which is detected by a pressure detector 29, the differential pressure of the fuel nozzle 17 and the differential pressure of the flow divider 15.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は・ガスタービンの燃料油系統に用いられるフロ
ーデバイダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a flow divider used in a fuel oil system of a gas turbine.

〔発明の背景〕[Background of the invention]

一般に、ガスタービンは、気体燃料全般及び灯油から軽
油1重油、原油、残査油に至る液体燃料全般を使用でき
るよう設計されている。特に・省エネルギーの見地から
・性状の粗悪な未処理の原油、残査油等の使用及び使用
の検討が盛んである。
In general, gas turbines are designed to use all gaseous fuels and all liquid fuels ranging from kerosene to diesel oil, crude oil, and residual oil. In particular, from the standpoint of energy conservation, the use and use of unprocessed crude oil, residual oil, etc. with poor quality is being actively studied.

また、液体燃料を使用するガスタービンではトラブルの
半数以上が、燃料及び燃料系統に起因すると考えられて
おり、燃料油系統は・ガスタービンを構成する系統の中
で、最も重要な系統の一つであり、その燃料油系統の中
でもフローデバイダはトラブルの発生が多い機器である
。フローデバイダとは、多缶式燃焼器をもつガスタービ
ンで・その各々の燃焼器に燃料を等分に分配する燃料分
配装置である。
In addition, more than half of the troubles in gas turbines that use liquid fuel are thought to be caused by the fuel and fuel system, and the fuel oil system is one of the most important systems among the systems that make up the gas turbine. Among the fuel oil systems, the flow divider is a device that often causes trouble. A flow divider is a fuel distribution device that equally distributes fuel to each combustor in a gas turbine with multiple can combustors.

第1図に、フローデバイダ−の概念図を示す。FIG. 1 shows a conceptual diagram of a flow divider.

フローデバイダは、第1図に示すように、駆動用及び従
動用の歯車の組合せより成るフローデバイダエレメント
1の、駆動歯車を1本の連結シャフト2で接続し、複数
個のフローデバイダエレメントを同一方向に、同一回転
数で回転させることにより1強制的に燃料流量を均等に
分配する機能をもち・燃料油のフローデバイダ出入口の
差圧ΔPにより運転される。フローデバイダ−における
燃料分配の精度が悪い場合には、各燃焼器に供給される
燃料流量の偏差が大きくなることによシ、各燃焼器にお
ける燃焼ガス温度に差異が生じ、タービンに流入する燃
焼ガス温度がアンバランとなシ。
As shown in Fig. 1, the flow divider is a flow divider element 1 consisting of a combination of driving and driven gears.The driving gears are connected by one connecting shaft 2, and multiple flow divider elements are connected to the same It has the function of forcibly evenly distributing the fuel flow rate by rotating the fuel oil in both directions at the same rotation speed.It is operated by the differential pressure ΔP between the fuel oil flow divider inlet and outlet. If the accuracy of fuel distribution in the flow divider is poor, the deviation in the fuel flow rate supplied to each combustor will increase, resulting in a difference in the combustion gas temperature in each combustor, and the combustion flowing into the turbine will increase. The gas temperature is unbalanced.

