JPS6024487A - Humidity generating apparatus - Google Patents

Humidity generating apparatus

Info

Publication number
JPS6024487A
JPS6024487A JP13193083A JP13193083A JPS6024487A JP S6024487 A JPS6024487 A JP S6024487A JP 13193083 A JP13193083 A JP 13193083A JP 13193083 A JP13193083 A JP 13193083A JP S6024487 A JPS6024487 A JP S6024487A
Authority
JP
Japan
Prior art keywords
pressure
humidity
tank
gas
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13193083A
Other languages
Japanese (ja)
Inventor
Isao Hishikari
功 菱刈
Hideo Kobayashi
英夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP13193083A priority Critical patent/JPS6024487A/en
Publication of JPS6024487A publication Critical patent/JPS6024487A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To enhance measuring accuracy by preventing erroneous addition in using two pressure gauges, by selectively introducing gas from either one of a saturation tank and a test tank into the pressure gauge to store the air pressure value of the test tank, and calculating the gas humidity of the test tank from the air pressure value of the saturation tank. CONSTITUTION:The gas from the saturation tank 25 of a humidity generator 13 is supplied to a pressure gauge 59 through a flowline change-over device 31 to generate voltage corresponding to pressure from an absolute value-voltage converting circuit 60 and the corresponding current value is stored in a divider 64. Subsequently, when the change-over device 31 is changed over, the gas of the test tank 26 of the generator 13 is introduced into the pressure gauge 59 and the current value corresponding to said pressure is similarily supplied to the divider 64 and the stored current value is divided by this current value to calculate the humidity of the gas of the test tank. By this constitution using no pressure gauges at every tank, the error generation in addition due to two pressure gauges is prevented and humidity measuring accuracy is enhanced.

Description

【発明の詳細な説明】 この発明は、湿度計などを校正および検査する時に必要
な各位の湿度気体を発生する湿度発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a humidity generator that generates various types of humid gas necessary for calibrating and inspecting a hygrometer and the like.

空気中の湿度を検出する湿度計においては製造時や所定
期間毎に1その測定対象である空気中の実際の湿度とこ
の空気中の湿度を測定して得られた湿度とが一致するよ
うに校正される。第1図はこのような湿度計を校正する
のに必要な湿度発生装置の1つである2点圧力式の湿度
発生装置の基本構成を示す図である。この図に示すよう
にこの湿度発生装置は、加圧された高湿度空気A1を発
生する加湿槽1と、この加湿槽1からの前記高湿度空気
A、を飽和させて湿度100%の飽和空気A2を作る飽
和槽2と、この飽和槽2からの前記飽和空気A2を所望
の圧力比で膨張させる圧力調整弁3と、この圧力調整弁
3から送り出された膨張空気A3によってその内部が満
される試験槽4と、この試験槽4および前記飽和槽2、
圧力調整弁3を一定温度に保つ恒温槽5とを有するもの
であり、前記飽和空気A2の圧力をPs、前記膨張空気
A3の圧力をptとすれば、試験槽4内に満される膨張
空気A3の湿度H(イ)は、 pt H=−−X 100 ・・・(1) Ps でめられる。したがって、圧力調整弁3の開き開度を所
望湿度に応じて変えれば、試験槽4内に所望湿度の空気
を生成することができる。
A hygrometer that detects the humidity in the air is made so that the actual humidity in the air, which is the object of measurement, matches the humidity obtained by measuring the humidity in the air, at the time of manufacture or at every predetermined period. Calibrated. FIG. 1 is a diagram showing the basic configuration of a two-point pressure type humidity generator, which is one of the humidity generators necessary for calibrating such a hygrometer. As shown in this figure, this humidity generation device includes a humidifying tank 1 that generates pressurized high-humidity air A1, and the high-humidity air A from this humidifying tank 1 to produce saturated air with a humidity of 100%. The inside of the tank is filled with a saturation tank 2 that produces air A2, a pressure regulating valve 3 that expands the saturated air A2 from this saturation tank 2 at a desired pressure ratio, and expanded air A3 sent out from this pressure regulating valve 3. a test tank 4, this test tank 4 and the saturation tank 2,
It has a constant temperature bath 5 that keeps the pressure regulating valve 3 at a constant temperature, and if the pressure of the saturated air A2 is Ps and the pressure of the expanded air A3 is pt, then the expanded air filling the test chamber 4 is The humidity H (a) of A3 is determined by pt H=--X 100 (1) Ps. Therefore, by changing the degree of opening of the pressure regulating valve 3 depending on the desired humidity, air with the desired humidity can be generated in the test chamber 4.

