JPS60249384A - Raman laser device - Google Patents

Raman laser device

Info

Publication number
JPS60249384A
JPS60249384A JP10469184A JP10469184A JPS60249384A JP S60249384 A JPS60249384 A JP S60249384A JP 10469184 A JP10469184 A JP 10469184A JP 10469184 A JP10469184 A JP 10469184A JP S60249384 A JPS60249384 A JP S60249384A
Authority
JP
Japan
Prior art keywords
container
exhaust pipe
gas
raman
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10469184A
Other languages
Japanese (ja)
Inventor
Akitaka Yamada
山田 明孝
Toshio Sato
俊雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10469184A priority Critical patent/JPS60249384A/en
Publication of JPS60249384A publication Critical patent/JPS60249384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/305Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in a gas

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To eliminate the decrease in gain due to temperature rise by constructing the titled device in such a manner that the medium gas being introduced-in is always passed through a laser light path folding back and forth between introduced concave mirrors without being confined in the container. CONSTITUTION:An exhaust pipe 14 is connected at the top of the container 10 with the arrangement of a pair of concave-spherical reflection mirrors 11a and 11b. On the other hand, in order to keep the inner temperature of the container 10, an outer container 16 surrounding the whole container 10 by providing the space 15 is provided. The outer container 16 is installed to a supply pipe 12 and the exhaust pipe 14 and encloses the inner container 10. Besides, a supply pipe 17 and an exhaust pipe 18 to supply the space 15 with a cooling gas coming to a lower temperature of the same degree as para-hydrogen, and further to exhaust it are connected to the upper and lower parts, respectively. Continuous passing of the coolant gas without confinement by such a construction enables rapid elimination of the heat evolving with Raman conversion; therefore, the decrease in gain due to temperature rise does not occur, and Raman oscillation can be accomplished with good efficiency.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はラマンレーザ装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a Raman laser device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

レーザ技術は各分野において適用され、その発 。 Laser technology is applied in various fields and its origins.

展は目覚しいものがある。化学分野も適用される分野の
一つでアシ、各種波長のレーザ光が反応促進や合成のた
めに適用されている。例えば、パラ水素ガスの回転散乱
遷移を利用し、炭酸ガスレーザ光をパラ水素ガスのスト
ークスシフ) (3s4.3m ’ )した16μm付
近のコヒーレント光に変換することが考見られている。
The exhibition is spectacular. The chemical field is also one of the fields in which it is applied, and laser light of various wavelengths is used for reaction promotion and synthesis. For example, it has been considered to utilize the rotational scattering transition of parahydrogen gas to convert carbon dioxide laser light into coherent light of around 16 μm with a Stokes shift (3s4.3m') of parahydrogen gas.

これは誘導ラマン散乱のひとっであるが、その利得が〜
10’m’と小さく、太きな変換出力を得るには長い相
互作用長が必要である。このため、従来では第2図に示
すように、一方の側部に入射窓(ハ)、他方の出射窓(
2G)を設けた両側部をもつ円筒状の容器(5)を有し
、この容器(財)内を低温のパラ水素ガスで置換して封
じ込め、かつ上記両側部の内面をそれぞれ内面鏡(28
a)、 (28b)とした装置が適用されていた。入射
窓(5)から容器(27)内に導かれたレーザ光(L)
は凹面鏡(28a)、 (29b)間を複数往復し、ラ
マン変換されて出射窓(2’8 b )から所定の波長
の光となって出光する。とのような冷却したパラ水素ガ
スを容器(27)内に封じ込める構成ではガス分子のエ
ネルギ状態を最低レベルにし利得をできるだけ大きくし
ている。しかしながら、ラマン変換が生じると、パラ水
素ガスのエネルギ準位が1分子当シ、 354.3cm
 あがシ、シたがって水素ガスの温度が上昇することに
なる。このような温度上昇は入射レーザの光路で局部的
に生じ、その熱は周囲に拡散する。パラ水素の温度があ
がると、利得が減じたシ、ガスが光学的に不均一になる
ため、高出力(高繰り返し)が−得られない不都合があ
った。
This is a type of stimulated Raman scattering, but its gain is ~
As small as 10'm', a long interaction length is required to obtain a thick conversion output. For this reason, conventionally, as shown in Fig. 2, one side has an entrance window (C) and the other side has an exit window (C).
The container (5) has a cylindrical container (5) with both side parts equipped with a gas cylinder (2G), and the inside of this container (goods) is sealed by replacing it with low-temperature parahydrogen gas.
The devices described in a) and (28b) were applied. Laser light (L) guided into the container (27) from the entrance window (5)
The light goes back and forth between the concave mirrors (28a) and (29b) multiple times, undergoes Raman conversion, and exits from the exit window (2'8b) as light of a predetermined wavelength. In the configuration in which cooled parahydrogen gas is confined within the container (27), the energy state of the gas molecules is kept at the lowest level to maximize the gain as much as possible. However, when Raman conversion occurs, the energy level of parahydrogen gas per molecule is 354.3 cm.
As a result, the temperature of the hydrogen gas increases. Such a temperature increase occurs locally in the optical path of the incident laser, and the heat is diffused to the surroundings. When the temperature of parahydrogen increases, the gain decreases and the gas becomes optically non-uniform, making it difficult to obtain high output (high repetition rates).

