JPS60247140A - Cathode luminescence apparatus - Google Patents

Cathode luminescence apparatus

Info

Publication number
JPS60247140A
JPS60247140A JP10409084A JP10409084A JPS60247140A JP S60247140 A JPS60247140 A JP S60247140A JP 10409084 A JP10409084 A JP 10409084A JP 10409084 A JP10409084 A JP 10409084A JP S60247140 A JPS60247140 A JP S60247140A
Authority
JP
Japan
Prior art keywords
light
detector
mirror
spectrometer
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10409084A
Other languages
Japanese (ja)
Inventor
Yoshimi Murayama
村山 善美
Kazuo Koyanagi
和夫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP10409084A priority Critical patent/JPS60247140A/en
Publication of JPS60247140A publication Critical patent/JPS60247140A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2254Measuring cathodoluminescence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To measure cathode luminescence without imparing resolution for a broad range, by arranging a plurality of mirrors, which reflect cathode luminescent light emitted from a sample at mutually different angles. CONSTITUTION:Cathode luminescent light emitted from a sample 2 is taken out of a light transmitting window 16 to the outside of a vacuum. When the light is reflected by a first mirror 18a, the light is inputted to a first spectroscope 30a. The light, which undergoes the spectroscopic action, is sequentially detected by a first detector 36a. The signal corresponding to the light is amplified by a first amplifier 38a and sent to a recording and displaying part 40. Meanwhile, a base table 20 is moved by the driving of a motor 28, and a second mirror 18b is inserted in the optical system in place of the first mirror 18a. Therefore, the reflected light from the mirror 18b is inputted to a second spectroscope 30b. The light from the spectroscope 30b is sequentially detected by a second detector 36b. The signal is amplified by a second amplifier 38b and sent to the display part 40.

Description

【発明の詳細な説明】 (イ)、産業上の利用分野 本発明はカソードルミネッセンス装置に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to cathodoluminescent devices.

(ロ)、従来技術 一般に、波長分散形のカソードルミネッセンス装置には
回折格子を有する分光器を設けたものがある。この種の
カソードルミネッセンス装置で、分光器の測定波長範囲
を広げるには従来、格子間換の大きな回折格子が適用さ
れる。ところが、回折格子の格子間換が大きいと、逆に
波長分解能が低下肱適性な情報が得られなくなる。つま
り、測定波長範囲の拡大と波長分解能とは相反する特性
があるので、従来の装置では一方の要求を満すと他方の
特性を犠牲にせねばならないという不具合がある。
(b) Prior Art Generally, some wavelength dispersive cathodoluminescence devices are equipped with a spectrometer having a diffraction grating. Conventionally, in this type of cathodoluminescence device, a diffraction grating with a large grating spacing is used to widen the measurement wavelength range of the spectrometer. However, if the grating spacing of the diffraction grating is large, the wavelength resolution decreases and it becomes impossible to obtain appropriate information. In other words, since expansion of the measurement wavelength range and wavelength resolution have contradictory characteristics, conventional devices have a problem in that satisfying one requirement requires sacrificing the other characteristic.

(ハ)、目的 本発明は従来のかかる問題点を解決し、波長分解能を損
うことなく、測定波長範囲が広い波長分散形のカソード
ルミネッセンス装置を提供することを目的とする。
(C).Objective The present invention aims to solve the above-mentioned conventional problems and provide a wavelength-dispersive cathodoluminescence device that can measure a wide wavelength range without impairing wavelength resolution.

