JPS60249035A - Test piece for fluidized bed thermal fatigue test - Google Patents

Test piece for fluidized bed thermal fatigue test

Info

Publication number
JPS60249035A
JPS60249035A JP10460984A JP10460984A JPS60249035A JP S60249035 A JPS60249035 A JP S60249035A JP 10460984 A JP10460984 A JP 10460984A JP 10460984 A JP10460984 A JP 10460984A JP S60249035 A JPS60249035 A JP S60249035A
Authority
JP
Japan
Prior art keywords
test piece
test
thermal fatigue
center
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10460984A
Other languages
Japanese (ja)
Inventor
Noritoshi Ishikawa
文紀 石川
Takeshi Yasuda
健 安田
Akira Okayama
岡山 昭
Hiromi Kozobara
楮原 広美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10460984A priority Critical patent/JPS60249035A/en
Publication of JPS60249035A publication Critical patent/JPS60249035A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/60Investigating resistance of materials, e.g. refractory materials, to rapid heat changes

Abstract

PURPOSE:To evaluate exactly a resistance to thermal fatigue of a material by generating a thermal distortion which is equal to an actual machine, by forming a surface extending from a thick-walled part of the center to a thin part of the outside periphery of an abacus counter-shaped test piece for a fluidized bed thermal fatigue test, to curved surface of a recessed type. CONSTITUTION:A part extending from a center part 10 of a test piece to a tip part 11 is varied like a curve, and a cooling speed of only the tip part 11 has been increased without changing a cooling speed of the thick-walled part 10. Therefore, in the test piece, its isothermal diagram becomes denser, the temperature gradient of the center part and the tip part becomes large, and a thermal distortion which is equal to an actual machine is generated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン耐熱超合金の熱疲労特性評価法に
係り、特にガスタービン実機運転条件をよく模擬するこ
とのでき、精度良くがっ簡便にガスタービン用耐熱超合
金の耐熱疲労性を評価できる試験片に関するものである
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for evaluating thermal fatigue properties of heat-resistant superalloys for gas turbines, and in particular, a method for evaluating thermal fatigue properties of gas turbine heat-resistant superalloys, which can closely simulate the operating conditions of an actual gas turbine, and can be performed easily and accurately. This invention relates to a test piece that can evaluate the thermal fatigue resistance of heat-resistant superalloys for gas turbines.

〔発明の背景〕[Background of the invention]

ガスタービン用耐熱超合金の耐熱疲労性は一般に流動床
熱疲労試験によって評価される。流動床試験機の概略図
を第1図に示すが、試験機は高温炉1と低温炉2とから
なり、低温炉は電気ヒーター5.高温炉は都市ガス7の
燃焼により所定の温度に維持される。試験は一般に低温
炉150℃〜300℃、高温炉850℃〜1100℃の
温度条件でなされ、試験片4を移動装置3により高温炉
と低温炉とに交互に入れることにより試験を行う。試験
片はこのため急熱、急冷を受け熱サイクルの繰返しによ
り試験片には割れが発生する。材料の耐熱疲労性の評価
は割れの発生する熱サイクルの繰返し数によって評価す
る。
Thermal fatigue resistance of heat-resistant superalloys for gas turbines is generally evaluated by fluidized bed thermal fatigue testing. A schematic diagram of the fluidized bed test machine is shown in Fig. 1. The test machine consists of a high temperature furnace 1 and a low temperature furnace 2, and the low temperature furnace is equipped with an electric heater 5. The high temperature furnace is maintained at a predetermined temperature by combustion of city gas 7. The test is generally carried out under temperature conditions of 150 DEG C. to 300 DEG C. in a low temperature furnace and 850 DEG C. to 1100 DEG C. in a high temperature furnace. For this reason, the test piece undergoes rapid heating and cooling, and cracks occur in the test piece due to repeated thermal cycles. The thermal fatigue resistance of a material is evaluated based on the number of repetitions of thermal cycles at which cracks occur.