このように湿度発生装置は飽和槽2側の圧力Psと試験
槽4側の圧力ptとから試験槽4内に生成された膨張空
気A3の湿度Hをめるものであるか、従来においては飽
和槽2の圧力を第1の圧力計6で測定し、試験槽4の圧
力を第2の圧力計7で測定するようにしていたので、例
−えば第2図に示すように圧力計6,7に検出誤差が発
生して圧力計6の出力特性線が正常な場合の線S1から
上方にずれて線S2になり、かつこの時に圧力計7の出
力特性線が線S1から下方にずれて線S3になった時に
その検出誤差Gl 、G2が加算されその測定誤差が大
きく々つてしまうことがあった。
In this way, the humidity generator calculates the humidity H of the expanded air A3 generated in the test tank 4 from the pressure Ps on the saturation tank 2 side and the pressure pt on the test tank 4 side. Since the pressure in the tank 2 was measured with the first pressure gauge 6 and the pressure in the test tank 4 was measured with the second pressure gauge 7, for example, as shown in FIG. 7, the output characteristic line of the pressure gauge 6 deviates upward from the normal line S1 and becomes the line S2, and at this time the output characteristic line of the pressure gauge 7 deviates downward from the line S1. When the line S3 is reached, the detection errors Gl and G2 are added, and the measurement error may become large.

この発明は上記の点に鑑み、飽和槽側の圧力と試験槽側
の圧力とを1つの圧力計で検出することができるととも
に、これによって2つの圧力計を用いた時に発生する誤
差の加算を防ぎ、その測定精度を向上させることができ
る湿度発生装置を提供することを目的としている。
In view of the above points, this invention enables the pressure on the saturation tank side and the pressure on the test tank side to be detected with one pressure gauge, and thereby eliminates the addition of errors that occur when two pressure gauges are used. The purpose of the present invention is to provide a humidity generating device that can prevent humidity and improve its measurement accuracy.

そしてこの発明による湿度発生装置においてはこれらの
目的を達成するために2点圧力式の湿度発生槽内にある
加湿槽の故事1と試験槽の気体とのいずれか一方を選択
して圧力計に導入する流路切換器と、この流路切換器が
前記試験槽の気体を前記圧力計に導入した時に得られた
圧力値を配憶するとともに、該圧力値と前記流路切換器
が前記飽和槽の気体を前記圧力計に導入した時に得られ
た圧力値とから前記試験槽で得られる気体の湿度を演算
する演算回路とを具備したことを特徴としている。
In order to achieve these objectives in the humidity generator according to the present invention, either one of the gas in the humidifying tank and the gas in the test tank in the two-point pressure type humidity generating tank is selected and the pressure gauge is set. A flow path switching device to introduce the gas, and a pressure value obtained when this flow path switching device introduces the gas from the test tank to the pressure gauge, and the pressure value and the flow path switching device memorize the saturated gas. The present invention is characterized by comprising a calculation circuit that calculates the humidity of the gas obtained in the test tank from the pressure value obtained when the gas in the tank is introduced into the pressure gauge.

以下この発明を図面に示す実施例にしたがって説明する
The present invention will be described below with reference to embodiments shown in the drawings.