(ニ)、構成 本発明は上記の目的を達成するため、試料から放射され
るカソードルミネッセンスの光を反射するミラーの複数
個が互いに異なる角度に配置されるとともに、これらの
各ミラーを切換える切換手段を備え、前記各ミラーの反
射位置にはそれぞれ分光器が設けられ、これらの各分光
器には分光器の切換波長を設定するリミットスイッチが
取付けられ、これらの各リミットスイッチが前記切換手
段の駆動部、前記分光器で分光された光を検出する検出
器および検出器から出力される検出信号を処理する信号
処理部にそれぞれ共通に接続されてカソードルミネッセ
ンス装置を構成したものである。
(d), Structure In order to achieve the above object, the present invention includes a plurality of mirrors that reflect cathodoluminescence light emitted from a sample, which are arranged at different angles, and a switching means for switching each of these mirrors. A spectrometer is provided at the reflection position of each of the mirrors, and a limit switch for setting the switching wavelength of the spectrometer is attached to each of these spectrometers, and each of these limit switches drives the switching means. A cathodoluminescence device is constructed by being connected in common to a detector for detecting light separated by the spectrometer, and a signal processing unit for processing a detection signal output from the detector.

(ホ)、実施例 以下、本発明を実施例について図面に基づいて詳細に説
明する。
(e) Examples The present invention will now be described in detail with reference to the drawings.

第1図はこの実施例のカソードルミネッセンス装置の構
成図である。同図において符号1はカソードルミネッセ
ンス装置を示し、2は試料、4は電子銃(図示省略)か
ら放出される電子ビームを収束するための対物レンズ、
6・8は反射対物レンズ、10は反射ミラーであり、こ
れらは真空室12を形成するハウジング14内に配置さ
れている。16は真空封止用の光透過窓である。
FIG. 1 is a block diagram of the cathode luminescence device of this embodiment. In the figure, reference numeral 1 indicates a cathode luminescence device, 2 a sample, 4 an objective lens for converging an electron beam emitted from an electron gun (not shown),
6 and 8 are reflective objective lenses, and 10 is a reflective mirror, which are arranged in a housing 14 forming a vacuum chamber 12. 16 is a light transmitting window for vacuum sealing.

さらに、このカソードルミネッセンス装置1は試料2か
ら放射されるカソードルミネッセンスの光を反射する第
1と第2の各ミラー18a・18bが基台20上に互い
に直交配置されるとともにこれらの第1、第2ミラー1
8a・18bを切換え、る切換手段22を備える。この
切換手段22は、たとえば上記基台20に取付けられた
ラック24、ラック24に噛合するピニオン26および
ピニオン26を駆動するモータ28とで構成される。6
0a1150bは第1、第2の各ミラー18a−18b
の反射位置に設けられた第1、第2の各分光器であり、
各分光器50a−501)は対象波長範囲に適合するよ
うに、たとえば第2図に示すごとく第1分光器50aは
短波長用としてλ、〜λ2の測定波長範囲に、第2分光
器501)は長波長用としてλ′、〜λ′2の測定波長
範囲にそれぞれ設定さ第2の各リミットスイッチ52a
・52bがそれぞれ取付けられており、これらの各リミ
ットスイッチ52a・52bが切換手段22の駆動部で
あるモータ28に制御回路!+4を介して各々接続され
ている。さらに、第1リミツトスイツチ32aは第1分
光器50aで分光された光を検出する第1検出器56a
および第1検出器56aから出力される検出信号を増幅
処理する第1増幅器58aにそれぞれ共通に接続され、
一方、第2リミツトスイツチ52bは第2分光器60b
で分光された光を検出する第2検出器′56bおよび第
2検出器′56bから出力される検出信号を増幅処理す
る第2増幅器58bにそれぞれ共通に接続されている。
Further, in this cathodoluminescence device 1, first and second mirrors 18a and 18b that reflect cathodoluminescence light emitted from the sample 2 are arranged orthogonally to each other on a base 20, and 2 mirror 1
A switching means 22 is provided for switching between 8a and 18b. This switching means 22 includes, for example, a rack 24 attached to the base 20, a pinion 26 that meshes with the rack 24, and a motor 28 that drives the pinion 26. 6
0a1150b is each of the first and second mirrors 18a-18b
first and second spectrometers provided at reflection positions,
Each spectrometer 50a-501) is adapted to the target wavelength range, for example, as shown in FIG. are set in the measurement wavelength range of λ', ~λ'2 for long wavelengths, respectively, and the second limit switches 52a
- 52b are respectively attached, and each of these limit switches 52a and 52b is a control circuit for the motor 28 which is the drive part of the switching means 22! +4 are connected to each other. Furthermore, the first limit switch 32a is connected to a first detector 56a that detects the light separated by the first spectrometer 50a.
and a first amplifier 58a that amplifies the detection signal output from the first detector 56a, respectively,
On the other hand, the second limit switch 52b is connected to the second spectrometer 60b.
They are respectively commonly connected to a second detector '56b that detects the light spectrally separated by a second detector '56b and a second amplifier 58b that amplifies a detection signal outputted from the second detector '56b.