従来、流動床試験に用いられてきた試験片は第2図(a
)のナイフェツジ型、(b)のディスク型のものであっ
た。これらはいずれも中心肉厚部8゜10から薄肉部9
,11までが直線的に変化しており、中心部10と先端
部11の温度変化率の差によって試験片に温度勾配をつ
け、熱応力熱ひずみを発生させる。これら試験片は中心
部10から先端部11までの変化が直線であるため、試
験片に発生する温度勾配が少なく、実機ガスタービンノ
ズルの運転条件を模擬した850℃、:!300℃の温
度条件では発生する熱ひずみが実機よりも小さくなる。
The test pieces conventionally used in fluidized bed tests are shown in Figure 2 (a
) was of the knife type, and (b) was of the disk type. These are all from the center thick part 8°10 to the thin part 9
, 11 change linearly, and the difference in temperature change rate between the center portion 10 and the tip portion 11 creates a temperature gradient in the test piece, generating thermal stress and thermal strain. These test pieces have a linear change from the center 10 to the tip 11, so there is little temperature gradient in the test pieces, and the temperature is 850°C, which simulates the operating conditions of an actual gas turbine nozzle. Under the temperature condition of 300°C, the thermal strain generated is smaller than in the actual machine.

このため耐熱超合金の耐熱疲労性を過大に評価し、実機
での実際の使用に耐えつるかどうかの正当な判定がきわ
めて困難な状況となっていた。
For this reason, the thermal fatigue resistance of heat-resistant superalloys has been overestimated, making it extremely difficult to properly judge whether they can withstand actual use in actual machines.

〔発明の目的〕[Purpose of the invention]

本発明の目的はガスタービンノズルを想定したような比
較的低い温度条件でも、実機と同等の熱ひずみが生じ、
材料の耐熱疲労性を正当に評価できるような試験片を提
供することにある。
The purpose of the present invention is to generate thermal distortion equivalent to that of an actual machine even under relatively low temperature conditions such as those assumed for gas turbine nozzles.
The object of the present invention is to provide a test piece that allows the thermal fatigue resistance of a material to be fairly evaluated.

〔発明の概要〕[Summary of the invention]

第3図に従来のディスク型試験片で850℃から300
℃の冷却過程で試験中心部10と先端部11との温度差
が最大となった時点での温度分布図を示す。この分布図
は有限要素法による温度分布解析の結果得られたもので
あるが、等温線は10℃間隔で断面中心10から先端部
11に向かっては&9行にならび、先端部11はど肉厚
が薄いため、冷却が早く低温度になっていることがわか
った。中心部10と先端部11との温度勾配を大きくす
るためには中心部10から先端部11までの形状変化を
大きく取り、先端部11を中心部10よりもできるだけ
速く加熱、冷却する工夫が必要である。試験片に発生す
る温度分布を左右するのは試験片の断面形状である。断
面形状は第4図に示すようにa、b、C,及び先端の半
径Rを適当に選ぶことによって決定される。形状変化を
大きく取るため、例えば肉厚すを厚くし、c / aを
大きく取りRを小さくするという工夫が考えられる。し
かしながら上記拳のような工夫では肉厚部10が大きく
なるため、試験片全体の加熱冷却速度が遅くなり、先端
部11の加熱;冷却速度が中心肉厚部10の影響をむし
ろ大きく受けて先端部の加熱、冷却速度が遅くなり発生
する温度勾配も小さくなってしまう。
Figure 3 shows a conventional disk-shaped test piece with a temperature of 850°C to 300°C.
A temperature distribution diagram is shown at the time when the temperature difference between the test center part 10 and the tip part 11 becomes maximum during the cooling process. This distribution map was obtained as a result of temperature distribution analysis using the finite element method, and the isothermal lines are arranged in &9 lines from the cross-sectional center 10 toward the tip 11 at 10°C intervals, and the tip 11 It was found that because it was thin, it cooled quickly and had a low temperature. In order to increase the temperature gradient between the center part 10 and the tip part 11, it is necessary to make a large change in shape from the center part 10 to the tip part 11, and to heat and cool the tip part 11 as quickly as possible than the center part 10. It is. The cross-sectional shape of the test piece determines the temperature distribution generated in the test piece. The cross-sectional shape is determined by appropriately selecting a, b, C, and the radius R of the tip, as shown in FIG. In order to increase the shape change, for example, it is conceivable to increase the wall thickness, increase c/a, and decrease R. However, with the above-mentioned fist-like device, the thick wall portion 10 becomes large, so the heating and cooling rate of the entire test piece becomes slow, and the heating and cooling rate of the tip portion 11 is rather greatly influenced by the center thick portion 10, resulting in a large thickness at the tip. The heating and cooling rates of the parts become slower and the temperature gradient that occurs becomes smaller.

