JPS6024656B2 - Maximum demand power monitoring control method - Google Patents
Maximum demand power monitoring control methodInfo
- Publication number
- JPS6024656B2 JPS6024656B2 JP54109275A JP10927579A JPS6024656B2 JP S6024656 B2 JPS6024656 B2 JP S6024656B2 JP 54109275 A JP54109275 A JP 54109275A JP 10927579 A JP10927579 A JP 10927579A JP S6024656 B2 JPS6024656 B2 JP S6024656B2
- Authority
- JP
- Japan
- Prior art keywords
- power
- elapsed time
- value
- power consumption
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Control Of Electrical Variables (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Description
【発明の詳細な説明】
本発明は自家発電設備を備えた電力系統において、受電
系統による使用電力量が規定の電力量以下になるように
自家発電設備の出力制御又はプロセス機器の負荷選択し
や断制御を行ない、しや断制御後規定の電力量になるよ
うにしや断した負荷の自動再投入を行なう最大需要電力
監視制御方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION In a power system equipped with private power generation equipment, the present invention is capable of controlling the output of the private power generation equipment or selecting the load of process equipment so that the amount of power used by the power receiving system is equal to or less than the specified amount of power. The present invention relates to a maximum demand power monitoring and control method that performs power cut-off control and automatically reinserts the shrunken load so that the amount of power reaches a specified value after the shear-shut control.
従来、受変電設備における最大需要電力制御では、系統
に接続されているプロセス機器をあらかじめ決められた
優先順位によって受電系統による使用電力量が規定の電
力量をオーバーすると予想された場合に、負荷選択しや
断を行なう方法が用いられている。Conventionally, maximum power demand control in power receiving and substation equipment has been used to select load selection when the amount of power used by the power receiving system is expected to exceed the specified amount of power, based on a predetermined priority order for process equipment connected to the power grid. A method of cutting is used.
また自家発電設備を備えた需要家では、自家発電設備の
有効活用ということで発電機出力制御によって最大需要
電力制御を行なっている。ところが、近年小規模受変電
設備でも停電時の緊急処置用などとして自家発電設備を
備える需要家が増加してきている。Additionally, customers with private power generation equipment control the maximum power demand by controlling generator output in order to make effective use of the private power generation equipment. However, in recent years, there has been an increase in the number of customers who are equipped with in-house power generation equipment, even for small-scale power receiving and substation facilities, for use in emergencies during power outages.
自家発電設備を備えている需要家等においても、自家発
電設備を利用せず負荷選択しや断方法によって最大需要
電力制御を行なっている。従って、使用負荷を判断し電
力系統における使用電力量を的確に予測し規定の電力量
を超えない範囲で必要な負荷を選択するには、従来から
の運転経験による感にたよるしかなかった。同様に、負
荷をしや断した後、電力系統の電力量が増加することに
よりしや断された負荷を再投入するという作業も運転経
験による感にたよるしかなかった。これらの要素を総合
的に判断すると共に、的確な負荷制御及び負荷投入制御
を行なわせることが要望されていたが、従来は殆んど考
慮されていなかった。本発明は自家発電設備を備えた受
電系統において、使用予定電力量を的確に予測し、自家
発電設備を有効活用して的確な負荷の選択しや断及び自
動再投入制御を行ない規定の電力量を超えることなく最
大限の負荷使用を可能とする最大需要電力監視制御方法
を提供することを目的とする。Even in customers equipped with private power generation equipment, maximum demand power is controlled by load selection and disconnection methods without using private power generation equipment. Therefore, in order to judge the load in use, accurately predict the amount of power used in the power system, and select the necessary load within a range that does not exceed the specified amount of power, the only way to do so is to rely on intuition based on conventional operating experience. Similarly, after a load has been temporarily disconnected, the task of reinserting the disconnected load due to an increase in the amount of power in the power system has been based only on intuition based on operating experience. It has been desired to comprehensively judge these factors and to perform accurate load control and load application control, but this has hardly been considered in the past. The present invention accurately predicts the scheduled amount of power to be used in a power receiving system equipped with in-house power generation equipment, effectively utilizes the in-house power generation equipment, and performs accurate load selection, disconnection, and automatic restart control to achieve the specified amount of power. The purpose of the present invention is to provide a maximum demand power monitoring and control method that enables maximum load usage without exceeding the maximum demand.