第3図はこの発明による湿度発生装置の湿度空気発生機
構を示す図である。この図において、符号10は高湿度
空気を発生する加湿槽であり、・ヤイデ11を介して供
給される予圧空気はこの加湿+7!i 10によって高
湿度空気にされた後、パイプ12を介して湿度発生器1
3に供給される。また、符号14は乾燥空気を発生する
乾燥空気生成器であり、・々イブ15を介して供給され
た空気はまずこの乾燥空気生成器14内のエアーフィル
タ16でゴミなどが除かれた後に第1の冷却型エアドラ
イア(例えば、露点−20℃のエアドライア)17によ
って一旦乾燥され、この後筒2の冷却型エアドライア(
例えば、露点−72℃のエアドライア)18によってそ
の乾燥度がさ\らに高められる。次いで、このようにし
て得られた高乾燥度の空気(湿度はぼ0%の空気)はイ
ンジケータ19によってその乾燥度が表示されるととも
に、パイプ20を介して前記湿度発生器13に供給され
る。湿度発生器13は円筒形の外筒21と、この外筒2
1の上端および下端に各々設けられる上板22、下板2
3と、前記外筒21の内部にこの外筒21と同心状に配
置される整流筒24と、この整流筒24の中間に設けら
れる飽和槽25と、前記整流筒24の中心軸上に設けら
れる試験槽26とを有するものであり、前記i4イデ1
2を介して供給される高湿度空気は前記整流筒24の外
周面に螺旋状に巻かれている第1の均熱管27によって
外筒21内に満されている水(または他の液体)28と
同温にされた後に前記飽和槽25に供給される、そして
、ここで余分な水分が取シ除かれて湿度100チの飽和
空気にされ、飽和・ぞイブ3oに供給される。飽和iu
イデ30はその一方が外筒21の列に設けられた第2の
流路切換器(例えば、3方弁)31の第1流入口32に
接続されるとともに、その他方が圧力調整弁33の流入
口34に接続されたものであり、この圧力調整弁33の
流出口35はノPイデ36を介して第1の流路切換器3
7の第1流入口38に接続されている。またノでイブ2
゜を介して供給される前記乾燥空気生成器14がらの乾
燥空気は前記整流筒24の外周面と前記第1の均熱管2
7との間に螺旋状に巻かれた第2の均熱管39によって
前記水28の温度と同温にされた後に・ぐイブ40を介
して前記第1の流路切換器37の第2流入口41に供給
される。第1の流路切換器37はレバー42によってそ
の流路が切シ(rlえられるものであり、図に示す位置
にある時にはその第1流入口38に供給されている湿度
空気(前記飽和空気を膨張させて得られた空気)を・ぐ
イブ43を介して前記整流筒24の内周面に設けられた
螺旋状の笛3の均熱管44に供給して前記水28の温度
と同一温度にした後に・ぞイブ45を介して前記試験槽
26内に供給し、またレバー42がこの位置から右側(
図において右側)に倒された時にはその第2流入口41
に供給されている乾燥空気をd’イデ43、第3の均熱
管44%イデ45を順次弁して前記試験槽26内に供給
する。
FIG. 3 is a diagram showing a humid air generation mechanism of the humidity generation device according to the present invention. In this figure, the reference numeral 10 is a humidification tank that generates high-humidity air, and the pre-pressurized air supplied via the air filter 11 is used for this humidification +7! After being made into high humidity air by i 10, it is sent to humidity generator 1 through pipe 12.
3. Further, reference numeral 14 is a dry air generator that generates dry air, and the air supplied through the pipe 15 is first filtered with dust and the like by an air filter 16 in this dry air generator 14, and then 1 cooling type air dryer (for example, an air dryer with a dew point of -20°C) 17, and then drying by the cooling type air dryer 17 of cylinder 2 (for example, an air dryer with a dew point of -20°C).
For example, the degree of dryness can be further increased by using an air dryer (18) with a dew point of -72°C. Next, the dryness of the thus obtained highly dry air (air with a humidity of approximately 0%) is displayed by an indicator 19 and is supplied to the humidity generator 13 via a pipe 20. . The humidity generator 13 includes a cylindrical outer cylinder 21 and this outer cylinder 2.
An upper plate 22 and a lower plate 2 provided at the upper and lower ends of 1, respectively.
3, a rectifying cylinder 24 disposed inside the outer cylinder 21 concentrically with the outer cylinder 21, a saturation tank 25 provided in the middle of the rectifying cylinder 24, and a saturation tank 25 provided on the central axis of the rectifying cylinder 24. It has a test tank 26 in which the i4 ID 1 is
The high-humidity air supplied through the straightening tube 24 is connected to water (or other liquid) 28 that is filled in the outer tube 21 by the first soaking tube 27 spirally wound around the outer peripheral surface of the straightening tube 24. After the air is brought to the same temperature as the air, it is supplied to the saturation tank 25, where excess water is removed to make saturated air with a humidity of 100 degrees, and the air is supplied to the saturation tank 3o. saturation iu
One side of the ide 30 is connected to the first inlet 32 of a second flow path switching device (for example, a three-way valve) 31 provided in the row of the outer cylinder 21, and the other side is connected to the first inlet 32 of the second flow path switching device (for example, a three-way valve) 31 provided in the row of the outer cylinder 21. The outlet port 35 of the pressure regulating valve 33 is connected to the inlet port 34 , and the outlet port 35 of the pressure regulating valve 33 is connected to the first flow path switching device 3 via the pressure regulating valve 36 .
It is connected to the first inlet 38 of No. 7. Mata no de Eve 2
The dry air from the dry air generator 14 that is supplied through the
After the temperature of the water 28 is brought to the same temperature as that of the water 28 by a second soaking pipe 39 spirally wound between the water 7 and the water 28, the second flow of the first flow path switching device 37 is passed through a pipe 40. It is supplied to the inlet 41. The first flow path switching device 37 has its flow path switched off by a lever 42, and when it is in the position shown in the figure, the humid air (the saturated air The air (obtained by expanding the After this, the feed is supplied into the test chamber 26 through the tube 45, and the lever 42 is moved from this position to the right side (
When it is knocked down to the right side in the figure, the second inlet 41
The dry air supplied to the test chamber 26 is supplied into the test chamber 26 by sequentially valves the d'ide 43 and the third soaking tube 44% mode 45.

