JPS60248703A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS60248703A
JPS60248703A JP10291484A JP10291484A JPS60248703A JP S60248703 A JPS60248703 A JP S60248703A JP 10291484 A JP10291484 A JP 10291484A JP 10291484 A JP10291484 A JP 10291484A JP S60248703 A JPS60248703 A JP S60248703A
Authority
JP
Japan
Prior art keywords
plasma
gas
plasma generation
sheet
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10291484A
Other languages
Japanese (ja)
Inventor
Kazuo Yokoyama
和夫 横山
Hideo Kurokawa
英雄 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10291484A priority Critical patent/JPS60248703A/en
Publication of JPS60248703A publication Critical patent/JPS60248703A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve controllability of plasma, and to stabilize film-forming conditions, by making plasma exist in the vicinity of a plasma outlet of a plasma generation pipe. CONSTITUTION:The plasma generation pipe 23 having the plasma outlet 32 in a tapered shape at the end is inserted into the vacuum tank 21, the induction coil 27 is wound round the outside face 24 in atmosphere to set a means to provide high-frequency power, and one or more of the gas inlet pipes 29 are set in the outside face 28 in vacuum of the plasma generation pipe 23. And the cylindrical can 33 is laid in the vicinity of the plasma outlet 32, and coating is carried out on the surface of the sheet 35 transferring along the peripheral face 34 of the cylindrical can 33 by gaseous-phase growth of plasma chemistry. USE:Suitable for surface protecting coating of a sheet substrate such as magnetic recording medium, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気記録媒体等のシート状の基体に表面保護コ
ーティングを施すだめのプラズマCVD装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a plasma CVD apparatus for applying a surface protective coating to a sheet-like substrate such as a magnetic recording medium.

従来例の構成とその問題点 LSI製造プロセスの薄膜形成技術として最近RFプラ
ズマ励起による放電プラズマCVD法がシリコン窒化膜
等の高信頼性パンシベーション膜技術として実用化され
ている。一方この技術は耐久性、耐摩耗性、潤滑性等を
必要とするテープ用の磁気記録媒体やディスク状の磁気
記録媒体等の表面保護コーティングにも応用されつつあ
る。
Conventional Structure and Problems As a thin film forming technology for LSI manufacturing process, discharge plasma CVD method using RF plasma excitation has recently been put into practical use as a highly reliable pansivation film technology for silicon nitride films and the like. On the other hand, this technology is also being applied to surface protective coatings for tape magnetic recording media and disk-shaped magnetic recording media that require durability, abrasion resistance, lubricity, etc.

RF放電プラズマCVD法はその方式を区分すると■平
行平板電極構造型と■誘導コイル型になる。前者ではコ
ーティングを施こす基体を一方の平板電極上に置く等の
配置となシ、基体が直接プラズマにさらされるため、プ
ラズマ中のイオンによる衝撃や電子の飛込みによる加熱
などにより基体の表面が損傷を受けたシ、エツチング作
用のだめに蒸着効率が低下する等の欠点があった。さら
に電極表面にも蒸着物質が付着し、電気回路的に容量を
形成する平行平板電極の電気的条件が、この膜付着に伴
って変化するため、放電条件の経時変化がある欠点があ
った。さらにこれをシート状の基体に表面保護コーティ
ングするのに応用する場合には平行平板電極間に発生す
るプラズマの周辺部の希薄な部分から中心部のプラズマ
の密度の高い領域までの広範囲の部分に移動するシート
がさらされるため、製膜の条件を一定に出来ない欠点が
あった。
The RF discharge plasma CVD method can be divided into two types: (1) parallel plate electrode structure type and (2) induction coil type. In the former case, the substrate to be coated is placed on one of the flat electrodes, and as the substrate is directly exposed to the plasma, the surface of the substrate may be damaged due to impact from ions in the plasma or heating due to the injection of electrons. However, there were drawbacks such as a decrease in vapor deposition efficiency due to the lack of etching action. Furthermore, the deposited substance also adheres to the electrode surface, and the electrical conditions of the parallel plate electrodes that form a capacitance in the electrical circuit change as the film adheres, resulting in a drawback that the discharge conditions change over time. Furthermore, when applying this to a surface protective coating on a sheet-like substrate, it can be applied to a wide range of areas, from the sparse area at the periphery of the plasma generated between parallel plate electrodes to the high density area of the plasma at the center. Since the moving sheet is exposed, the film forming conditions cannot be kept constant.

