JPS60246218A - Restrictedly swelling synthetic mica and its preparation - Google Patents

Restrictedly swelling synthetic mica and its preparation

Info

Publication number
JPS60246218A
JPS60246218A JP9884084A JP9884084A JPS60246218A JP S60246218 A JPS60246218 A JP S60246218A JP 9884084 A JP9884084 A JP 9884084A JP 9884084 A JP9884084 A JP 9884084A JP S60246218 A JPS60246218 A JP S60246218A
Authority
JP
Japan
Prior art keywords
source
synthetic mica
mica
compound
cloud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9884084A
Other languages
Japanese (ja)
Other versions
JPH0459247B2 (en
Inventor
Toshihide Nishikawa
西川 敏秀
Tetsushi Kosugi
小杉 哲史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP9884084A priority Critical patent/JPS60246218A/en
Publication of JPS60246218A publication Critical patent/JPS60246218A/en
Publication of JPH0459247B2 publication Critical patent/JPH0459247B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A novel restrictedly swelling type synthetic mica in which the amount of Li as an octahedral layer ion in conventional synthetic mica is reduced, instead, Mg is increased and the chemical constitution is specified, thus giving platelets of small average sizes by easy cleavage. CONSTITUTION:The objective synthetic mica has a chemical constitution of the general formula (X represents Mg<2+> or a mixture thereof with Fe<2+>, Ni<2+>, Mn<2+>, Al<3+> or Fe<3+>, Y represents Si<4+> or a mixture thereof with Al<3+>, Fe<3+> or B<3+>, and x is 0 or 0.5<x<0.9), or typically NaMg2.5-x/2LixSiO10F2 (II). The objective mica is prepared by using starting materials in chemically stoichiometric amounts, except for F, which is used in an excessive amount. The composition is melted by heating through a known process such as stay melting or flame melting, preferably at about 1,000-1,500 deg.C, then cooled down. In this process, Zr, or B compound can be added as a seed for fine-particle crystallization.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、限定膨潤型合成雲母及びその製造方法に係り
、更に詳記すれば層間剥離が容易で、しかもyli均H
径の小さい鱗片形状の粒Jfとなる限定膨潤型合成′ノ
を母及びその有利な製造方法に関するものである。 (従来の技術) 従来の天然雲fitやフ、素雲バIは水に漬けてもIV
1/潤しないが、一定の条件を備えた成る種の合成7ミ
ハ1は、1水和膨潤+1」即ち結晶層間に水分子を引き
入れてll釘れあがる+1質をイjする。そしてこの水
和膨潤性雲母は、限られた水分子層しか配位しない「限
定膨潤型雲)ij 44 と自由水的な傾向にまで大♀
に水をとり込む1目山膨潤型雲母−とに分かれる。 本発明は、限定騨潤型雲rrlに関するものであるが、
従来このような合成実JJとしては 1公11/l 3
5−8874号明細占に記載されているナトリウl、型
四ケイ素雲r+Jが知られていた。 (発明が解決しようとする問題
(Industrial Field of Application) The present invention relates to a limited swelling type synthetic mica and a method for producing the same, and more specifically, the present invention relates to a limited swelling type synthetic mica and a method for producing the same.
This invention relates to a limited swelling type synthesis which produces scale-shaped particles Jf with a small diameter, and an advantageous method for producing the same. (Conventional technology) Conventional natural cloud fit, fu, and sounba I do not have IV resistance even when soaked in water.
1/Synthesis of a species that does not hydrate but has certain conditions 7 Miha 1 has 1 hydration swelling + 1'', that is, the ability to pull water molecules between the crystal layers and rise up + 1. This hydration-swellable mica has a "limited swelling cloud" ij 44 in which only a limited layer of water molecules coordinates, and a free water-like tendency.
It is divided into two types: 1st mica, which takes in water, and 1st mica, which takes in water. The present invention relates to a limited Dojun type cloud rrl,
Conventionally, such a synthetic JJ is 1 public 11/l 3
5-8874, the type tetrasilicon cloud r+J was known. (The problem that the invention seeks to solve)