なお40はCRTモニタやレコーダ等を含む信号記録表
示部である。
Note that 40 is a signal recording/display section including a CRT monitor, recorder, etc.

このような構成において、カソードルミネッセンスの測
定を行なう場合には、電子ビーム照射により試料2から
放出されるカソードルミネッセンスの光を反射対物レン
ズ6・8、反射ミラー10によって光透過窓16から真
空外に取出す。真空外に取出された光が第1ミラー18
aで反射されると、この反射光は第1分光器50aに入
射される。その際、第1検出器′56aは制御回路′5
4からの制御信号によって、たとえば低波長λ1側から
高波長λ2側に走査される。この走査にともない、第1
分光器50aで分光された光は逐次第1検出器56aで
検出される。第1検出器56aからは分光検出された光
に対応する検出信号が出力されるので、この検出信号を
第1増幅器58aで増幅した後、信号記録表示部40へ
送出する。第1分光器50aが第2図に示すように切換
波長λ2まで走査されると、第1リミツトスイツチ52
aが動作し、第1リミツトスイツチ′52aから切換信
号が出力される。この切換信号は制御回路54、第1検
出器′56aおよび第1増幅器58aに共通に与えられ
る。制御回路54は第11J ミツトスイッチ52aか
らの切換信号に応答してモータ28に駆動信号を出力す
るのでモータ28の駆動により基台20が移動し、第1
ミラー18aに代って第2ミラー181)が光学系に挿
入される。このため、第2ミラー18bによる反射光が
第2分光器60bに入射される。また、第1検出器56
aと第1増幅器′58aとは第1リミツトスイツチ52
aからの切換信号によりOFFとなる。さらに、制御回
路64からは第1リミツトスイツチ52aからの切換信
号に応答して駆動信号が第2分光器′5ob、第2検出
器66bおよび第2増幅器′58bにそれぞれ出力され
る。これにより、第1分光器50aが第2ミラー18b
の切換と同時に、低波長λ1′側から高波長λ2′側に
向って走査されるとともに、第2検出器56bと第2増
幅器68bが共にONとなる。従って、第2分光器50
bの走査により分光された光が逐次第2検出器66bで
検出され、その検出信号が第2増幅器58bで増幅され
た後、記号記録表示部40に送出される。
In such a configuration, when measuring cathodoluminescence, the cathodoluminescence light emitted from the sample 2 by electron beam irradiation is emitted from the light transmission window 16 to the outside of vacuum by the reflecting objective lenses 6 and 8 and the reflecting mirror 10. Take it out. The light taken out of the vacuum passes through the first mirror 18
When reflected by a, this reflected light is incident on the first spectrometer 50a. At this time, the first detector '56a is connected to the control circuit '56a.
4, scanning is performed, for example, from the low wavelength λ1 side to the high wavelength λ2 side. Along with this scanning, the first
The light separated by the spectroscope 50a is sequentially detected by a first detector 56a. Since the first detector 56a outputs a detection signal corresponding to the spectrally detected light, this detection signal is amplified by the first amplifier 58a and then sent to the signal recording/display section 40. When the first spectrometer 50a is scanned to the switching wavelength λ2 as shown in FIG.
a is operated, and a switching signal is output from the first limit switch '52a. This switching signal is commonly applied to the control circuit 54, the first detector '56a, and the first amplifier 58a. The control circuit 54 outputs a drive signal to the motor 28 in response to the switching signal from the 11th J Mitswitch 52a, so the base 20 moves due to the drive of the motor 28, and the
A second mirror 181) is inserted into the optical system in place of the mirror 18a. Therefore, the light reflected by the second mirror 18b is incident on the second spectrometer 60b. In addition, the first detector 56
a and the first amplifier '58a are the first limit switch 52
It is turned off by the switching signal from a. Further, the control circuit 64 outputs drive signals to the second spectrometer '5ob, the second detector 66b and the second amplifier '58b, respectively, in response to the switching signal from the first limit switch 52a. As a result, the first spectrometer 50a becomes the second mirror 18b.
Simultaneously with the switching, scanning is performed from the low wavelength λ1' side to the high wavelength λ2' side, and both the second detector 56b and the second amplifier 68b are turned on. Therefore, the second spectrometer 50
The light separated by scanning b is sequentially detected by the second detector 66b, and the detection signal is amplified by the second amplifier 58b and then sent to the symbol recording/displaying section 40.