タービン静翼、高温ガス通過部分の熱変形による破損や
・タービン動翼の高サイクルの熱衝撃による破損等の大
事故をひき起こす原因となるため、フローデバイダにお
ける燃料油の各燃焼器への流量の分配精度は非常に重要
である。3は入口油路・4は出口油路である。第2図に
、フローデバイダの断面図を示す。フローデバイダの性
能を決める因子は、サイドクリアランス7及びチップク
リアランス8である。サイドクリアランス7及びチップ
クリアランス8を小さくする程、燃料流量分配精度(偏
差)はよくなるが・フローデバイダ−エレメント1の歯
車5.6の摺動抵抗が増大し、異物が進入した場合など
に・歯車5.6の固着、すなわち、燃料の供給停止によ
るガスタービンの失火という大事故に至るため、設計に
あたっては、流量分配精度を許容範囲内でおさえる最大
のサイドクリアランス7及びチップクリアランス8の値
を選択する。許容流量偏差は・各燃焼器における最大燃
料流量から最小燃料流量を差し引いた値を平均流量で割
った値で表わされ、その値は数パーセントである。数パ
ーセントの流量分配精度を得るためのサイドクリアラン
ス7及びチップクリアランス8の値は数十ミクロンのオ
ーダである。従って、フローデバイダは・非常に高精度
に製作され・また・使用に際しても、燃料油の急激な温
度変化により、外部のケーシングと内部の歯車5゜6の
延び差のためにクリアランスがなくなり・歯車5.6の
固着現象をひき起こす場合もある・このように、フロー
デバイダは非常に多くのトラブルの要因をもつ機器であ
る。
The flow rate of fuel oil to each combustor in the flow divider can cause major accidents such as damage due to thermal deformation of turbine stationary blades and high-temperature gas passage parts, and damage to turbine rotor blades due to high-cycle thermal shock. The distribution accuracy of is very important. 3 is an inlet oil passage and 4 is an outlet oil passage. FIG. 2 shows a cross-sectional view of the flow divider. The factors that determine the performance of the flow divider are the side clearance 7 and the tip clearance 8. The smaller the side clearance 7 and tip clearance 8, the better the fuel flow distribution accuracy (deviation) will be. However, if the sliding resistance of the gear 5.6 of the flow divider element 1 increases and foreign matter enters the gear. 5.6 sticking, which can lead to a major accident in which the gas turbine misfires due to fuel supply stoppage, therefore, during design, the maximum values of side clearance 7 and tip clearance 8 that keep the flow distribution accuracy within the allowable range were selected. do. The allowable flow rate deviation is expressed as the value obtained by subtracting the minimum fuel flow rate from the maximum fuel flow rate in each combustor divided by the average flow rate, and the value is several percent. The values of the side clearance 7 and tip clearance 8 to obtain a flow distribution accuracy of several percent are on the order of tens of microns. Therefore, the flow divider is manufactured with very high precision, and when in use, due to the sudden temperature change of the fuel oil, there is no clearance due to the difference in length between the outer casing and the inner gear. 5.6 It may cause the sticking phenomenon. In this way, the flow divider is a device that has many causes of trouble.

従来の燃料油系統図を第3図に示す。第3図に示すよう
に、ガスタービンの燃料油系統は・ガスタービン停止時
に燃料を遮断するための、流量遮断弁9、アクセサリギ
ア12ICよ′リフラッチ13を介して駆動される高圧
燃料ポンプ11.バイパス流量調整弁10.高圧フィル
タ14.フローデバイダ15、逆止弁16.燃料ノズル
17・燃焼器18より構成され、ガスタービンに供給さ
れた燃料油は、燃料ノズル17よシ噴射するのに必要な
圧力まで高圧燃料ポンプ11で、加圧され、その下流の
フローデバイダ15により、燃焼器18に分配される。
A conventional fuel oil system diagram is shown in Figure 3. As shown in FIG. 3, the fuel oil system of the gas turbine includes: a high-pressure fuel pump 11 driven via a flow cutoff valve 9, an accessory gear 12IC, and a reflatch 13 to cut off fuel when the gas turbine is stopped; Bypass flow rate adjustment valve 10. High pressure filter 14. Flow divider 15, check valve 16. Comprised of a fuel nozzle 17 and a combustor 18, the fuel oil supplied to the gas turbine is pressurized by a high-pressure fuel pump 11 to the pressure required for injecting it through the fuel nozzle 17, and then transferred to a flow divider 15 downstream thereof. is distributed to the combustor 18.

フローデバイダ15には・速度センサ19が設置してあ
り、フローデバイダの回転数によシ実流量が計算され、
あらかじめ設定しである設定流量信号21との偏差20
により、バイパス流量調整弁10で高圧燃料ポンプ11
のバイパス流量を制御して燃料流量を調整している。・
この時の各機器における・ガスタービン起動から定格負
荷までの圧力特性を第4図に示す。第4図で。
A speed sensor 19 is installed in the flow divider 15, and the actual flow rate is calculated based on the rotation speed of the flow divider.
Deviation 20 from the preset flow rate signal 21
Accordingly, the high pressure fuel pump 11 is activated by the bypass flow rate adjustment valve 10.
The fuel flow rate is adjusted by controlling the bypass flow rate.・
Figure 4 shows the pressure characteristics of each device at this time from gas turbine startup to rated load. In Figure 4.