【−21、)しかしなが
ら、該明細古に記載の実C7+、t 、層間を引き締め
る力、いわゆる層間強度かノきいため、容易に襞間する
ことか出来す、しかちり・均粒径の小さい@J1は得ら
れない欠・、′!、かあった本発明の目的は、容易に襞
間して平均粒iヤの小さい鱗片のイリられる新規限定膨
部型合成i、+51ij及びその製造方法を提供するこ
とにある。 限定膨潤梨雲f+Jの結晶構i盾は、!−・トのケフイ
酸四面体層と、該四面体層にサノ]・イノチされた八面
体層を形成するイオンとの 層格rからなり、該八面体
層は4個のM素イオンと2個のフン素イオンとからなる
6個の陰イオンと、訂陰イオンの中心に配位したMgと
I−i とから構成されている。 そして、この五層格子内部のイオン構成に於いては、+
「’@傭と負電楠との電荷平衡は、+1電6X■が不足
する形となるので、この不足を補う為−1層格rとS層
格fとの層間にはr層間イオン] と呼ばれる十トリウ
ムイオンが配置して電荷中換1を保っている。 木発明者等は、この電荷平衡の原理に着目し、八面体層
の陽イオンであるLl量を変動させることによって、層
間強度を変化させることができるのではないかと考え、
多くの一連の実験を重ねた結束、本発明に到達した。 (問題点を解決するための手段) 即ち本発明は、一般式1: %式%() (式中、XはMg2+またはMg2+と共にFe”、N
+ 、Mn 、AI”+またはFe”+を含有2+ 2
+ する114合イオンを表わし、YはS14+またはS4
+ 3+ 3+ 3 + 1 と共にAI 、Fe またはB を含有するljt
合イオンを表わし、モしてXは0.5くx<0.9の範
囲から選択される。)で表わ、へれる化学組成を4rす
る限定tll潤型合成雲Iすを提1共すると共に、フン
素源、ケイ素源、マグオンウノ、源、ナトリウl、源、
リチウム源及び酸素源、2+0 を配合し、所望によっては、更にFe、Ni“1、Mn
 、AI 、Fe3+及びS3+からなる2+ 3+ イオン源の一種以l二を配合した配合物を、加熱溶融さ
せ、ついで冷却することを41f徴とする]記一般式I
で表わ5れるPB、 >if膨潤型合成′j: liJ
の製造方法を提供するものである。 まず本発明の合成雲母に於けるリチウムイオンは、その
指数Xが0.5<x<0.9好ましくは0.6<x<0
.8の範囲である必要があり、X≦0.5の場合には自
tll 1IiiJ潤セ1を小し、限定膨潤型雲+aと
はならないし、またX≧09の場合には、従来の合成雲
nlであるNaMg 2LiS l 、Olo F 2
と近似したM1成となり、その+”l ff!tも11
を似し、層間強度が大きく層間剥離が困難な合成雲母と
なる。 関係は、LiがXであるのに対し、Mgは2゜5−x/
2であることを必要としている。これは本発明に於いて
は、Llの皺を減少させているので、前記八面体層に電
荷不足が生じるが、この電荷不足をMg量を増加させる
ことによって補っているからである。いずれにしても、
この植菌関係を渦層しない場合には、本発明の目的とす
る合成雲fkjは得られない。 本発明の典型的な例は、次式II: N a M g2.s−!/2L I S ! i、0
1oF 2(■I)! (式中、Xは前記の意味を表わす。)で表わされる。 そして、!、記式IIの八面体層のMgイオンは、公知
の同型置換の関係により、その一部をF2+ 、2+ 
2+ 3+ e 、Nl 、Mn 、AI または 3十 Fe で置換し、前記式Iに包含される同様の性質の雲
母を得ることができる。置換することが出来る量は、M
gの約20%以内である。 また四面対層のSlも同じく同型置換の関係に3+3+ よって、A1.Fe またはB3+で置換し。 同じく前記式■に包含される同様の性質の雲f+Jを得
ることができる。置換することが出来る間はSiの約1
0%以内である。勿論、これら同型置換前後の電荷の増
減はないlで置換する。 本発明に於いて用いられる前記一般式Iで表わされる合
lIt雲母の製〃、は、各原料を目的とする生成物に対
して化学M論的割合若しくはフッ素だけをこの割合より
も多くした割合となるように配合し、この配合物を加熱
溶融させた後、冷却すればよい。ここで原本47−2素
は、揮発しやすく、その為通常の装置で加熱する場合は
、幾分揮発するので、その分多くなるように配合すると
よい。 原料フッ素源、ケイ素源、マグネシラ1.i、ナトリウ
ム源、リチウム源及び酸素源としては、単体若しくは化
合物の組合せによって生成物の化学組成を構成するか、
或いは製造I f♂で原料の組成の一部が揮発して、生
成物の化学組成を構成するようなものであるならどのよ
うなものでもよく、例えば−1酸化ケイ素、酸化マグネ
シウム、フン化マグネシウム、ケイクン化マグネシウl
1、フン化す)・リウム、ケイフッ化すトリウ11.炭
酸ナトリウl1、フッ化り壬つム及び炭酸リチウト等が
好適に使用される。 また同型置換Sせるイオン源としては、Fe2+には例
えば酸化鉄(Fed)及びフ、化鉄(FeF2)が、N
1 には例えば酸化ニッケル(Nip)及びフン化ニッ
ケル(NiF2 )が、Mn には例えば酸化マンガン
(MnO) 及びフ・ン化マンガン(M n F 2 
)が、A; には例えば酸化アルミニウム(A I 2
03)及びフッ化アルミニウム(AlF2)が、Fe3
+には例えば酸化鉄(Fe203)及びフッ化鉄(F 
e F 3)が3+ 、B には例えばホウフッ化ナトリウム(NaBFa)
が好適に使用される。 加熱溶融は、例えば帯溶融法、火炎溶融性、内燃式電気
溶融法等の公知の方法で好ましくは約1OOO℃〜15
00’cに加熱することによって、実施することが出来
る。 冷却は、例えば公知のモールド冷却法才たは通風冷却法
で行えばよい。その際冷却させる速度は、1℃/分〜3
0°C/分で実施するのがbfま17く、冷却速度が遅
すぎると、平均粒1イの小さい雲tすは得られないし、
逆に冷却速度か11+すぎる場合は、結晶化しないで、
カラス質となる。一方従来公知の限定we型型合雪雲U
す]・リウムテニオライL (NaMg2LiSi40
.o)は、化学lyl論的組成になるように原ネ゛l化
合物を配合し、これを加熱溶融させた後、5°C/ l
If間以ト曲内冷却速度で徐冷することによってVII
られていたものであり、本発明方法とはその冷却条件を
箸しぐ、Wにしている。 本発明の製造方υ、には、結晶Wi粒化剤としてジルコ
ニウムまたはホロン化合物を配合することが出来る。配
合量は、その衿1加効果を期待する為には、全配合−に
対してジルコニウム4−シぐはポロン換算で約O11〜
0 、311′+v%配合するのが好ましい。 (実施例) 次に本発明の実施例を挙げて、本発明を更に説明するが
、本発明はこれら実施例に限定されない。 実施例1 次式・ 34 Na、、SiF6.24Mg0・3/]OLi 
2CO3−3’A 5in2で表わされる化学量論的割
合に相当する下記型組組成の配合物100Kgを調製し
た。 ケイ7 ッ化ナトリウム(Ha S+F e ) 22
.7%酸化マグネシウム(MgO) 21.4%炭酸リ
チウム(Li2 C03) 5.3鬼シ’l :b (
S102 ) 50.8%1−記配合物を内熱式電気溶
融炉中に装入し、通電して加熱し、配合物を溶融させた
。溶融詩の溶融体温度は、1350 ’Cであった。溶
融終r後 溶融体を鋼製の鋳型に流し込み、16°C/
分の冷却速度で冷却させた。冷却速度は、温度効果/経
過時間の値であり、これはP−R熱へ対により連続的に
温度を測定してめた。得られた結晶塊を水に浸漬し、蒸
留水で十分に洗1 浄した試料を化学分析して、この雲fすの化学Al1成
が次式: NaMg2.2 !−1o、B S+40 10F 2
 (式 II 、 x=0.6i)で表わされることを
fk認した。また温州時の低面間隔は、12 、6Aで
あり、このことがらこの結晶が、限定膨潤型であること
が明らかになった。 実施例2 次式: %式% で表わされる化学量論的割合に相当するド記重量組成の
配合物100Kgを調製した。 ケイフッ化ナトリウム(Na 2 S+F e ) 2
2−5%酸化マグネジ’y ム(MgO) 20.2%
炭酸リチウム(L12 C03) ?、 IXシリカ(
Si02) 50.2% この配合物を用いて、実施例】と1111様の方法によ
り結晶塊を得た。 実施例3 2 冷却速度を4°C/分とする以外は、実施例2と同様に