本発明はRF放電プラズマCVD法の上記の2分類のう
ちの後者、すなわち誘導コイル型に属するが、この誘導
コイル型も平行平板電極型に比べて電気的条件の経時変
化は少ないものの、通常の構成では上記と同じ欠点を持
っている。第1図および第2図はこのような誘導コイル
型の従来の構成例を示したもので、第1図は誘導コイル
1を真空中に有するもの、第2図は誘導コイル11を真
空外に有する例である。真空槽2(または反応管12)
は排気系3(13)により真空に引かれ、ガス導入バル
ブ4 (,14)より反応性ガスを真空中に導入して1
o−2〜10’Torr程度の反応性ガスの圧力下で放
電させる。放電は高周波電波5(16)の出力をマツチ
ング回路6(16)を通して継いだ誘導コイル1(11
)によって行なわれる。真空槽または反応管内の圧力は
真空ゲージ7(17)を継いだ真空計8(18)によっ
て知る。基体9(19)を真空槽または反応管の所定の
場所に置くことによシ、基体表面にプラズマ化学的気相
成長による被膜を形成する。このような従来の構成では
、前述したように基体が直接プラズマに接するために生
じる不都合と、移動するテープ上に製膜する際の製膜条
件の一定化が難かしかった。
The present invention belongs to the latter of the above two categories of RF discharge plasma CVD methods, that is, the induction coil type. Although this induction coil type also has less change in electrical conditions over time than the parallel plate electrode type, The structure has the same drawbacks as above. Figures 1 and 2 show examples of conventional configurations of such induction coil types, with Figure 1 having the induction coil 1 in a vacuum, and Figure 2 having the induction coil 11 outside the vacuum. This is an example of having Vacuum tank 2 (or reaction tube 12)
is evacuated by the exhaust system 3 (13), and a reactive gas is introduced into the vacuum from the gas introduction valve 4 (, 14).
Discharge is performed under a reactive gas pressure of about o-2 to 10' Torr. The discharge is carried out by induction coil 1 (11), which connects the output of high frequency radio wave 5 (16) through matching circuit 6 (16).
) is carried out by The pressure inside the vacuum chamber or reaction tube is known by the vacuum gauge 8 (18) connected to the vacuum gauge 7 (17). By placing the substrate 9 (19) at a predetermined location in a vacuum chamber or reaction tube, a film is formed on the surface of the substrate by plasma chemical vapor deposition. In such a conventional configuration, as described above, there are inconveniences caused by the substrate being in direct contact with plasma, and it is difficult to maintain constant film forming conditions when forming a film on a moving tape.

発明の目的 本発明はこのような従来例に示した欠点を解決し、磁気
記録媒体等のシート状の基体にコーティングを施こすの
に好都合で、製膜条件の安定化が可能なプラズマCVD
装置を提供するものである。
Purpose of the Invention The present invention solves the drawbacks shown in the conventional examples, and provides a plasma CVD method which is convenient for coating sheet-like substrates such as magnetic recording media and which can stabilize film-forming conditions.
It provides equipment.