〔発明の目的〕[Purpose of the invention]

本発明はラマン変換に伴なって発生する熱を急速に排除
し高燥シ返しパルス光を得るラマンレーザ装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Raman laser device that rapidly eliminates the heat generated during Raman conversion and obtains highly dry pulsed light.

〔発明の概要〕[Summary of the invention]

導入された媒質ガスを容器内に封じ込めず、導入され凹
面鏡間を折シ返すレーザ光路の間に常時流す構成にして
温度上昇による利得低下の不都合、を解消したものであ
る。
The introduced medium gas is not confined within the container, but is constantly allowed to flow between the introduced laser beam paths and back and forth between the concave mirrors, thereby eliminating the disadvantage of gain reduction due to temperature rise.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を一実施例を示す図面に基いて説明する。 The present invention will be explained below based on the drawings showing one embodiment.

第1図において、横断形状が長方形になり、密閉された
箱状の容器(10)を有し、この容器の短手側になる両
内壁面は高純度の銅製から々る一対の凹球面状の反射鏡
(Ila)、 (llb)になシ、これらは互いの反射
面を対向している。容器α0)の図中における上部およ
び下部はそれぞれ外方に集束するコーン状に形成されて
いる。上記コーン状の下部の頂部には77Kに冷却され
たパラ水素ガスを容器α0)の内部に供給する供給管0
2)が接続されている。上記下部の内t1[1には上記
パラ水素ガスを容器(10)に均一に満たすために、多
孔質の緩衝フィルタ0国が設けられている。また、上記
の容器00)の上部における頂部には排出管(141が
接続されている。一方、容器00の内部温度を保持する
ため、この容器αO)全体を空間部←ωを設けて取シ囲
む外客器αeが設けられている。外容器α0は供給管α
りおよび排出管040部分に取シ付けられ内容器00)
を密閉し、また、空間部σ騰に上記パラ水素ガスと同程
度の低温になる冷却ガスを供給しさらに排出するための
供給管αη、排出管O8が上・下部にそれぞれ接続され
ている。容器α〔、外容器αQのそれぞれの短手になる
両側部にはこれら内容器を貫通してそ・れぞれ気密にな
る入射窓α優および出射窓(21)が上方側および下方
側に位置して設けられ、上方側になる入射窓α優に主と
して炭酸ガスレーザ光(L)が導入されるようになって
いる。なお、上記において1反射鏡(11a)、 (l
lb)のそれぞれの寸法の一例を述べると1幅3001
m。
In Fig. 1, the cross-sectional shape is rectangular and has a closed box-like container (10), and both inner walls on the short side of the container have a pair of concave spherical surfaces made of high-purity copper. The reflecting mirrors (Ila) and (llb) have their reflecting surfaces facing each other. The upper and lower parts of the container α0) in the figure are each shaped like a cone that converges outward. At the top of the cone-shaped lower part is a supply pipe 0 that supplies parahydrogen gas cooled to 77K to the inside of the container α0).
2) is connected. A porous buffer filter is provided at t1[1 in the lower part of the container in order to uniformly fill the container (10) with the parahydrogen gas. In addition, a discharge pipe (141) is connected to the top of the upper part of the container 00). On the other hand, in order to maintain the internal temperature of the container 00, the entire container αO) is removed by providing a space ←ω. A surrounding outer container αe is provided. Outer container α0 is supply pipe α
and the inner container 00) attached to the discharge pipe 040 part.
In addition, a supply pipe αη and a discharge pipe O8 are connected to the upper and lower parts, respectively, for supplying and discharging a cooling gas having a temperature similar to that of the parahydrogen gas to the space σ. On both shorter sides of the container α and the outer container αQ, there are an entrance window αY and an exit window (21) on the upper and lower sides that pass through these inner containers and are airtight, respectively. The carbon dioxide laser beam (L) is mainly introduced into the upper entrance window α. In addition, in the above, 1 reflecting mirror (11a), (l
An example of each dimension of lb) is 1 width 3001
m.