燃料流量22は・ガスタービン回転数及び負荷が上昇す
るにつれて徐々に上昇し、燃料ノズル差圧23は流量の
二乗に比例して上昇し、燃料ポンプの吐出圧力25・す
なわち、フローデバイダの入口圧力は・ガスタービン回
転数が定格点に近づくにつれて急激に上昇し・負荷をと
るにつれゆるやかに上昇する燃焼器内圧24についても
、燃料ポンプ吐出圧力25と同様に、ガスタービン回転
数が定格点に近づくにつれて急激に上昇し・負荷をとる
につれてゆるやかに上昇する傾向を示す。燃焼器内圧2
4に燃料ノズル差圧23を加えた圧力は・フローデバイ
ダ出口圧26を示し・フローデバイダ入口圧25とフロ
ーデバイダ出口圧26の差圧は、すなわち、フローデバ
イダの駆動力も燃料流量22の二乗に比例して上昇する
傾向を示す。
The fuel flow rate 22 gradually increases as the gas turbine speed and load increase, the fuel nozzle differential pressure 23 increases in proportion to the square of the flow rate, and the fuel pump discharge pressure 25 increases, i.e., the flow divider inlet pressure. As for the combustor internal pressure 24, which increases rapidly as the gas turbine rotation speed approaches the rated point and gradually increases as the load is applied, the gas turbine rotation speed approaches the rated point similarly to the fuel pump discharge pressure 25. It shows a tendency to increase rapidly as the load increases and to gradually increase as the load increases. Combustor internal pressure 2
The pressure obtained by adding the fuel nozzle differential pressure 23 to 4 indicates the flow divider outlet pressure 26. It shows a tendency to increase proportionally.

従来の燃料系統では、前述のように・フローデバイダが
非常に狭いクリアランスで使用されるため・ギアとケー
シングの間に・異物が進入したり・燃料中の腐食性成分
により、ギア又はケーシングが腐食して、クリアランス
がなくなると、ギアに大きな制動力がかかり、フローデ
バイダが燃料油の出入口の差圧により、駆動されている
ため、異物の進入などによる制動力の増大にうちかつ瞬
間的な駆動力を与えることが出来ず・フローデバイダの
ギアが停止する危険性があり・性状の粗悪な燃料油を使
用するに従い・フローデバイダのギアが固着する危険性
は増大する。運転中のフローデバイダの停止は・燃料の
遮断、すなわち・ガスタービントリップに至るため、フ
ローデバイダの信頼性はガスタービン全体の運転信頼性
の点から非常に大きな影響があり、信頼性を向上させる
ことが何よりも優先されるべきである。
In conventional fuel systems, as mentioned above, the flow divider is used with a very narrow clearance, foreign objects can enter between the gear and the casing, and corrosive components in the fuel can corrode the gear or casing. When the clearance disappears, a large braking force is applied to the gear, and since the flow divider is driven by the differential pressure between the fuel oil inlet and outlet, it can overcome the increase in braking force caused by foreign objects, etc., and provide instantaneous drive. There is a risk that the gears of the flow divider may stop because of the inability to apply force, and the risk of the gears of the flow divider becoming stuck increases as fuel oil of poor quality is used. Since the stoppage of the flow divider during operation will lead to fuel cutoff, that is, gas turbine trip, the reliability of the flow divider has a very large impact on the operational reliability of the entire gas turbine, and it is important to improve reliability. should be prioritized above all else.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、異物などが進入して制動力が増大した
場合に・大きな回転力を与えることを可能にし・フロー
デバイダを定常時には小さな駆動力で運転させ、異常時
に大きな回転力を与えられるようフローデバイダ入口圧
力を適正に制御するフローデバイダを提供するにある。
The purpose of the present invention is to: - make it possible to apply a large rotational force when the braking force increases due to the intrusion of foreign objects; - enable the flow divider to operate with a small driving force in normal conditions, and provide a large rotational force in abnormal situations. Therefore, it is an object of the present invention to provide a flow divider that properly controls the flow divider inlet pressure.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を図面に従って説明する。第5図は本発明
の一実施例を示す。燃料ポンプ11により昇圧された燃
料油は、高圧燃料油フィルタ14を経てフローデバイダ
15に導かれるが、フローデバイダ14は・あらかじめ
設定された設定流量信号21により、ガスタービンの運
転条件に応じて速度を制御できる可変速電動機27によ
り駆動する。尚、設定信号のみにより制御される可変速
度電動機27は、現在・容易に入手できる。また。
The present invention will be explained below with reference to the drawings. FIG. 5 shows an embodiment of the invention. The fuel oil pressurized by the fuel pump 11 is guided to the flow divider 15 via the high-pressure fuel oil filter 14. It is driven by a variable speed electric motor 27 that can control the speed. Note that variable speed motors 27 that are controlled only by setting signals are currently readily available. Also.