して結晶塊を得た。 実施例4 実施例2の配合物に、更にホウフッカナトリウム(Na
BF4) 5 K gを加える以外は、実施例2と同様
にして結晶塊を得た。 実施例5 実施例2の配合物に、更にフッ化ジルコニウムナトリウ
ム(NaZrFs) 1 、25 K gを加える以外
は、実施例2と同様にして結晶塊を得た。 比較例1及び2 冷却速度をそれぞれ0.1°C/分(比較例1)若しく
は50°C/分(比較例2)とする以外は、実施例3と
同様にして結晶塊を得た。 比較例3 次式: %式% で表わされる化学量論的割合に相当する下記重量組成の
配合物1. OOK gを調製した。 ケ イ 7 ン 化 す ト リ ウ ム (Na 2
 S+F e ) 2L 2%酸化マグネシウム(Mg
O) 24.9Xシリカ(S+02 ) 5]、9% この配合物を用いて、実施例1と同様の力7ノ。 により結晶塊を得た。 比較例4 次式: %式% で表わされる化学量論的割合に相当するド記重量組成の
配合物100Kgを調製した。 ケイフッ化ナトリウム(Na 2 SiF 6) 22
.8X酸化マグネシウム(MgO) 22.5%炭酸リ
チウム(Li2C03) 3.6Xシリカ(S+02 
) 51.1駕 この配合物を用いて、実施例1と同様の力1)、により
結晶塊を得た。 比較例5 次式: %式% で表わされる化学量論的割合に相当するド記重品組成の
配合物1. OOK gを調製した。 ケイ7 ッ化ナトリウ1、(Na 2 SiF 6)2
2.3%酸化マグネシウ1、(MgO) 19.1%j
R% ’) f ウt、(Li2C03) 8.8$シ
リカ(Sin、 ) 49.8χ この配合物を用いて、実施例1と同様の方法により結晶
塊を得た。 次に、1−記実施例1〜4及び比較例1〜5で了りられ
た生成物についての平均粒径の測定と層間剥離及び膨潤
性の試験例を示す。試験はそれぞれ次のようにして行っ
た。 (層間剥離試験) 合成雲hl l OOgを、3%n−ブチルアミン塩酸
液200mQ中に投入して反応させる。次に、得られた
反応生成物を蒸留水で洗浄して膨潤させる。このように
して得た雲母複合体を、100メ・ンジュのふるいを通
して、未襞間雲母と分離する。この未襞間雲母の量によ
って、層間剥離の容易性を評価する。looメンシュの
ふるい1−にある量が全重量の30%夏上のもの5 をV不良、lとし、30%未満のものをr 1曹 とし
た。 (平均粒径の測定) ト記試験で得たふるいドのツルを、2000rpmで1
0分間遠心分離した。1澄の部分を、光透過式粒度分布
測定機で測定し、50%中均粒径の仙として4曹均粒径
をめた。 (膨潤性試験) 合成雲母の粉を乳鉢ですりつぶしてホルタ−にのせ、こ
れにスポイトで水を加え、湿らせに状態でのX線回折ピ
ークによって膨l1fl Mの判定を行った。(OO1
)回折Wから、2θ=56″〜8.8°付近に明瞭なピ
ークか現われるものを1限定膨潤性jとし、20=9”
以I・のベースラインがなだらかににAシ、2θ=2゜
〜9″に明瞭なピークの現われないものを1自由膨潤性
」とした。 次に■−記の試験結果を次表に示す。 6 (作用) 従来の合成雲ハIの八面体層イオンであるLiすを減少
させ、その分Mglを増加させることによって、層間強
i隻か弱くなったものと考えられ、このことによって次
のような効果がイリられる。 (発明の効果) 本発明の限定膨潤型合成雲母は、前記試験結果から、従
来公知の限定膨間型合成雲Iυと比へて、層間剥離が容
易で、しかも平均粒径の小さい粒子となることがわかる
。 特許出願人 ドビー王業株式会社 代理人 弁理ト 稲 垣 仁 義  8
[-21,) However, the fruit C7+, t, described in the specification, has a force that tightens the interlayers, so-called interlayer strength, so it can easily be folded, and has a small uniform grain size. I can't get J1.'! It is therefore an object of the present invention to provide a novel limited swelling type composite i, +51ij which can be easily folded to remove scales with a small average grain size, and a method for producing the same. The limited swelling pear cloud f + J crystal structure i shield is! The octahedral layer consists of a kefiic acid tetrahedral layer of −・g and ions forming an octahedral layer which is inoculated with the tetrahedral layer, and the octahedral layer consists of four M elementary ions and two It is composed of six anions consisting of six fluorine ions, and Mg and I-i coordinated at the center of the anion. In the ion configuration inside this five-layer lattice, +
``The charge balance between '@meren and negative electric Kusunoki is such that there is a lack of +1 electric 6X ■, so to compensate for this shortage, r interlayer ions are placed between the -1 layer r and S layer f] The inventors focused on this principle of charge balance, and by varying the amount of Ll, which is a positive ion in the octahedral layer, the interlayer strength was improved. I thought it might be possible to change the
The present invention was arrived at after many series of experiments. (Means for Solving the Problems) That is, the present invention provides general formula 1: % formula % () (wherein X is Mg2+ or Mg2+ as well as Fe",
Contains +, Mn, AI"+ or Fe"+2+ 2
+ represents the 114 compound ion, Y is S14+ or S4
ljt containing AI, Fe or B along with + 3+ 3+ 3 + 1
represents a compound ion, and X is selected from the range of 0.5 x<0.9. ), we present a limited tll-type synthetic cloud I with a chemical composition of 4r, and we also have fluorine source, silicon source, magonuno, source, sodium source, source,
A lithium source and an oxygen source, 2+0, are blended, and if desired, Fe, Ni"1, Mn