試験片に発生する温度勾配を大きくとるためにc / 
a比を小さくするほうがよいが、Cを小さくすると、中
心部10の加熱、冷却速度が速くなるために試験片とし
て不適当であり、中心部10を小さくせずにaを大きく
取るのは試験片自体が大きくなるので、試験片製作上問
題である。
In order to increase the temperature gradient generated in the test piece, c/
It is better to make the a ratio small, but if C is made small, the heating and cooling rate of the center part 10 becomes faster, making it unsuitable for use as a test piece. Since the piece itself becomes large, this poses a problem in manufacturing the test piece.

試験片の大きさは第2図に示した程度のものが最適であ
り、c/a比を変えることには限界がある。従来のa、
b、c、Rの値を変えずに先端部の冷却速度を従来より
も大きくする工夫が必要である。第5図に本発明による
試験片の断面図及び温度分布図を示す。本発明では中心
部10から先端部11までを曲線的に変化させ、肉厚部
10の冷却速度を変えることなしに先端部11だけの冷
却速度を速くすることを実現した。本発明による試験片
では等温線図がより密になり中心部と先端部の温度勾配
が大きくなっていることがわかる。
The optimum size of the test piece is as shown in Figure 2, and there is a limit to changing the c/a ratio. Conventional a,
It is necessary to devise a method to increase the cooling rate of the tip portion than before without changing the values of b, c, and R. FIG. 5 shows a cross-sectional view and a temperature distribution diagram of a test piece according to the present invention. In the present invention, it is possible to increase the cooling rate of only the tip 11 without changing the cooling rate of the thick portion 10 by changing the distance from the center 10 to the tip 11 in a curved line. It can be seen that the test piece according to the present invention has a denser isothermal diagram and a larger temperature gradient between the center and the tip.

第7図に本発明試験片と従来型試験の先端部に生ずる最
大ひずみ量を比較して示す。本発明による試験片は温度
勾配が大きくなっているので発生ひずみ量も加熱時、圧
縮時の総量で約0.2 %程大きくなっており、1%を
越えている。実機ガスタービンのノズルでは起動一定常
運転−停止というサイクルで発生するひずみ量はサイク
ルで約1.0〜1.2 %になると推定されており1本
発明による試験片により実機と同等の条件で熱疲労試験
ができるようになる。
FIG. 7 shows a comparison of the maximum strain that occurs at the tip of the test piece of the present invention and the conventional test. Since the test piece according to the present invention has a large temperature gradient, the total amount of strain generated during heating and compression is approximately 0.2% larger, exceeding 1%. In the nozzle of an actual gas turbine, it is estimated that the amount of strain that occurs during the cycle of constant start-up and constant operation-stop is approximately 1.0 to 1.2% per cycle. Enables thermal fatigue testing.

〔発明の実施例〕[Embodiments of the invention]

ガスタービンノズル用として用いられているGo基超合
金A、B2種をAr雰囲気で溶解し。
Two types of Go-based superalloys, A and B, used for gas turbine nozzles were melted in an Ar atmosphere.

第3図及び第5図に示す形状に精密鋳造をした。Precision casting was carried out into the shape shown in FIGS. 3 and 5.

試験片は精密鋳造後、機械加工を行ない所定の寸法に仕
上げた。Co基超合金A、Hの化学成分を第1表に示す
。この両試験片を用い、実機ガスタービンの定常運転中
のメタル温度850℃と冷却空気温度300℃を模擬し
た850℃4300℃の加熱冷却サイクルで流動床熱疲
労試験を行った。
After precision casting, the test piece was machined to the specified dimensions. The chemical components of Co-based superalloys A and H are shown in Table 1. Using these test pieces, a fluidized bed thermal fatigue test was conducted in a heating/cooling cycle of 850° C. and 4,300° C., which simulated the metal temperature of 850° C. and cooling air temperature of 300° C. during steady operation of an actual gas turbine.