第5図に示される70−デパイダ15は、可変速電動機
27によシ駆動されるが、本質的には、フローデバイダ
15の出入口の差圧により駆動される従来のフローデバ
イダ15と同じであるため、フローデバイダ本体は・充
分実績をもつ、従来のフローデバイダ本体が使用可能で
ある。従って。
The 70-divider 15 shown in FIG. 5 is driven by a variable speed electric motor 27, but is essentially the same as a conventional flow divider 15 driven by a pressure differential at the inlet and outlet of the flow divider 15. Therefore, the flow divider body can be a conventional flow divider body that has a sufficient track record. Therefore.

フローデバイダのクリアランス、すなわち、フローデバ
イダの燃料分配精度を決定するサイドクリアランス7及
びチップクリアランス8の値も・従来の実績あるフロー
デバイダ15の値を使用することができる。フローデバ
イダ15を出た燃料油をチェック弁16、燃料ノズル1
7を経て、燃焼器18に供給する。なお、フローデバイ
ダ15の入口圧力の設定は、通常運転時は、わずかな駆
動力でフローデバイダが運転できるようにし、駆動機で
ある可変速電動機27の最大出力に対し、大きな余裕を
もって運転し、異物などの進入により・制動力が増大す
る異常時に大きな回転力を与えられるように設定するこ
とが必要である。フローデバイダ15の駆動力を小さく
しておくには、フローデバイダ150入口圧力、すなわ
ち、燃料ポンプ出口圧力25とフローデバイダ出口圧力
、つまり、燃料ノズル17の入口圧力の圧力差をできる
だけ小さくすることが必要である。しかるに、フローデ
バイダ15の出口圧力26は、第4図に示すように、流
量の二乗に比例し、大きく変化するので、ガスタービン
用燃料ポンプ11の出口圧力25を、ガスタービンの運
転状態に応じて制御する必要がある。そのため、燃焼器
の内圧については、その圧力を・圧力検知器29によシ
測定するO燃焼器内圧の測定は、燃焼器流入前の通常測
定されるガスタービン主軸流圧縮機吐出空気圧力より間
接的にめることもできる。さらに、第6図に示すように
、燃料ノズル17の構造により決定される・燃料ノズル
17の燃料流量に対する差圧曲線32工りわずかに低く
設定した差圧曲線33を制御回路31に設置しておき前
述の燃焼器内圧24及び制御回路31に設置された差圧
及びフローデバイダ回転数より計算される実測燃料流量
を入力して得られる差圧値の値とを足しあわせた圧力値
となるようにフローデバイダ入口圧力・すなわち、燃料
ポンプ出口圧力25を調整する制御回路30を設け、燃
料バイパス弁10を・圧力調整弁として使用することに
より、フローデバイダ15の出入口差圧を小さく抑える
ことができる。
The values of the flow divider clearance, that is, the side clearance 7 and tip clearance 8 that determine the fuel distribution accuracy of the flow divider, can also be the values of the conventional flow divider 15 that have a proven track record. The fuel oil coming out of the flow divider 15 is transferred to the check valve 16 and the fuel nozzle 1
7 and is supplied to the combustor 18. Note that the inlet pressure of the flow divider 15 is set so that the flow divider can be operated with a small driving force during normal operation, and is operated with a large margin for the maximum output of the variable speed electric motor 27, which is the driving machine. It is necessary to set it so that a large rotational force can be applied in the event of an abnormality in which the braking force increases due to the entry of foreign objects, etc. In order to keep the driving force of the flow divider 15 small, it is necessary to minimize the pressure difference between the flow divider 150 inlet pressure, that is, the fuel pump outlet pressure 25, and the flow divider outlet pressure, that is, the inlet pressure of the fuel nozzle 17. is necessary. However, as shown in FIG. 4, the outlet pressure 26 of the flow divider 15 is proportional to the square of the flow rate and varies greatly. It is necessary to control the Therefore, regarding the internal pressure of the combustor, the measurement of the internal pressure of the O combustor using the pressure sensor 29 is more indirect than the gas turbine main axial flow compressor discharge air pressure that is normally measured before entering the combustor. You can also hit the target. Furthermore, as shown in FIG. 6, a differential pressure curve 32 for the fuel flow rate of the fuel nozzle 17, which is determined by the structure of the fuel nozzle 17, and a differential pressure curve 33 set slightly lower are installed in the control circuit 31. The pressure value is obtained by adding the above-mentioned combustor internal pressure 24, the differential pressure installed in the control circuit 31, and the differential pressure value obtained by inputting the measured fuel flow rate calculated from the flow divider rotation speed. By providing a control circuit 30 to adjust the flow divider inlet pressure, that is, the fuel pump outlet pressure 25, and using the fuel bypass valve 10 as a pressure regulating valve, the differential pressure at the inlet and outlet of the flow divider 15 can be kept small. .