発明の構成 本発明は真空槽内に、先端を絞ったプラズマ吹出口を有
するプラズマ発生管を真空槽外から挿入し、このプラズ
マ発生管の大気中の外側面に誘導コイルを巻回して高周
波電力を供給する手段を有し、このプラズマ発生管の真
空中の外側面に反応性ガス導入口を有する構成とし、上
記プラズマ吹出口付近に円筒状キャンを配してこの円筒
状キャンの周側面に沿って移動するシートの表面にプラ
ズマ化学的気相成長によるコーティングを施すことを特
徴とするものである。
Structure of the Invention The present invention involves inserting a plasma generation tube having a plasma outlet with a narrowed tip into a vacuum chamber from outside the vacuum chamber, and winding an induction coil around the outer surface of the plasma generation tube in the atmosphere to generate high-frequency power. The plasma generating tube has a reactive gas inlet on the outer surface in vacuum, and a cylindrical can is disposed near the plasma outlet, and a reactive gas inlet is provided on the outer surface of the plasma generating tube in vacuum. It is characterized by applying a coating to the surface of the sheet that moves along it by plasma chemical vapor deposition.

実施例の説明 次に本発明の実施例に従って詳細な説明を進める。第3
図は本発明の実施例を示すプラズマCVD装置であって
真空槽21は、油回転ポンプ、メカニカルブースタ、油
拡散ポンプ、冷却トラップよりなる排気系22により真
空に引かれ、真空槽に挿入したプラズマ発生管23の大
気中の外側面24には高周波電源25およびマツチング
回路26に継かった誘導コイル27が巻回されており、
プラズマ発生管に高周波電力を供給する。プラズマ発生
管の真空中内の外側面28には反応性ガスの導入口29
が設けられており、ガス導入バルブ30を通った反応性
ガスはチューブ31を通じてプラズマ発生管に導入され
る。プラズマ発生管の真空槽内の先端部には管を絞った
形状のプラズマ吹出口22があり、この付近に配した円
筒状キャン32の周側面34に沿って移動するシート3
6の表面にプラズマ化学的気相成長によるコーティング
を施こす。シートは供給ローラ36.ポストローラ37
、キャン33および巻取ローラ38よりなる走行系で移
送される。プラズマ発生管内のガス圧力は真空ゲージ3
9を継いだ真空計40によシ計測し、場合によってプラ
ズマ発生管に設けたもう一方のガス導入バルブ41およ
び導入口42より不活性ガスを導入して放電条件の調整
を行なう。
DESCRIPTION OF EMBODIMENTS A detailed description will now be given according to embodiments of the present invention. Third
The figure shows a plasma CVD apparatus showing an embodiment of the present invention, in which a vacuum chamber 21 is evacuated by an exhaust system 22 consisting of an oil rotary pump, a mechanical booster, an oil diffusion pump, and a cooling trap. An induction coil 27 connected to a high frequency power source 25 and a matching circuit 26 is wound around the outer surface 24 of the generation tube 23 in the atmosphere.
Supply high frequency power to the plasma generation tube. A reactive gas inlet 29 is provided on the outer surface 28 of the plasma generating tube inside the vacuum.
is provided, and the reactive gas that has passed through the gas introduction valve 30 is introduced into the plasma generation tube through the tube 31. There is a plasma outlet 22 in the shape of a constricted tube at the tip of the plasma generating tube inside the vacuum chamber, and a sheet 3 moves along the circumferential side surface 34 of a cylindrical can 32 arranged near this outlet.
A coating is applied to the surface of 6 by plasma chemical vapor deposition. The sheet is fed to the supply roller 36. Post roller 37
, a can 33 and a take-up roller 38. The gas pressure inside the plasma generation tube is measured by vacuum gauge 3.
9 is connected to the vacuum gauge 40, and if necessary, an inert gas is introduced from the other gas introduction valve 41 and introduction port 42 provided in the plasma generation tube to adjust the discharge conditions.