以下本発明の一実施例を図面を参照して説明する。第1
図は本発明を適用する自家発電設備を備えた電力系統の
1例を示す。第1図において1‘ま断賂器、2はしや断
器、3は取引用電力量測定器、4は変圧器、5は負荷、
6は自家発電機である。負荷5には送電系統及び自家発
電機6から並列して電力が供孫給されている。第2図は
本発明を適用するシステムの1例の構成図であり、取引
用電力量測定器3に入力された電力量は演算制御装置(
以下CPUという)7に入力される。CPU7では設定
器8により設定された値に基ずき第3図に示すようなア
ラームオーバー上限値を求め、使用電力量がアラームの
場合にはCRT表示装置9にアラームメッセージチャイ
ムを出力し、使用電力量がオーバーの場合にはCRT表
示装置3にオーバーメッセージチャイムを出力する。予
測使用電力量が目標電力量よりオーバーなら調節計10
を用いて発電機6の出力制御を行ない、発電機出力が定
格以上である場合には該当する負荷のプロセス機器5に
しや断、投入指令を送る。3は取引用電力量測定器であ
る。An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows an example of a power system equipped with private power generation equipment to which the present invention is applied. In Fig. 1, 1' is a disconnector, 2 is a disconnector, 3 is a power meter for transaction, 4 is a transformer, and 5 is a load.
6 is a private generator. Electric power is supplied to the load 5 in parallel from a power transmission system and a private generator 6. FIG. 2 is a configuration diagram of an example of a system to which the present invention is applied, and the electric energy input to the trading electric energy meter 3 is measured by the arithmetic and control unit (
(hereinafter referred to as CPU) 7. The CPU 7 calculates the alarm over limit value as shown in FIG. 3 based on the value set by the setting device 8, and outputs an alarm message chime to the CRT display device 9 when the amount of power used is an alarm. If the amount of power is over, an over message chime is output to the CRT display device 3. If the predicted power consumption exceeds the target power consumption, controller 10
is used to control the output of the generator 6, and when the output of the generator is higher than the rated value, a cut-off/turn-on command is sent to the process equipment 5 of the corresponding load. 3 is an electric energy meter for transaction.
つぎに、第3図及び第4図を用いて本発明の作用を説明
する。設定器8により設定された設定目標値MSと契約
時間TS分と経過時間T分より、経過時間T分における
目標オーバー上限値MT、目標アラーム上限値STを計
算する(ステップ14,15)。即ちMT=(Ms−M
L)X宅fML .・‐.・・‘11但し、MSは監視
終了時の目標値、M山は監視スタート時のオーバー目標
値、Tは経過時間、TSは契約時間である。Next, the operation of the present invention will be explained using FIGS. 3 and 4. From the set target value MS set by the setter 8, the contract time TS minutes, and the elapsed time T minutes, the target over-limit upper limit MT and target alarm upper limit ST for the elapsed time T minutes are calculated (steps 14, 15). That is, MT=(Ms−M
L)X house fML.・-. ...'11 However, MS is the target value at the end of monitoring, M mountain is the over target value at the start of monitoring, T is the elapsed time, and TS is the contract time.
sT=(ss−sL)X毒肌 ….・..・・【21
但し、SSは監視終了時の目標値、SLは監視スタート
時のアラーム目標値である。sT=(ss-sL)X poisonous skin....・.. .. ...[21
However, SS is the target value at the end of monitoring, and SL is the alarm target value at the start of monitoring.
尚、第4図で示すように監視スタート時のオーバー、ア
ラーム目標値ML,SLがある値を以つて設定している
のは、デマンド監視の経過時間が小さい間(例えば経過
時間3分)デマンド警報が鳴つてもデマンドオーバーに
は影響が少ないので、デマンド経過時間の小さい時には
警報をあまりださないようにするためである。As shown in Fig. 4, the alarm target values ML and SL are set to certain values at the start of monitoring when the demand monitoring is performed while the elapsed time of demand monitoring is small (e.g., elapsed time of 3 minutes). This is to avoid issuing too many alarms when the demand elapsed time is short, since even if an alarm sounds, it has little effect on demand over.
次に取引用電力量測定器3に入力された電力量を単位時
間毎に積算し、経過時間T分における使用電力量をMP
とし、使用電力量MPを計算する(ステップ16)。Next, the electric energy input into the transaction electric energy meter 3 is integrated for each unit time, and the electric energy used in the elapsed time T minutes is calculated as MP.