上記と逆に、高波長側から低波長側へ向って第1、第2
の各分光器50a−50bを走査する場合には、第2分
光器5obが切換波長λ1′まで走査されたときに第2
リミツトスイツチ52bが動作し、第2リミツトスイツ
チ52bから切換信号が出力される。これにより、第2
ミラー18bが第1ミラー18aに切換わるとともに、
第1分光器50a、第1検出器56aおよび第1増幅器
68aが共にONとなり、測定動作を開始することにな
る。
Contrary to the above, from the high wavelength side to the low wavelength side, the first and second
When scanning each of the spectrometers 50a-50b, when the second spectrometer 5ob is scanned to the switching wavelength λ1', the second spectrometer 5ob is scanned to the switching wavelength λ1'.
The limit switch 52b operates and a switching signal is output from the second limit switch 52b. This allows the second
As the mirror 18b switches to the first mirror 18a,
The first spectrometer 50a, the first detector 56a, and the first amplifier 68a are all turned on, and a measurement operation is started.

(へ)、効果 以上のように本発明によれば、対象とする測定波長範囲
の異なる分光器が連絡的に切換えて走査されるので、広
い波長範囲にわたり、しかも分解能を損うことなくカソ
ードルミネッセンスの測定ができるようになるという優
れた効果が得られる。
(f) Effects As described above, according to the present invention, spectrometers with different target measurement wavelength ranges are sequentially switched and scanned, so that cathodoluminescence can be measured over a wide wavelength range without compromising resolution. This has the excellent effect of making it possible to measure

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図はカソー
ドルミネッセンス装置の構成図、第2図は分光器の走査
動作の説明図である。 1・・・カソードルミネッセンス装置、18a・18b
・・・第1、第2ミラー、22・・・切換手段、30a
−5Qb・・・第1、第2分光器、32a−52b・・
・第1、第2リミットスイッチS56am56b・・・
第1、第2検出器、58a−58t)・・・第1、第2
増幅器。
The drawings show one embodiment of the present invention, and FIG. 1 is a block diagram of a cathode luminescence device, and FIG. 2 is an explanatory diagram of a scanning operation of a spectrometer. 1... Cathode luminescence device, 18a/18b
...first and second mirrors, 22...switching means, 30a
-5Qb...first and second spectrometers, 32a-52b...
・First and second limit switches S56am56b...
1st, 2nd detector, 58a-58t)... 1st, 2nd
amplifier.