実施例では反応性ガスとして有機モノマーガスのC4F
8を導入し、磁気シート表面にテフロン質の有機高分子
膜を重合させることによシ、水との接触角が大きく、高
温高湿、常温低湿等の環境下で走行性能の優れた保護被
膜を形成することができた。磁気シートとしてはPET
上にCo−Niを蒸着した1 50trah幅の金属蒸
着シートを用い、直径500mの円筒キャンに添ってこ
のシートを移動させ、管径140爺の石英ガラスよりな
るプラズマ発生管の先端には135mX12mmの矩形
の開口部を設けてこれを磁気シートの磁性面に近接して
配置した。製膜条件を与える因子としては反応性ガスの
種類、不活性ガスを並用する場合にはその混合比率、プ
ラズマ発生管内のガス圧力。
In the example, organic monomer gas C4F was used as the reactive gas.
By introducing 8 and polymerizing a Teflon-based organic polymer film on the surface of the magnetic sheet, a protective film with a large contact angle with water and excellent running performance under environments such as high temperature and high humidity, and room temperature and low humidity is created. was able to form. PET as a magnetic sheet
A metal vapor-deposited sheet with a width of 150 trah on which Co-Ni was vapor-deposited was moved along a cylindrical can with a diameter of 500 m, and a 135 m x 12 mm plasma generation tube was placed at the tip of a plasma generation tube made of quartz glass with a tube diameter of 140 m. A rectangular opening was provided and placed close to the magnetic surface of the magnetic sheet. Factors that determine film forming conditions include the type of reactive gas, the mixing ratio of inert gases if used together, and the gas pressure in the plasma generation tube.

RFの供給電力、ガス流量、プラズマ発生管の吹出口形
状とキャンとの配置位置関係等がある。真空装置の排気
能力と7・−ド構成上の上記プラズマ発生管の形状、配
置関係が定まれば、ガス導入によってガスの定常流が生
じ、プラズマ発生管内と真空槽内に一定の差圧を生じる
。この実施例ではプラズマ発生管内の圧力と真空槽内の
圧力の比は10倍程度であった0この差圧のため、プラ
ズマ発生管内でプラズマが発生している条件でもプラズ
マ発生管のプラズマ吹出口の近傍を除いて真空槽内は希
薄ガス圧力雰囲気であるためにプラズマは発生せず、製
膜−にかかわるプラズマをプラズマ発生管の吹出口の近
傍に限定することができる。
These include the RF power supply, gas flow rate, the shape of the outlet of the plasma generating tube, and the positional relationship between the can and the like. Once the exhaust capacity of the vacuum device and the shape and arrangement of the plasma generation tube in the 7-door configuration are determined, a steady flow of gas is generated by introducing the gas, and a constant pressure difference is created between the plasma generation tube and the vacuum chamber. arise. In this example, the ratio of the pressure inside the plasma generation tube to the pressure inside the vacuum chamber was about 10 times. Because of this pressure difference, even under conditions where plasma is generated inside the plasma generation tube, the plasma outlet of the plasma generation tube Since the inside of the vacuum chamber is a dilute gas pressure atmosphere except for the vicinity of , plasma is not generated, and the plasma involved in film formation can be limited to the vicinity of the outlet of the plasma generation tube.