, AI, Fe3+, and S3+ A mixture containing one or more 2+ 3+ ion sources is heated and melted, and then cooled to form the general formula I
5 PB expressed as >if swelling type synthesis ′j: liJ
The present invention provides a method for manufacturing. First, the lithium ion in the synthetic mica of the present invention has an index X of 0.5<x<0.9, preferably 0.6<x<0.
.. 8, and when X≦0.5, the self tll 1IiiiJ runse 1 is made small, and it does not become a limited swelling type cloud +a, and when X≧09, the conventional synthesis Cloud nl NaMg 2LiS l, Olo F 2
The M1 configuration approximates that, and its +”l ff!t is also 11
It is a synthetic mica that resembles , has high interlayer strength and is difficult to peel off. The relationship is that while Li is X, Mg is 2°5-x/
It needs to be 2. This is because in the present invention, since the wrinkles of Ll are reduced, a lack of charge occurs in the octahedral layer, but this lack of charge is compensated for by increasing the amount of Mg. In any case,
If this inoculation relationship is not formed into a swirl layer, the synthetic cloud fkj that is the object of the present invention cannot be obtained. A typical example of the invention is represented by the following formula II: N a M g2. s-! /2L IS! i, 0
1oF 2(■I)! (In the formula, X represents the above meaning.) and,! , Mg ions in the octahedral layer of formula II are partially replaced by F2+, 2+ due to the known isomorphic substitution relationship.
Substitution with 2+ 3+ e , Nl 2 , Mn 2 , AI or 30Fe 2 can yield micas of similar properties encompassed by formula I above. The amount that can be replaced is M
It is within about 20% of g. Also, Sl in the tetrahedral layer has the same isomorphic substitution relationship of 3+3+, so A1. Substitute with Fe or B3+. It is also possible to obtain a cloud f+J with similar properties included in the above formula (2). About 1 of Si can be substituted
It is within 0%. Of course, there is no increase or decrease in charge before and after these isomorphic substitutions. The production of the composite mica represented by the general formula I used in the present invention is carried out using chemical ratios of each raw material to the desired product, or ratios in which only fluorine is contained in a ratio greater than this ratio. The mixture may be blended so that it becomes, heat-melted, and then cooled. Here, the original 47-2 element is easily volatilized, and therefore, when heated with a normal device, it will volatilize to some extent, so it is preferable to mix it in an amount corresponding to that amount. Raw materials fluorine source, silicon source, magnesilla 1. i. Sodium source, lithium source and oxygen source may constitute the chemical composition of the product as a single substance or a combination of compounds;
Alternatively, any material may be used as long as a part of the composition of the raw material is volatilized during production and forms the chemical composition of the product, such as -1 silicon oxide, magnesium oxide, magnesium fluoride, etc. , magnesium chloride
1. fluoride)・lium, trifluorosilicate 11. Sodium carbonate, sodium fluoride, lithium carbonate, and the like are preferably used. In addition, as an ion source for isomorphic substitution of S, for example, iron oxide (Fed) and iron oxide (FeF2) are used for Fe2+, N
1, for example, nickel oxide (Nip) and nickel fluoride (NiF2), and Mn, for example, manganese oxide (MnO) and manganese fluoride (MnF2).
), but A; is, for example, aluminum oxide (A I 2
03) and aluminum fluoride (AlF2) is Fe3
For example, iron oxide (Fe203) and iron fluoride (F