この制御システムを設けた場合のガスタービン起動から
定格負荷までの圧力特性を第7図に示す。
FIG. 7 shows the pressure characteristics from gas turbine startup to rated load when this control system is installed.

第7図で、燃料ノズル差圧曲線23よりわずかに低く設
定した差圧曲線34と・フローデの回転数より計算され
る差圧と、燃焼器内圧24とを足しあわせた圧力を、燃
料ポンプ出口圧力25すなわち、フローデバイダ入口圧
力とすることにより。
In FIG. 7, the pressure that is the sum of the differential pressure curve 34 set slightly lower than the fuel nozzle differential pressure curve 23, the differential pressure calculated from the Frode rotation speed, and the combustor internal pressure 24 is calculated at the fuel pump outlet. By setting the pressure to 25, i.e., the flow divider inlet pressure.

燃料ノズル差圧23及び燃焼器内圧24を足しあわせた
、燃料ノズル入口圧力26.すなわち、フローデバイダ
出口とすることにより、フローデバイダの出入口圧力、
つまり、燃料ポンプ出口圧力25と燃料ノズル入口圧力
26の差圧を低く抑え名、ことができる。
Fuel nozzle inlet pressure 26. which is the sum of fuel nozzle differential pressure 23 and combustor internal pressure 24. In other words, by setting the flow divider outlet, the pressure at the inlet and outlet of the flow divider,
In other words, the differential pressure between the fuel pump outlet pressure 25 and the fuel nozzle inlet pressure 26 can be kept low.

〔海開の効果〕[Effect of sea opening]