Then, the power consumption MP is calculated (step 16).
即ちM円=MC×MJ
但し、MCは単位時間毎に積算したパルス入力数、MJ
は1パルス当りの乗数。That is, M Yen = MC x MJ However, MC is the number of pulse inputs accumulated per unit time, MJ
is the multiplier per pulse.
次に経過時間T分における使用電力量MQと(T−1)
分からT分間の平均瞬時電力△Mと監視終了時までの残
り時間(TS−T)から監視終了時における予測使用電
力量YSを求める(ステップ17)。Next, the amount of electricity used in the elapsed time T minutes MQ and (T-1)
The predicted amount of power consumption YS at the end of monitoring is calculated from the average instantaneous power ΔM from minute to T minutes and the remaining time (TS-T) until the end of monitoring (step 17).
即ちYS=MP+△M×(TS−T) .・.・
..■次に目標アラーム上限値STと使用電力量MPを
比較し(ステップ18)、使用電力量M円が目標アラー
ム上限値STをオーバーするときにはCRT表示装置9
にアラームメッセージをだし(ステップ19)、軽異常
状態を使用者に知らせる。That is, YS=MP+△M×(TS-T).・..・
.. .. ■Next, the target alarm upper limit value ST and the power consumption MP are compared (step 18), and if the power consumption M yen exceeds the target alarm upper limit value ST, the CRT display device 9
An alarm message is issued (step 19) to notify the user of a minor abnormality.
さらに、目標オーバー上限値MTと使用電力量MPを比
較しくステップ20)、使用電力量M円が目標オーバー
上限値MTをオーバーするときにはCRT表示装置9に
オーバーメッセージをだし(ステップ21)、重異常状
態を使用者に知らせる。さらに監視終了時の目標値MS
と予測使用電力量YSとを比較し(ステップ22)、予
測使用電力量YSが監視終了時の目標値MSを超えた場
合には制御できる時間帯かを比較し(ステップ23)、
さらに使用電力量M円と目標アラーム上限値に平行な上
限値DTとを比較し(ステップ24)負荷変動の大きさ
を知る。上限値DTは下記のようにして求める。DT=
MS蓑MLxT+A
但し、Aは目標オーバー上限値の監視スタート時の目標
値(M山)に対するある割合の値。Furthermore, the target excess upper limit value MT and the power consumption MP are compared (step 20), and when the power consumption M yen exceeds the target excess upper limit value MT, an over message is displayed on the CRT display device 9 (step 21), and a serious error is detected. Inform the user of the status. Furthermore, the target value MS at the end of monitoring
and the predicted power consumption YS (step 22), and if the predicted power consumption YS exceeds the target value MS at the end of monitoring, it is compared to see if it is a controllable time period (step 23).
Furthermore, the amount of power used M yen is compared with an upper limit value DT that is parallel to the target alarm upper limit value (step 24), and the magnitude of the load fluctuation is determined. The upper limit value DT is determined as follows. DT=
MS 蓑MLxT+A However, A is a value of a certain ratio to the target value (Mount M) at the start of monitoring of the target over-upper limit value.
負荷変動が大でないと判断した場合(DTくMP)には
ステップ25へ進み、発電機の出力制御により契約時間
内に使用電力量MPが監視終了時の目標値MSになるよ
うに最適制御を行なう。発電機出力が定格出力までにな
ってしまい、これ以上発電機出力で制御できない場合(
ステップ26)にはステップ27、ステップ28へ進み
、負荷選択しや断制御によって最適制御を行なう。以上
のステップ14からステップ28までの1回の監視制御
は、1つの監視周期時間帯TSを細分化時間例えば1分
毎に行なわれる。次に、監視周期時間帯TSに入ったと
きに、予測使用電力量YSが目標オーバー上限値MT‘
こ平行で使用電力量M円を通る線ZTより小さい場合(
ステップ29)には、監視終了時の目標値ZS一予測使
用電力量YS分だけ負荷選択しや断の優先順位によって
負荷再投入を自動的に行なう(ステップ30)。If it is determined that the load fluctuation is not large (DT - MP), the process proceeds to step 25, and optimal control is performed by controlling the output of the generator so that the power consumption MP reaches the target value MS at the end of monitoring within the contract time. Let's do it. If the generator output has reached the rated output and cannot be controlled by the generator output any further (
In step 26), the process proceeds to steps 27 and 28, and optimal control is performed by load selection and cutoff control. One monitoring control from step 14 to step 28 described above is performed by subdividing one monitoring cycle time period TS, for example, every minute. Next, when entering the monitoring cycle time period TS, the predicted power consumption YS exceeds the target upper limit value MT'
If it is smaller than the line ZT that is parallel to this and passes through the power consumption M circle (
In step 29), load selection is automatically performed by the target value ZS at the end of monitoring minus the predicted power consumption YS, and the load is automatically turned on again according to the priority order of shutdown (step 30).