e F 3) is 3+, B is, for example, sodium borofluoride (NaBFa)
is preferably used. Heat melting is preferably carried out by a known method such as a band melting method, a flame melting method, an internal combustion electric melting method, etc. to a temperature of about 100°C to 15°C.
This can be carried out by heating to 00'c. Cooling may be performed, for example, by a known mold cooling method or ventilation cooling method. At that time, the cooling rate is 1°C/min to 3°C/min.
It is difficult to carry out the cooling at 0°C/min, and if the cooling rate is too slow, it will not be possible to obtain a small cloud with an average particle size of 1
On the other hand, if the cooling rate is too high, do not crystallize.
It becomes crow-like. On the other hand, the conventionally known limited we type snow cloud U
]・Liumtenioli L (NaMg2LiSi40
.. In o), raw polymer compounds are blended to have a stoichiometric composition, heated and melted, and then heated at 5°C/l.
VII by slow cooling at an in-circle cooling rate between If
However, in the method of the present invention, the cooling conditions are changed to W. In the production method υ of the present invention, a zirconium or holon compound can be blended as a crystal Wi granulating agent. In order to expect the added effect of the collar, the amount of zirconium 4-sig should be approximately O11 to poron equivalent for the entire composition.
It is preferable to mix 0.311'+v%. (Example) Next, the present invention will be further explained with reference to Examples of the present invention, but the present invention is not limited to these Examples. Example 1 The following formula: 34 Na, , SiF6.24Mg0.3/]OLi
100 kg of a formulation having the following mold composition corresponding to the stoichiometric ratio expressed as 2CO3-3'A 5in2 was prepared. Sodium silicide (Ha S+F e ) 22
.. 7% Magnesium oxide (MgO) 21.4% Lithium carbonate (Li2 C03) 5.3 Oni Shi'l :b (
S102) 50.8% The blend described in 1- above was charged into an internally heated electric melting furnace, and heated by applying electricity to melt the blend. The melt temperature of the melt was 1350'C. After melting is complete, pour the melt into a steel mold and heat at 16°C/
It was cooled at a cooling rate of 1 minute. The cooling rate is a temperature effect/elapsed time value, which was determined by continuously measuring the temperature with the P-R heat couple. The obtained crystal mass was immersed in water, thoroughly washed with distilled water, and the sample was chemically analyzed.The chemical Al1 composition of this cloud was determined by the following formula: NaMg2.2! -1o, B S+40 10F 2
It was recognized that fk is expressed by (Formula II, x=0.6i). Furthermore, the low-planar spacing during unshielding was 12.6 A, which revealed that this crystal was of a limited swelling type. Example 2 100 kg of a formulation with a weight composition corresponding to the stoichiometric proportions expressed by the following formula: % formula % was prepared. Sodium silicofluoride (Na 2 S + Fe) 2
2-5% Magnesium oxide (MgO) 20.2%
Lithium carbonate (L12 C03)? , IX silica (
Si02) 50.2% Using this blend, a crystal mass was obtained by a method similar to Example 1111. Example 3 2 A crystal mass was obtained in the same manner as in Example 2, except that the cooling rate was 4°C/min. Example 4 The formulation of Example 2 was further supplemented with sodium borofluoride (Na