上記の製膜条件のうちこのように71−ド条件を一定と
した場合には導入ガス圧力および供給電力が定まれば一
定の質および量の製膜ができる。第4図は本実施例のプ
ラズマCVD装置でC4F8ガスによるテフロン質高分
子膜のプラズマ重合を行った場合のガス圧力に対する膜
厚を実測したデータである。膜厚評価を容易にするため
、シートを一定時間(5分間)静止させた状態で側窓に
厚い膜をシート上に生成させ、膜厚をエリプソメータで
測定したものである。ガス圧力に対しては最大膜厚を与
えるガス圧条件が存在し、これより高いガス圧ではガス
圧にほぼ比例して膜厚が減小している。これは吹出口付
近のイオン、電子の平均自由行程が圧力が増大するに従
い減少し、重合にかかわるプラズマがシート表面に達し
にくくなるためと考えられる。また最大膜厚を与えるガ
ス圧条件より低い圧力では急激に膜厚が減少し、製膜し
なくなるが、これはガス圧減少に伴ってプラズマ密度が
減少するためと考えられる。供給電力に対しては電力の
低い領域では膜厚はほぼ比例して増大し、限度を越える
と、エツチングを生じ始めて飽和傾向になり、過度の電
力を与えるとエツチングが進行して部分的に膜の無い部
分ができて来る。
When the above-mentioned film-forming conditions are kept constant in this way, a film of constant quality and quantity can be formed as long as the introduced gas pressure and the supplied power are determined. FIG. 4 shows actual measurement data of film thickness versus gas pressure when plasma polymerization of a Teflon polymer film using C4F8 gas was performed using the plasma CVD apparatus of this example. To facilitate film thickness evaluation, a thick film was formed on the side window while the sheet remained stationary for a certain period of time (5 minutes), and the film thickness was measured using an ellipsometer. There is a gas pressure condition that provides the maximum film thickness, and at higher gas pressures, the film thickness decreases approximately in proportion to the gas pressure. This is thought to be because the mean free path of ions and electrons near the outlet decreases as the pressure increases, making it difficult for plasma involved in polymerization to reach the sheet surface. Further, at a pressure lower than the gas pressure condition that gives the maximum film thickness, the film thickness decreases rapidly and no film can be formed, but this is thought to be because the plasma density decreases as the gas pressure decreases. In the region where the power is low, the film thickness increases almost in proportion to the power supplied; when the limit is exceeded, etching begins to occur and the film tends to saturate; when excessive power is applied, etching progresses and the film partially disappears. There will be parts that are missing.

このように電力の大きい条件でエツチングを生じるのは
フッ素系ガスの重合の場合に個有の現象として知られて
いる。以上のガス圧力および供給電力に対する膜厚の関
係はハード条件が一定である限り良好な再現性を示しだ
。また供給電力の過度に大きくない範囲においては基板
に熱影響による変形は認められなかった。
It is known that etching occurs under such high power conditions as a phenomenon unique to the polymerization of fluorine gases. The above relationship between film thickness and gas pressure and supplied power shows good reproducibility as long as the hard conditions are constant. Furthermore, no deformation of the substrate due to thermal effects was observed within a range where the supplied power was not excessively large.

発明の効果 以上のように本発明によれば、製膜に関わるプラズマを
プラズマ発生管のプラズマ吹出口近傍に局在化させるこ
とにより、プラズマの制御性が良く、従って一定の製膜
条件を安定に再現でき、特に磁気記録媒体等のシート状
の基体の表面保護コーティングに適したプラズマCVD
装置を提供するものであり、その実用的価値は大きい。
Effects of the Invention As described above, according to the present invention, by localizing the plasma involved in film formation near the plasma outlet of the plasma generation tube, the controllability of the plasma is good, and therefore, certain film formation conditions can be stabilized. Plasma CVD is particularly suitable for surface protective coating of sheet-like substrates such as magnetic recording media.
It provides a device that has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来例における誘導コイ
ル型のプラズマCVD装置の原理図、第3図は本発明の
一実施例におけるプラズマCVD装置の原理図、第4図
は同装置のガス圧に対する膜厚の関係を示す特性図であ
る。 21・・・・・・真空槽、23・・・・・・プラズマ発
生管、27・・・・・誘導コイル、29・・・・・・ガ
ス導入口、32・・・・・・プラズマ吹出口、33・・
・・・・円筒状キャン、35・・・・・・シート。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第4図
Figures 1 and 2 are a principle diagram of an induction coil type plasma CVD apparatus in a conventional example, Figure 3 is a principle diagram of a plasma CVD apparatus in an embodiment of the present invention, and Figure 4 is a gas pressure diagram of the same apparatus. FIG. 3 is a characteristic diagram showing the relationship of film thickness to . 21... Vacuum chamber, 23... Plasma generation tube, 27... Induction coil, 29... Gas inlet, 32... Plasma blower Exit, 33...
...Cylindrical can, 35... Seat. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)真空槽内に挿入されたプラズマ発生管を有し、こ
のプラズマ発生管の大気中の外側面に誘導コイルを巻回
して高周波電力を供給する手段を有し、前記プラズマ発
生管の真空中の外側面に少くとも一つのガス導入口を、
端部に管を絞った形状のプラズマ吹出口を有し、前記真
空槽内の前記プラズマ吹出口の付近に円筒状キャンを配
し、この円筒状キャンの周側面に沿って移動するシート
の表面に、導入ガスのプラズマ化学的気相成長によるコ
ーティングを施すことを特徴とするプラズマCVD装置
(1) It has a plasma generation tube inserted into a vacuum chamber, and has means for supplying high-frequency power by winding an induction coil around the outer surface of the plasma generation tube in the atmosphere, and the plasma generation tube has a vacuum At least one gas inlet on the outside surface of the inside,
A cylindrical can is disposed near the plasma outlet in the vacuum chamber, and the surface of the sheet moves along the circumferential side of the cylindrical can. A plasma CVD apparatus characterized in that a coating is applied by plasma chemical vapor deposition of an introduced gas.
(2)導入ガスが有機モノマーガスであり、シートの表
面にプラズマ重合による高分子被膜を形成することを特
徴とする特許請求の範囲第1項記載のプラズマCVD装
置。
(2) The plasma CVD apparatus according to claim 1, wherein the introduced gas is an organic monomer gas, and a polymer film is formed on the surface of the sheet by plasma polymerization.
(3)導入ガスが含フツ素有機モノマーガスであること
を特徴とする特許請求の範囲第2項記載のプラズマCV
D装置。
(3) The plasma CV according to claim 2, wherein the introduced gas is a fluorine-containing organic monomer gas.
D device.
JP10291484A 1984-05-22 1984-05-22 Plasma cvd device Pending JPS60248703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10291484A JPS60248703A (en) 1984-05-22 1984-05-22 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10291484A JPS60248703A (en) 1984-05-22 1984-05-22 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS60248703A true JPS60248703A (en) 1985-12-09