ここで最適制御の方式は、発電機出力制御と負荷選択し
や断制御との組み合わせによりプロセス機器5が使用す
る使用電力量MPを少なくすることにより行なう。Here, the optimum control method is performed by reducing the power consumption MP used by the process equipment 5 through a combination of generator output control and load selection/off control.
以下プロセス機器5を電動機M1,M2,M3,M4,
M5の5台として制御する場合について説明する。プロ
セス機器5は設定器8によりCPU7を経由して負荷量
の設定、優先順位の変更を簡単に行なうことができ、C
PU7は取引用電力量測定器3に入力される電力量を自
家用発電機6によって制御しているものとする。予測電
力量YSが監視終了時の目標値MSを超えた場合、制御
は経過時間がTS/2分以内なら行なわない、又経過時
間がTS/2分以上なら調節計10を通して自家用発電
機6に(YS−MS)/鳶;を出力する。Below, the process equipment 5 is electric motor M1, M2, M3, M4,
A case where five M5 units are controlled will be explained. The process equipment 5 can easily set the load amount and change the priority order via the CPU 7 using the setting device 8.
It is assumed that the PU 7 controls the amount of power input to the transaction power amount measuring device 3 using the private generator 6 . If the predicted power amount YS exceeds the target value MS at the end of monitoring, control will not be performed if the elapsed time is less than TS/2 minutes, and if the elapsed time is more than TS/2 minutes, control will be performed to the private generator 6 through the controller 10. (YS-MS)/Tobi; is output.
こ船用‘こよりプ地棚器5が使用する電力量が自家用発
電機6より(YS−MS〉/;声二分だけ供給され、取
引用電力量測定器3に入力される電力量が前記分だけ少
なくなり、次の周期には瞬時電力△Mの増加が少なくな
る。The amount of electricity used by the ship's power shelf 5 is supplied by the private generator 6 (YS-MS), and the amount of electricity input to the transaction electricity measuring device 3 is the same amount as the above amount. As a result, the increase in instantaneous power ΔM becomes smaller in the next cycle.
さらに単位時間経過後、予測電力量YSと監視終了時の
目標値MSとを比較し、予測電力量YSが目標値MSを
さらにオーバーする場合には発電機出力が定格であるか
どうか比較し、発電機出力が定格である場合には次の負
荷選択しや断制御を次のように行なう。発電機出力で不
足な電力を予測使用電力量YSと発電機余力電力との差
により求め、プロセス機器5をプロセス機器5の優先順
位により選択し、プロセス機器の電力合計値より目標値
MSにおさまるようプロセス機器5に選択しや断指令を
出力する。発電機出力制御、負荷選択しや断制御の組み
合わせにより規定の電力量をオーバーすることなく負荷
群の最適制御を行なうことができる。また次の監視周期
で受電系統の使用電力量の減少等により負荷を投入でき
る状態になった場合、次のように制御する。経過時間T
が15分以上であるかを比較し、18分以上である場合
には、現在の使用電力量を通る目標オーバー上限値に平
行な線ZT‘こより監視終了時の値ZSを求める。さら
に予測使用電力量YSとの差により次に示す電力分PS
だけ負荷選択投入優先順位により負荷の自動再投入を行
なう。再投入可能電力塔は下記のようにして求める。俺
=(公‐YS)x青ら
但し、公は現在の使用電力量を通るMTに平行な線上の
TS分の時の目標値。Furthermore, after the unit time has elapsed, the predicted power amount YS is compared with the target value MS at the end of monitoring, and if the predicted power amount YS further exceeds the target value MS, it is compared whether the generator output is at the rated value, When the generator output is at the rated value, the next load selection and cutoff control is performed as follows. Determine the power shortage in the generator output from the difference between the predicted power usage YS and the generator surplus power, select the process equipment 5 based on the priority of the process equipment 5, and adjust the total power value of the process equipment to the target value MS. A selective cutoff command is output to the process equipment 5. By combining generator output control, load selection and cutoff control, it is possible to optimally control a load group without exceeding the specified amount of power. Furthermore, in the next monitoring cycle, if a load can be applied due to a decrease in the amount of power used in the power receiving system, etc., the following control is performed. Elapsed time T
is 15 minutes or more, and if it is 18 minutes or more, the value ZS at the end of monitoring is determined from a line ZT' that is parallel to the target excess upper limit value passing through the current power consumption. Furthermore, due to the difference from the predicted power consumption YS, the following power amount PS
The load is automatically re-injected based on the load selection priority order. Re-inputable power towers are determined as follows. I = (public - YS) x blue et al. However, public is the target value at the time of TS on the line parallel to MT passing through the current amount of electricity used.