高さ200龍程度になり、また対向間隔の最短部1は4
00m、球面ノ曲率(R)は2180 mm テある。
The height is about 200 dragons, and the shortest part 1 of the facing distance is 4
00m, and the spherical curvature (R) is 2180 mm.

上記の構成による作用を以下に述べる。The effects of the above configuration will be described below.

先ず、供給管αり、aηよりそれぞれ冷却用のガスを供
給し、内容器αCの内部を77Kに保持する。この状態
において;ピーク値が比較的高い炭酸ガスレーザ光(L
)を入射窓(1つから内容器(10)内に導入する。導
入された炭酸ガスレーザ光(L)は反射鏡(lla)、
 (llb)間を折シ返して反射される。この折シ返し
の反射において、反射面の中央部分で集光されつつ、パ
ラ水素の回転ラマン遷移により、16μm帯の光が発生
する。これによシ炭酸ガスレーザ光(L)は減衰してい
く。上記折り返し数は20回程度になシ、少しずつ下方
に反射点が移動するが、出射窓−に至るまでに炭酸ガス
レーザ光(L)は16μm帯のコヒーレント光(La 
)に変換される。
First, cooling gas is supplied from the supply pipes α and aη, respectively, to maintain the inside of the inner container αC at 77K. In this state; carbon dioxide laser light (L) with a relatively high peak value
) is introduced into the inner container (10) through the entrance window (one).The introduced carbon dioxide laser light (L) passes through the reflecting mirror (lla),
(llb) and is reflected back. In this folded reflection, light in the 16 μm band is generated due to the rotational Raman transition of parahydrogen while being focused at the central portion of the reflecting surface. As a result, the carbon dioxide laser light (L) is attenuated. The above number of turns is about 20 times, and the reflection point moves downward little by little, but by the time it reaches the exit window, the carbon dioxide laser beam (L) is a coherent beam in the 16 μm band (La
) is converted to

ところで、炭酸ガスレーザ光(L)の1パルスで内容器
00)の内部のパラ水素ガスの温度は局所的に上昇する
。このために、供給管圓からは次のパルス光が入射する
前の温度上昇分を打ち消す程度の流速例えば100OP
PSであれば2400m”/sにして常時77にの温度
に調節されたパラ水素ガスが供給される。
By the way, the temperature of the parahydrogen gas inside the inner container 00) locally increases with one pulse of the carbon dioxide laser beam (L). For this purpose, the flow rate from the supply tube is set at a flow rate of, for example, 100 OP, enough to cancel out the temperature rise before the next pulsed light enters.
In the case of PS, parahydrogen gas whose temperature is constantly adjusted to 77°C is supplied at 2400 m''/s.

なお、排出管α(イ)よシ排気されたパラ水素ガスは回
収され冷却さ−れて再び供給管(121に戻される。
The parahydrogen gas exhausted through the exhaust pipe α(a) is recovered, cooled, and returned to the supply pipe (121).

〔発明の効果〕〔Effect of the invention〕

媒質ガスを封じ込めず、常時流すことにより。 By not confining the medium gas and allowing it to flow constantly.

2マン変換に伴外っで発生する熱を急速に排除するよう
にしたので、温度上昇による利得低下はなく、効率よく
ラマン変換される。1だ、従来では遅い熱拡散のため、
最大限IQPPS程変の繰シ返しであったが、100〜
100OPPSの繰シ返しが得られるようになった。
Since the heat generated outside of the 2-Man conversion is rapidly removed, there is no decrease in gain due to temperature rise, and Raman conversion is performed efficiently. 1. Conventionally, due to slow heat diffusion,
The maximum IQPPS was repeatedly changed, but it was 100~
Now you can get 100 OPPS of repetition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は従来
例を示す斜視図である。 α0・・・容器 (lla)、 (Ilb)・・・反射
鏡α本αカ・・・供給管 (14)、 as・・・排出
管(1鳴・・・入射窓 (2o)・・・出射窓(L)・
・・炭酸ガスレーザ光 代理人 弁理士 則 近 憲 佑 (ほか1名) 第1図 第 2 図 洗 26
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a perspective view showing a conventional example. α0...Container (lla), (Ilb)...Reflector α piece...Supply pipe (14), as...Discharge pipe (1 ring...Inlet window (2o)... Output window (L)・
...Carbon dioxide laser light agent Patent attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 2 Zuarai 26