Claims (1)

【特許請求の範囲】[Claims] (1)、試料から放射されるカソードルミネッセンスの
光を反射するミラーの複数個が互いに異なる角度に配置
されるとともに、これらの各ミラーを切換える切換手段
を備え、前記各ミラーの反射位置にはそれぞれ分光器が
設けられ、これらの各分光器には分光器の切換波長を設
定するリミットスイッチが取付けられ、どれらの各リミ
ットスイッチが前記切換手段の駆動部、前記分光器で分
光された光を検出する検出器および検出器から出力され
る検出信号を処理する信号処理部にそれぞれ共通に接続
されていることを特徴とするカソードルミネッセンス装
置。
(1) A plurality of mirrors that reflect the cathodoluminescence light emitted from the sample are arranged at different angles, and a switching means is provided for switching each of these mirrors, and each of the mirrors has a respective one at a reflecting position. A spectrometer is provided, and each of these spectrometers is equipped with a limit switch for setting a switching wavelength of the spectrometer, and each limit switch is a driving part of the switching means, and a limit switch is attached to each of these spectrometers to set a switching wavelength of the spectrometer. A cathodoluminescence device characterized in that it is commonly connected to a detector for detecting and a signal processing unit for processing a detection signal output from the detector.
JP10409084A 1984-05-22 1984-05-22 Cathode luminescence apparatus Pending JPS60247140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10409084A JPS60247140A (en) 1984-05-22 1984-05-22 Cathode luminescence apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10409084A JPS60247140A (en) 1984-05-22 1984-05-22 Cathode luminescence apparatus

Publications (1)

Publication Number Publication Date
JPS60247140A true JPS60247140A (en) 1985-12-06

Family

ID=14371424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10409084A Pending JPS60247140A (en) 1984-05-22 1984-05-22 Cathode luminescence apparatus

Country Status (1)

Country Link
JP (1) JPS60247140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017621A1 (en) * 2005-08-05 2007-02-15 Cambridge Image Technology Limited Electron-optical apparatus
US8674320B2 (en) 2010-10-01 2014-03-18 Attolight Sa Deconvolution of time-gated cathodoluminescence images

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017621A1 (en) * 2005-08-05 2007-02-15 Cambridge Image Technology Limited Electron-optical apparatus
US8674320B2 (en) 2010-10-01 2014-03-18 Attolight Sa Deconvolution of time-gated cathodoluminescence images

Similar Documents

Publication Publication Date Title
JP3628017B2 (en) Imaging method and imaging apparatus
US5515169A (en) Spectral wavelength discrimination system and method for using
US4594509A (en) Infrared spectrometer
US7230701B2 (en) Compact spectroscopic ellipsometer
US4540281A (en) Double-beam spectrophotometer
US3734621A (en) Spectrophotometer utilizing memory storage calibration techniques
US2971429A (en) Spectro-fluorescence measuring instrument
WO2005074525A2 (en) Entangled-photon fourier transform spectroscopy
US1816047A (en) Photometer
US4469713A (en) Method of and photometric arrangement for measuring and controlling the thickness of optically effective coatings
JP2001141563A (en) Spectrometry, its device, temperature measuring device, and film pressure measurement device
US4630925A (en) Compact temporal spectral photometer
US6804001B1 (en) Device for measuring spatial distribution of the spectral emission of an object
JPS60247140A (en) Cathode luminescence apparatus
US3459951A (en) Photometric analyzer for comparing absorption of wavelength of maximum absorption with wavelength of minimum absorption
KR900005331B1 (en) Concentration measuring instrument of inorganic element
JPH11230829A (en) Microspectroscope and method for measuring spectral data using the same
US4043177A (en) Method to observe damage induced in optical elements by intense thermal radiation
KR100273471B1 (en) Cathodoluminescence measurement system
US3391283A (en) Measuring device having analyzer for comparing pulses from scale and from cathode ray tube coupled to interferometer output
JPH0444940B2 (en)
JP2003028714A (en) Fast spectrometric observation system
JPS58139036A (en) Spectrophotometer
JP3466209B2 (en) Morphological observation device using charged particles as a probe
US20020079436A1 (en) Method for optical detection of an illuminated specimen in a plurality of detection channels