以上記載のように本発明によれば、規定の電力量を超え
ることなく最大限に負荷を使用することができ、またこ
れまで運転員の感にたよっていた負荷しや断、投入等運
転員の負担が軽くでき且つ正確、迅速に操作することが
可能であり、さらに発電機の出力制御及び負荷選択しや
断制御、負荷選択投入制御により効率のよい最適負荷制
御を行なうことができる最大需要電力監視制御方法が提
供できる。As described above, according to the present invention, it is possible to use the load to the maximum without exceeding the specified amount of electric power, and the operator can perform load switching, turning on, and turning on the load, which had previously relied on the operator's intuition. It is possible to reduce the burden on the operator, operate accurately and quickly, and also perform efficient optimal load control through generator output control, load selection/off control, and load selection/on-on control. A power monitoring control method can be provided.
第1図は本発明が適用される電力系統図、第2図乃至第
4図は本発明実施例を説明するもので第2図は本発明が
適用されるシステムの構成図、第3図は本発明を説明す
るフローチャート、第4図は本発明の設定目標値と使用
電力量との関係を説明する曲線図である。
3・・・・・・取引用電力量測定器、5・・・・・・プ
ロセス機器、6・・・・・・自家用発電機、7・・・・
・・演算制御装置、8・・・・・・設定器、9・・・・
・・CRT表示装置、10・・・・・・調節計、MQ・
・・・・・使用電力量、YS・…・・予測使用電力量、
MT・・・・・・目標オーバー上限値、ST・・・・・
・目襟アラーム上限値、MS・・・・・・監視終了時の
オーバー目標値、SS・・・・・・監視終了時のアラー
ム目標値。
第1図
第2図
第3図
第4図Figure 1 is a power system diagram to which the present invention is applied, Figures 2 to 4 are for explaining embodiments of the present invention, Figure 2 is a configuration diagram of a system to which the present invention is applied, and Figure 3 is A flowchart explaining the present invention, and FIG. 4 is a curve diagram explaining the relationship between the set target value and the amount of power used in the present invention. 3...Energy meter for transaction, 5...Process equipment, 6...Private generator, 7...
... Arithmetic control unit, 8 ... Setting device, 9 ...
・・CRT display device, 10・・・・Controller, MQ・
...Energy consumption, YS...Estimated power consumption,
MT...Target over upper limit, ST...