A crystal mass was obtained in the same manner as in Example 2 except that BF4) 5 Kg was added. Example 5 A crystal mass was obtained in the same manner as in Example 2, except that 25 K g of sodium zirconium fluoride (NaZrFs) 1 was further added to the formulation of Example 2. Comparative Examples 1 and 2 Crystal lumps were obtained in the same manner as in Example 3, except that the cooling rate was set to 0.1°C/min (Comparative Example 1) or 50°C/min (Comparative Example 2), respectively. Comparative Example 3 Blend 1 with the following weight composition corresponding to the stoichiometric proportions expressed by the following formula: % Formula %. OOK g was prepared. Tritrium (Na2)
S+F e ) 2L 2% magnesium oxide (Mg
O) 24.9X Silica (S+02) 5], 9% Force 7 min as in Example 1 using this formulation. A crystal mass was obtained. Comparative Example 4 100 kg of a blend with a weight composition corresponding to the stoichiometric ratio expressed by the following formula: % was prepared. Sodium silicofluoride (Na 2 SiF 6) 22
.. 8X Magnesium Oxide (MgO) 22.5% Lithium Carbonate (Li2C03) 3.6X Silica (S+02
) 51.1 pieces Using this blend, a crystal mass was obtained using the same force 1) as in Example 1. Comparative Example 5 A formulation with the following weight composition corresponding to the stoichiometric proportions expressed by the following formula: 1. OOK g was prepared. Sodium silicide 1, (Na 2 SiF 6) 2
2.3% Magnesium oxide 1, (MgO) 19.1%j
R%') f Ut, (Li2C03) 8.8$ Silica (Sin, ) 49.8χ Using this blend, a crystal mass was obtained in the same manner as in Example 1. Next, measurement of average particle diameter and test examples of delamination and swelling properties of the products obtained in Examples 1 to 4 and Comparative Examples 1 to 5 will be shown. Each test was conducted as follows. (Layer Peeling Test) Synthetic cloud hl l OOg is put into 200 mQ of 3% n-butylamine hydrochloric acid solution and reacted. Next, the obtained reaction product is washed and swollen with distilled water. The mica complex thus obtained is separated from the unfolded mica by passing it through a 100 mm sieve. The ease of delamination is evaluated based on the amount of unfolded mica. Those in which the amount on the sieve 1- of the loo mensch was 30% of the total weight were designated as V-defective and 1, and those less than 30% were designated as r-1. (Measurement of average particle size) The sieve vine obtained in the above test was
Centrifuged for 0 minutes. The 1st part of the solution was measured using a light transmission type particle size distribution analyzer, and the 4% average particle size was determined as 50% of the average particle size. (Swelling Test) Synthetic mica powder was ground in a mortar and placed on a Holter, water was added to it using a dropper, and the swelling l1flM was determined based on the X-ray diffraction peak in the wet state. (OO1
) From the diffraction W, if a clear peak appears around 2θ = 56″ to 8.8°, it is defined as 1 limited swelling property j, and 20 = 9″
A case where the baseline of I.A was gentle and no clear peak appeared at 2θ=2° to 9″ was defined as 1 “free swelling property”. Next, the test results described in ■- are shown in the following table. 6 (Effect) It is thought that by decreasing Li, which is an octahedral layer ion of conventional synthetic clouds, and increasing Mgl by that amount, the interlayer strength became weaker, and as a result, the following The effect is irritating. (Effects of the Invention) From the above test results, the limited swelling synthetic mica of the present invention has particles that are easier to delaminate and have a smaller average particle size than the conventional limited swelling synthetic cloud Iυ. I understand that. Patent applicant Dobby Ohgyo Co., Ltd. Attorney Hitoshi Inagaki 8