本発明によれば・異物などが進入して制動力が増大した
場合、大きな回転力を与え、フローデバイダを定常時に
は小さな駆動力で運転させ、異常時に大きな回転力を与
えることができる。
According to the present invention: - When the braking force increases due to the entry of foreign matter, a large rotational force can be applied, the flow divider can be operated with a small driving force in normal conditions, and a large rotational force can be applied in abnormal conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフローデバイダの概念図、第2図はフローデバ
イダの構造図、第3図は従来の燃料系統の系統図、第4
図は従来の燃料系統における各機器の圧力特性を示すグ
ラフ、第5図は本発明の一実施例を示す燃料系の系統図
、第6図は制御回路内に設置される差圧特性図、第7図
は燃料系統各機器の圧力特性を示すグラフ、3・・・入
口油路、4・・・出口油路、5・・・駆動用歯車、6・
・・従動用歯車、20・・・制御回路。 代理人 弁理士 高橋明夫 も1図 も2図 も3図 千ω図 ガ又フーヒ一が肖(7S) も6図 翳″1図 U 、υス9−ヒ′ン項悄可(y=)
Figure 1 is a conceptual diagram of a flow divider, Figure 2 is a structural diagram of a flow divider, Figure 3 is a system diagram of a conventional fuel system, and Figure 4 is a diagram of a conventional fuel system.
The figure is a graph showing pressure characteristics of each device in a conventional fuel system, FIG. 5 is a system diagram of a fuel system showing an embodiment of the present invention, and FIG. 6 is a differential pressure characteristic diagram installed in a control circuit. Figure 7 is a graph showing the pressure characteristics of each device in the fuel system, 3... Inlet oil passage, 4... Outlet oil passage, 5... Drive gear, 6...
... Driven gear, 20... Control circuit. The agent and patent attorney, Akio Takahashi, also has figures 1 and 2, 3 figures, 1,000 ω figures, Fuhiichiga Portrait (7S), 6 figures, 1 figure U, υsu9-hi'n term, y=).

Claims (1)

【特許請求の範囲】 1、 フローデバイダを備えたガスタービンにおいて・ 前記ガスタービン用の燃料ポンプの出口圧力を燃焼器の
内圧、燃料ノズルの差圧及びフローデバイダ差圧の和の
圧力となるような制御回路を設けたことを特徴とするガ
スタービン用フローデバイダO
[Claims] 1. In a gas turbine equipped with a flow divider, the outlet pressure of the fuel pump for the gas turbine is made to be the sum of the internal pressure of the combustor, the differential pressure of the fuel nozzle, and the differential pressure of the flow divider. A flow divider O for a gas turbine, characterized in that it is equipped with a control circuit.
JP10459584A 1984-05-25 1984-05-25 Flow divider for gas turbine Pending JPS60249626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10459584A JPS60249626A (en) 1984-05-25 1984-05-25 Flow divider for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10459584A JPS60249626A (en) 1984-05-25 1984-05-25 Flow divider for gas turbine

Publications (1)

Publication Number Publication Date
JPS60249626A true JPS60249626A (en) 1985-12-10

Family

ID=14384778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10459584A Pending JPS60249626A (en) 1984-05-25 1984-05-25 Flow divider for gas turbine

Country Status (1)

Country Link
JP (1) JPS60249626A (en)

Similar Documents

Publication Publication Date Title
US4854120A (en) Performance envelope extension method for a gas turbine engine
CA1072364A (en) Stall detector for gas turbine engine
JP4896893B2 (en) Apparatus for supplying fuel to a gas turbine engine while adjusting the fuel flow rate
US4733529A (en) Performance envelope extension device for a gas turbine engine
JP5584430B2 (en) Method and system enabling over-rotation prevention
US6619027B1 (en) Gas turbine having rotor overspeed and overboost protection
US4625510A (en) Stress limiter apparatus for a gas turbine engine
US9776727B2 (en) Method of controlling a cooling system
JP5779313B2 (en) Method and system enabling over-rotation prevention
JP2002500314A (en) Bi-level fluid pressurization system
US4216672A (en) Apparatus for detecting and indicating the occurrence of a gas turbine engine compressor stall
JPH0580576B2 (en)
US20050144957A1 (en) Methods for operating gas turbine engines
EP3392485B1 (en) Fuel control system
EP3663566B1 (en) Passive stability bleed valve with adjustable reference pressure regulator and remote override capability
EP3640454A1 (en) Fuel metering system
JP2010019248A (en) Method and system to facilitate over-speed protection
US6915639B1 (en) Method and apparatus for gas turbine over-speed protection
US3882672A (en) System arrangement for governing gas turbine engines, especially gas turbine aero-engines
JPS60249626A (en) Flow divider for gas turbine
EP0670425B1 (en) Method of surge detection
US4135854A (en) Control system for variable pitch axial fan for utility boiler
CN113710887B (en) Turbine fuel supply system for regulating fuel flow
JP3110258B2 (en) Surge detector with asymmetric centrifugal compressor diffuser
US20240150010A1 (en) Systems and methods for controlling propeller control unit fluid pressure