- Eye collar alarm upper limit value, MS: Over target value at the end of monitoring, SS: Alarm target value at the end of monitoring. Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
デマンド周期TS開始時点での設定目標値MLとから、
経過時間T毎の目標オーバ上限値MTを、MT=(MS
−ML)×T/(TS)+MLは求め、前記デマンド周
期TS内の一定監視周期毎に、デマンド周期TS開始時
点から現在までの経過時間T_1における使用電力量M
P、現在時点での平均瞬時電力および残り時間からデマ
ンド周期TS終了時の予測使用電力量YSを求め、この
予測使用電力量YSが前記目標設定値MSより大の場合
は、現時点までの経過時間T_1が設定値以上かを判定
し、以上の場合は現時点の使用電力量MPがこの時点に
おける目標オーバ上限値より一定値分低く設定した負荷
変動判定用の上限値DTより大かを判定し、大であれば
前記設定目標値MSと予測使用電力量YSとの差に基づ
き並列運転される自家発電出力の制御を行い、この自家
発電出力の制御が行われたデマンド周期TSの次のデマ
ンド周期に、この周期TS内における経過時間T_2が
設定時間以上かを判定し、以上の場合はその経過時間T
_2での使用電力量MPを基点とし、前記目標オーバ上
限値MTの経過時間T毎の上昇率と等しい上昇率にてデ
マンド周期TS終了時の目標値ZSを算出し、これと、
上記経過時間T_2にて予測されるデマンド周期TS終
了時の予測使用電力量YSを比較し、ZS>YSの場合
は、これらの差に対応する容量の負荷投入を行う最大需
要電力監視制御方法。1 The set target value MS at the end of the demand cycle TS,
From the set target value ML at the start of the demand cycle TS,
The target excess upper limit MT for each elapsed time T is expressed as MT=(MS
-ML)×T/(TS)+ML is calculated, and the amount of power used M in the elapsed time T_1 from the start of the demand cycle TS to the present for each fixed monitoring cycle within the demand cycle TS
P, calculate the predicted power consumption YS at the end of the demand cycle TS from the average instantaneous power at the current point and the remaining time, and if this predicted power consumption YS is greater than the target set value MS, calculate the elapsed time up to the present time. Determine whether T_1 is greater than or equal to the set value, and if so, determine whether the current power consumption MP is greater than the upper limit value DT for load fluctuation determination, which is set a certain value lower than the target over-upper limit value at this time; If it is larger, the private power generation output that is operated in parallel is controlled based on the difference between the set target value MS and the predicted power consumption YS, and the demand cycle following the demand cycle TS in which the private power generation output was controlled is performed. Then, it is determined whether the elapsed time T_2 within this period TS is equal to or longer than the set time, and if it is, the elapsed time T_2 is determined.
Calculate the target value ZS at the end of the demand period TS at a rate of increase equal to the rate of increase of the target over-upper limit value MT for each elapsed time T based on the power consumption MP at _2, and
A maximum demand power monitoring and control method that compares the predicted power consumption YS at the end of the demand cycle TS predicted at the elapsed time T_2, and if ZS>YS, loads a capacity corresponding to the difference between them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54109275A JPS6024656B2 (en) | 1979-08-28 | 1979-08-28 | Maximum demand power monitoring control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54109275A JPS6024656B2 (en) | 1979-08-28 | 1979-08-28 | Maximum demand power monitoring control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5635637A JPS5635637A (en) | 1981-04-08 |
JPS6024656B2 true JPS6024656B2 (en) | 1985-06-14 |
Family
ID=14506031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54109275A Expired JPS6024656B2 (en) | 1979-08-28 | 1979-08-28 | Maximum demand power monitoring control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6024656B2 (en) |
-
1979
- 1979-08-28 JP JP54109275A patent/JPS6024656B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5635637A (en) | 1981-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6975946B2 (en) | Reactive power optimization with adaptive excitation control | |
EP3410560B1 (en) | Management device and control method | |
JP2004524792A (en) | Control of multiple fuel cell power plants at a site providing distributed resources within the utility grid | |
JP2008125295A (en) | Method and device for selecting/interrupting load in consumer | |
JP3801910B2 (en) | Fuel cell system control method | |
JP2003199249A (en) | Method of making use of power supply network and system therefor | |
JP3855168B2 (en) | Power supply system | |
EP1367689A2 (en) | Supervising system and operating method for areal power information | |
JPS6024656B2 (en) | Maximum demand power monitoring control method | |
JP3430890B2 (en) | Power management device | |
JP4031412B2 (en) | Power generation control device and program for power consignment | |
JP7401846B2 (en) | Posiwatt trading support device and Posiwatt trading method | |
JP4088532B2 (en) | Power generation engine operation control method, power generation engine operation control device, and power generation engine operation control program | |
CN110460070A (en) | A kind of quick reaction method of the Demand-side frequency urgent control of ultra-large power grid | |
JP2002112460A (en) | Power source unit control system, power-supply system and power supply method | |
JPH07123336B2 (en) | Operation control device for private power generation equipment | |
KR102630434B1 (en) | central control system of Electric car charger | |
KR102458404B1 (en) | Emergency generator system operating in various modes and control method for the same | |
JPH1023670A (en) | Method for controlling output of non-utility feeding device and output controlling device | |
JP7104473B2 (en) | Energy management system, power conversion control device, and power conversion control method | |
Dai et al. | Automatic generation control system for an industrial facility with onsite generation | |
JPH0823634A (en) | Controller for electric power storing device | |
JPH11187574A (en) | Power-factor control equipment of power station | |
KR20230067404A (en) | central control system of Electric car charger | |
JPS63314136A (en) | Purchasing energy controller |