Claims (1)

【特許請求の範囲】 (1)一般式■・ NaX2.5−1/2 X 4 10 2LiY OF
 (1) (式中、XはM S2+またはMg2+と共にFe”2
+ 2+ 3+ 、N+ 、Mn 、AI またはFe3+を含有する混
合イオンを表わし、YはS14+またはS4+ 3+ 
3+ 3 + 1 と共にAI 、Fe またはB を含有する混合イ
オンを表わし、モしてXは0,5くx<0.9の範囲か
ら選択される。)で表わされる化学組成を有することを
特徴とする限定膨潤型合成雲母。 (2)一般式■I: Na Mg2.5−.72Li 、S i 40.oF
2(II)(式中、Xは0.5<x<0.9の範囲から
選択される。)で表わされる化学組成を有する特許請求
の範囲第1項記載の限定膨潤型合成雲A7(3)指斂x
が0 、6<x<0 、8(7)範囲から選択される特
許請求の範囲第1イIまたは第2イjに記載の合成雲母
。 (4)フッ素源、ケイ素源、マグネシラノ、源、ナトリ
ウム源、リチウム源及び酸素源を配合し2+ 2+ 、所望によっては、更にFe 、N+ 、Mn、AI 
、Fe 及びS3+からなるイオノ2 + 3+ 3+ 源の一種曲内を配合した配合物を、加熱溶融させ、つい
で冷却することを特徴とする一般式1%式%(1) (式中、XはMg2+またはMg2+と共にFe”2+
 2+ 3+ 、N+ 、Mn 、AI またはFe”+を含有する混
合イオンを表わし、YはS14+またはS4+ 3+ 
3+ 3 + 1 と共にA1.Fe またはB を含イ1する混合イ
オンを表わし、そしてXは05くx<0.9の範囲から
選択される。)で表わされる化学組成を有する限足膨潤
型合成雲tりの製1告 力 7人 。 (5)結晶微粒化剤として、ンルコニウ1、化1合物ま
たはボロン化合物を配合する特許請求の範囲第4111
記載の合成雲f(jのV造力沃。
[Claims] (1) General formula ■・NaX2.5-1/2 X 4 10 2LiY OF
(1) (In the formula, X is Fe”2 along with M S2+ or Mg2+
represents a mixed ion containing + 2+ 3+ , N+ , Mn , AI or Fe3+, and Y is S14+ or S4+ 3+
3+ 3 + 1 represents a mixed ion containing AI, Fe or B, and X is selected from the range of 0.5 x<0.9. ) A limited swelling synthetic mica characterized by having a chemical composition represented by: (2) General formula ■I: Na Mg2.5-. 72Li, S i 40. oF
2(II) (wherein, X is selected from the range of 0.5<x<0.9). 3) Finger x
The synthetic mica according to claim 1 (i) or 2 (i), wherein is selected from the range of 0, 6<x<0, 8(7). (4) Combining a fluorine source, a silicon source, a magnesilane source, a sodium source, a lithium source, and an oxygen source, and optionally further Fe, N+, Mn, and AI.
The general formula 1% formula % (1) is characterized by heating and melting a compound containing a type of iono2 + 3+ 3+ source consisting of , Fe 2 and S3+, and then cooling. Fe”2+ with Mg2+ or Mg2+
2+ 3+ , N+ , Mn , AI or Fe”+, Y represents S14+ or S4+ 3+
3+ 3 + 1 together with A1. represents a mixed ion containing Fe or B, and X is selected from the range 05 x<0.9. ) The production of a liminal swelling type synthetic cloud having the chemical composition shown in Table 1. (5) Claim No. 4111 in which Nrukoniu 1, Compound 1 compound, or a boron compound is blended as a crystal atomizing agent.
Synthetic cloud f (j's V-creation force).
JP9884084A 1984-05-18 1984-05-18 Restrictedly swelling synthetic mica and its preparation Granted JPS60246218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9884084A JPS60246218A (en) 1984-05-18 1984-05-18 Restrictedly swelling synthetic mica and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9884084A JPS60246218A (en) 1984-05-18 1984-05-18 Restrictedly swelling synthetic mica and its preparation