第6図に両試験片でのき裂発生までの熱サイクルの回数
を示す。本発明による試験片では割れはA材で180回
、B材で450回で割れが発生しているのに対し、従来
型の試験片では600回になっても両者に割れが発生せ
ず、A、B材の優劣が判定できなかった。実際のガスタ
ービンノズルでは1年に1回定期検査を行い、それまで
の起動−停止による熱サイクルは300回程同根ある。
Figure 6 shows the number of thermal cycles until crack initiation in both test specimens. In the test piece according to the present invention, cracking occurred after 180 cycles in material A and 450 cycles in material B, whereas cracks did not occur in both materials even after 600 cycles in the conventional test piece. It was not possible to determine the superiority of materials A and B. In actual gas turbine nozzles, periodic inspections are performed once a year, and up to that point the thermal cycles due to start-stop operations are about 300 times.

A材は定検時に熱疲労割れが多数発生しており、300
回以内に割れが発生することが確認されている。本発明
による試験片による耐熱疲労性の評価がより実機に近い
状態での試験ができ、かつ正当な評価を下さることが明
らかとなった。
Material A had many thermal fatigue cracks during periodic inspection, and
It has been confirmed that cracks occur within 30 minutes. It has become clear that the evaluation of thermal fatigue resistance using the test piece according to the present invention can be performed under conditions closer to those of the actual machine, and provides a valid evaluation.

本発明の試験片を用いて流動床熱疲労試験を実施するこ
とにより、比較的低い850″C;300℃の温度条件
の試験でも、耐熱超合金の耐熱疲労性を正当に評価でき
、実機での使用に耐えるがどうかの判定を容易に下すこ
とができる。又、発生するひずみ量が大きいために試験
片への割れが早期に発生し、従来型試験片を用いた試験
よりも試験時間を1/2〜1/3に短縮できる。
By conducting a fluidized bed thermal fatigue test using the test piece of the present invention, the thermal fatigue resistance of heat-resistant superalloys can be fairly evaluated even under relatively low temperature conditions of 850''C; In addition, due to the large amount of strain generated, cracking of the test piece occurs early, and the test time is shorter than that of a test using a conventional test piece. It can be shortened to 1/2 to 1/3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流動床試験機の概略図、第2図(、)は従来型
ナイフェツジ試験片の形状図、第2図(b)は従来型デ
ィスク試験片の形状図、第3図はディスク試験片の等温
線図、第4図は第2図A−A’及びB−B’部を示す図
、第5図は本発明試験片の形状とD−D’部での等温線
図、第6図は供試材A、Bのき裂発生までの熱サイクル
数を表わした図、第7図は先端部に生じる最大ひずみ量
の比較を示す図である。 1・・・高温炉、2・・・低温炉、3・・・移動装置、
4・・・試験片、5・・・加熱ヒーター、6・・・空気
、7・・・都市ガス、8・・・中央肉厚部、9・・・先
端薄肉部、10・・・中弔 2m ((1) (b)
Figure 1 is a schematic diagram of the fluidized bed tester, Figure 2 (,) is a diagram of the shape of a conventional knife test piece, Figure 2 (b) is a diagram of the shape of a conventional disc test piece, and Figure 3 is a diagram of the disc test. Figure 4 is an isothermal diagram of the specimen; Figure 4 is a diagram showing sections A-A' and BB' in Figure 2; FIG. 6 is a diagram showing the number of thermal cycles until cracking occurs in specimens A and B, and FIG. 7 is a diagram showing a comparison of the maximum amount of strain occurring at the tip. 1...High temperature furnace, 2...Low temperature furnace, 3...Movement device,
4... Test piece, 5... Heating heater, 6... Air, 7... City gas, 8... Center thick part, 9... Tip thin wall part, 10... Middle part 2m ((1) (b)

Claims (1)

【特許請求の範囲】[Claims] 1、中央肉厚部と外周薄肉部とより成るそろばん玉状流
動採熱疲労試験用試験片において、中央肉厚部から外周
薄肉部に至る面が凹型の曲面であることを特徴とする流
動床熱疲労試験用試験片。
1. A fluidized bed characterized in that the surface from the center thick part to the outer thin wall part is a concave curved surface in an abacus bead-shaped fluid thermal fatigue test specimen consisting of a central thick wall part and a peripheral thin wall part. Test piece for thermal fatigue testing.
JP10460984A 1984-05-25 1984-05-25 Test piece for fluidized bed thermal fatigue test Pending JPS60249035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10460984A JPS60249035A (en) 1984-05-25 1984-05-25 Test piece for fluidized bed thermal fatigue test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10460984A JPS60249035A (en) 1984-05-25 1984-05-25 Test piece for fluidized bed thermal fatigue test