Claims (2)

【特許請求の範囲】[Claims] (1)容器と、この容器の一方の対向する両側部に互い
の反射面を所定の間隔を置いて対向して設けられる一対
の凹面鏡と、上記容器の他方の対向する側部の一方に接
続され上記容器の内部に媒質気体を供給する供給管と、
上記他方の対向する側部の他方に接続され上記供給され
た媒質気体を排気するだめの排出管と、上記容器の外側
面を冷却する冷却手段と、上記容器の内部にレーザ光を
導くために上記容器に気密に設けられる入射窓と、この
入射窓から導入されたレーザ光が上記一対の凹面鏡間を
折り返して変換された所定波長のビームを出光させるた
めに上記容器に気密に設けられる出射窓とを備えたこと
を特徴とするラマンレーザ装置。
(1) A container, a pair of concave mirrors provided on opposing sides of one of the containers with their reflective surfaces facing each other with a predetermined interval, and connected to one of the other opposing sides of the container. a supply pipe for supplying a medium gas into the interior of the container;
an exhaust pipe connected to the other opposite side of the container for exhausting the supplied medium gas; a cooling means for cooling the outer surface of the container; and a cooling means for guiding a laser beam into the interior of the container. an entrance window that is airtightly provided in the container; and an exit window that is airtightly provided in the container so that the laser light introduced from the entrance window is returned between the pair of concave mirrors and a converted beam of a predetermined wavelength is outputted. A Raman laser device comprising:
(2)一対の凹面鏡は内器の側部になることを特徴とす
る特許請求の範囲第1項記載のラマンレーザ装置。
(2) The Raman laser device according to claim 1, wherein the pair of concave mirrors are on the sides of the internal device.
JP10469184A 1984-05-25 1984-05-25 Raman laser device Pending JPS60249384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10469184A JPS60249384A (en) 1984-05-25 1984-05-25 Raman laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10469184A JPS60249384A (en) 1984-05-25 1984-05-25 Raman laser device

Publications (1)

Publication Number Publication Date
JPS60249384A true JPS60249384A (en) 1985-12-10

Family

ID=14387492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10469184A Pending JPS60249384A (en) 1984-05-25 1984-05-25 Raman laser device

Country Status (1)

Country Link
JP (1) JPS60249384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501271A (en) * 1986-11-04 1989-04-27 ヒューズ・エアクラフト・カンパニー Repetitive pulse Raman cell with vibrating blades for gas circulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501271A (en) * 1986-11-04 1989-04-27 ヒューズ・エアクラフト・カンパニー Repetitive pulse Raman cell with vibrating blades for gas circulation

Similar Documents

Publication Publication Date Title
US3745482A (en) Carbon dioxide laser employing multiple gases including helium
US4891817A (en) Pulsed dye laser apparatus for high PRF operation
US4194170A (en) Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases
JPH07106665A (en) Solid state laser unit
JPH06224500A (en) Semiconductor laser pumping multiplex molecule gas laser
Cool et al. Efficient purely chemical CW laser operation
US4520486A (en) Gas flow laser oscillator
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
JPS60249384A (en) Raman laser device
US4783789A (en) Annular lasing apparatus
US4163199A (en) Thermal-radiation excited vibrational-exchange pumped laser generator
CN218275504U (en) Carbon dioxide glass tube laser with fundamental mode laser output
US4780882A (en) Optical resonator and laser
US4297600A (en) Multipath Raman cell for wavelength conversion
CN112186493A (en) Novel two-photon pumping rubidium steam blue laser based on hollow-core photonic crystal fiber
US3688216A (en) Cell for use in a circulating liquid laser
US3663891A (en) Cell for use in a circulating liquid laser
US3383622A (en) End pumped laser structures employing immersion optics
US3432766A (en) Apparatus for producing stimulated emission of radiation
JPH07131092A (en) Solid-state laser equipment
US3713030A (en) Apparatus for and method of providing population inversion
US5323413A (en) Apparatus for the laser dissociation of molecules
US3550034A (en) Repetitively-pulsed,wavelength-selective laser
US4168473A (en) Internal arrester beam clipper
JPS5460590A (en) Laser oscillator