Publications (2)

Publication Number Publication Date
JPS60246218A true JPS60246218A (en) 1985-12-05
JPH0459247B2 JPH0459247B2 (en) 1992-09-21

Family

ID=14230453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9884084A Granted JPS60246218A (en) 1984-05-18 1984-05-18 Restrictedly swelling synthetic mica and its preparation

Country Status (1)

Country Link
JP (1) JPS60246218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530810A2 (en) * 1991-09-04 1993-03-10 Topy Industries Limited Ultraviolet ray screening agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0530810A2 (en) * 1991-09-04 1993-03-10 Topy Industries Limited Ultraviolet ray screening agent
EP0665273A1 (en) * 1991-09-04 1995-08-02 Topy Industries, Limited New red synthetic mica and ultraviolet ray screening agent comprising the same

Also Published As

Publication number Publication date
JPH0459247B2 (en) 1992-09-21

Similar Documents

Publication Publication Date Title
Jin et al. Stable Oxoborate with Edge‐Sharing BO4 Tetrahedra Synthesized under Ambient Pressure
Penin et al. Synthesis and crystal structure of three MM′ B9O15 borates (M= Ba, Sr and M′= Li; M= Ba and M′= Na)
Zhang et al. From borophosphate to fluoroborophosphate: a rational design of fluorine-induced birefringence enhancement
JPH0789712A (en) Synthetic inorganic builder and detergent composition
US3080242A (en) Fibrous aluminum borate and its preparation
Chen et al. Syntheses and crystal structures of two new hydrated borates, Zn8 [(BO3) 3O2 (OH) 3] and Pb [B5O8 (OH)]· 1.5 H2O
JPS60246218A (en) Restrictedly swelling synthetic mica and its preparation
JP4368943B2 (en) Aluminosilicate
US2958579A (en) Process for manufacture of molecular sieve adsorbents
Spinar et al. The crystal structure of tridecaboron diphosphide
US2063252A (en) Vitreous enamel and method of making same
CN104743779B (en) Suitable for the preparation method of the low deformation rate crucible quartz raw material of monocrystalline production
CN107572542B (en) Method for preparing nano kaolinite by using muscovite powder
JPH02271910A (en) Novel magnesium potassium philo-silicate
Toraya et al. Synthesis and the crystal structure of a manganoan fluoromica, K (Mg2. 44Mn0. 24)(Si3. 82Mn0. 18) O10F2
Li et al. LiCs 3 AlB 7 O 14: achieving enhanced optical anisotropy via [AlO 4] tetrahedron introduction to rearrange the anionic framework
DE1667377A1 (en) Process for the production of crystalline zeolites
US4370148A (en) Chlorofluoroferrate(II,III), a process for its manufacture, its use and a grinding wheel containing chlorofluoroferrate(II,III)
Zhou et al. Pb8M (BO3) 6 (M= Mg, Ca): Two new borates with large birefringence activated by the∞[Pb8B6O18] 2-double layers
JPS58185431A (en) Synthetic method of silicate
JPH03115113A (en) Production of fluorine mica
JP4490682B2 (en) Synthetic phlogopite powder, process for producing the same, and cosmetics containing the powder
US1860560A (en) Production of the acid sulphate and the normal sulphate of alphanaphthylamine
JPH05262514A (en) Mica sheet and its production
CN108238609A (en) A kind of preparation method of four water, eight Boratex