Publications (1)

Publication Number Publication Date
JPS60249035A true JPS60249035A (en) 1985-12-09

Family

ID=14385167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10460984A Pending JPS60249035A (en) 1984-05-25 1984-05-25 Test piece for fluidized bed thermal fatigue test

Country Status (1)

Country Link
JP (1) JPS60249035A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249803A (en) * 2009-03-24 2010-11-04 Toyota Central R&D Labs Inc Thermal fatigue testing device and program
WO2013138816A2 (en) * 2012-03-15 2013-09-19 Western Michigan University Research Foundation Thermal distortion tester

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249803A (en) * 2009-03-24 2010-11-04 Toyota Central R&D Labs Inc Thermal fatigue testing device and program
US8360632B2 (en) 2009-03-24 2013-01-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Thermal fatigue testing device and recording medium recorded with a program
WO2013138816A2 (en) * 2012-03-15 2013-09-19 Western Michigan University Research Foundation Thermal distortion tester
WO2013138816A3 (en) * 2012-03-15 2013-11-07 Western Michigan University Research Foundation Thermal distortion tester
GB2515945A (en) * 2012-03-15 2015-01-07 Western Michigan University Res Foundation Thermal distortion tester
US9121803B2 (en) 2012-03-15 2015-09-01 Western Michigan University Research Foundation Thermal distortion tester
GB2515945B (en) * 2012-03-15 2017-11-29 Western Michigan Univ Research Foundation Thermal distortion tester

Similar Documents

Publication Publication Date Title
Wang et al. Thermomechanical fatigue experiment and failure analysis on a nickel-based superalloy turbine blade
CN107389445B (en) Method for evaluating reheat crack sensitivity of material through stress relaxation test
CN102507636B (en) Method for measuring interfacial heat transfer coefficient of rapid cooling process of steel
Panda et al. Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment
Palmert et al. Thermomechanical fatigue crack growth in a single crystal nickel base superalloy
CN107356625A (en) A kind of method for measuring large-deformation-resistance pipeline steel SH CCT curves
Lancaster et al. A review of thermo-mechanical fatigue behaviour in polycrystalline nickel superalloys for turbine disc applications
CN104977354A (en) Cast steel member repair-welding and repairing high-temperature detection method
Stekovic et al. DevTMF–Towards code of practice for thermo-mechanical fatigue crack growth
Kuwabara et al. THERMAL‐MECHANICAL LOW‐CYCLE FATIGUE UNDER CREEP‐FATIGUE INTERACTION ON TYPE 304 STAINLESS STEELS
JPS60249035A (en) Test piece for fluidized bed thermal fatigue test
US6935187B1 (en) Test method for assessing thermal mechanical fatigue performance of a test material
KR20070024060A (en) Method and apparatus for calculating thermal conductivity of thermal barrier coatings
Li et al. Experimental investigation on the creep and low cycle fatigue behaviors of a serviced turbine blade
RU2614023C1 (en) Method for nondestructive inspection of thermo-deformation treatment of semi-finished products from two-phase titanium alloys for overheating by x-ray analysis
CN112001040B (en) Repair welding performance evaluation method for complex thin-wall high-temperature alloy casting
Dawson et al. The effect of testing environment on small punch creep
Huang et al. Short-life turbine blade rack extension analysis and life prediction
Almroth et al. On Thermomechanical Fatigue Crack Growth Analysis in Gas Turbine Blading in a 3D Finite Element Context
SU127465A1 (en) Method for determining sensitivity of materials to crack formation
Chen et al. Effect of maximum temperature on the thermal fatigue behavior of superalloy GH536
CN112304844B (en) Method for rapidly measuring initial melting temperature of single crystal high-temperature alloy
CN111597706B (en) Method for processing high-temperature high-cycle fatigue performance data of material
SU1744568A1 (en) Method of estimating tendency of metals to brittle fracture on reheating after welding
Ammann et al. The thermal fatigue behavior of hot pressed silicon nitride