Family

ID=14340119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10291484A Pending JPS60248703A (en) 1984-05-22 1984-05-22 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS60248703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700164B2 (en) 1993-07-20 2010-04-20 Semiconductor Energy Laboratory Co., Ltd Apparatus for fabricating coating and method of fabricating the coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700164B2 (en) 1993-07-20 2010-04-20 Semiconductor Energy Laboratory Co., Ltd Apparatus for fabricating coating and method of fabricating the coating

Similar Documents

Publication Publication Date Title
US4160690A (en) Gas etching method and apparatus
US5643838A (en) Low temperature deposition of silicon oxides for device fabrication
JP3164200B2 (en) Microwave plasma processing equipment
JP4467191B2 (en) CVD process chamber with gas distribution system and film deposition method using the same
CN100524645C (en) Method of etching a silicon-containing dielectric material
US7396771B2 (en) Plasma etching apparatus and plasma etching method
US5415718A (en) Reactive ion etching device
JPS62107071A (en) Gaseous phase deposition apparatus
JPH0722642B2 (en) Evaporator
US6176978B1 (en) Pasting layer formation method for high density plasma deposition chambers
JPS6243335B2 (en)
US7972945B2 (en) Plasma doping apparatus and method, and method for manufacturing semiconductor device
EP0020746A1 (en) Process and apparatus for cleaning wall deposits from a film deposition furnace tube.
TW307027B (en) Process for reducing circuit damage during pecvd in single wafer pecvd system
JPS60248703A (en) Plasma cvd device
JP2949874B2 (en) ECR plasma CVD apparatus dry cleaning method
JPS62139876A (en) Formation of deposited film
JPH06244175A (en) Method and device for manufacturing insulating film
JPS6196732A (en) Manufacture of device
CN103730315B (en) A kind of method improving plasma etch process
JPS6285430A (en) Plasma treatment and apparatus for the same
TWI784578B (en) Capacitive thin film vacuum gauge, plasma reaction device and film preparation method
JPH01211921A (en) Dry etching apparatus
Patil et al. Deposition of silicon films in presence of nitrogen plasma—A feasibility study
JP2890032B2 (en) Silicon thin film deposition method