したがって、レバー42を図に示す位置にセットした状
態で圧力調整弁33の圧力比を1=1から1:5捷で変
化させれば、試験槽26内に湿度100チから湿度20
%までの任意湿度の空気を発生させることができ、また
レバー42を図に示す位置から右側に倒せば、試験槽2
6内に湿度0%の空気を発生させることができる。なお
この場合、モータ50によって外筒21内の下部に設け
られた撹拌羽51が回転駆動されることにより、前記水
28が整流筒24の内面に取り付けられた整流板52a
〜52fに沿って上方に導かれた後に整流筒24の上部
でこの整流筒24の外面側に導かれて下方に移動され、
次いで整流筒24の下部に設けられた流通ロー53a〜
53nを通って前記撹拌羽51側に戻され、再び上方に
移動されるような循環経路で流れるので、水28はその
位置によらず全体的に均−人温度になっている。
Therefore, if the pressure ratio of the pressure regulating valve 33 is changed from 1=1 to 1:5 with the lever 42 set to the position shown in the figure, the humidity in the test chamber 26 will change from 100 degrees to 20 degrees.
%, and by tilting the lever 42 to the right from the position shown in the figure, the test chamber 2
It is possible to generate air with a humidity of 0% within the room. In this case, the motor 50 rotates the stirring blades 51 provided in the lower part of the outer cylinder 21, so that the water 28 flows through the rectifying plate 52a attached to the inner surface of the rectifying cylinder 24.
~ 52f, and then guided to the outer surface side of the rectifying tube 24 at the upper part of the rectifying tube 24 and moving downward,
Next, the flow rows 53a~ provided at the lower part of the rectifying tube 24
53n, returned to the stirring blade 51 side, and moved upward again, the water 28 has a uniform human temperature as a whole regardless of its position.

一方前記試験槽26内の空気(試験空気)は流出路55
を介して外部に導かれるとともに・ぐイ156を介して
前記第2の流路切換器31の第2流入口57に供給され
る。第2の流路切換器31は前記第1の流路切換器37
と同様にレバー58によってその流路が切換えられるも
のであり、図に示す位置にある時にはノ々イデ56を介
して供給される前記試験空気を圧力計59に供給し、ま
た図に示す位置から下方に倒された時には前記パイプ3
0を介して供給される前記飽和空気を前記圧力計59に
供給し対応する電気信号に変換させる。
On the other hand, the air (test air) in the test tank 26 is discharged through the outlet passage 55.
and is supplied to the second inlet 57 of the second flow path switching device 31 via the guide 156. The second flow path switch 31 is the same as the first flow path switch 37.
Similarly, the flow path is switched by a lever 58, and when it is in the position shown in the figure, the test air supplied via the nozzle 56 is supplied to the pressure gauge 59, and from the position shown in the figure. When it is knocked down, the pipe 3
The saturated air supplied through the pressure gauge 59 is supplied to the pressure gauge 59 and converted into a corresponding electrical signal.

以下第4図に示すブロック図を参照しながらこの圧力計
59の出力を処理する回路について詳述する。まず、前
記第20流路切換器31が前記試験槽26内の試験空気
、または前記飽和槽25内の飽和空気を圧力計59に供
給すれば、圧力計59はこの試験空気(または飽和空気
)の圧力を対応する電流信号S10に変換して絶対圧/
電圧変換回路60に供給する。絶対圧/電圧変換回路6
0(以下これ’(zA/V変換回路60と略称する)は
前記電流信号SIOを電圧信号Sllに変換するもので
あり、この電圧信号Sllは第1のスイッチ61を介し
て表示装置62に供給されてその圧力値が表示されると
ともに、可変抵抗63の大きさに応じた値の電流信号S
 i 2として割算器64の入力端子64aに供給され
る。割算器64はその入力端子64aに供給された電流
信号S12の値■で定数に′f:除算するものであり、
この除算結果は電圧信号813として出力されるととも
に第2のスイッチ65を介して前記表示装置62に供給
される。このようにこの回路における前記割算器64は
、 Vout =T−(21 なる演算を行なって電圧Vout を出力するものであ
るから、前記第2の流路切換器31によって試験空気を
選択して圧力計59に供給した時に得られた電圧信号8
11の値に応じて可変抵抗63の値をR=α・Pt (
αは定数)にすれば、前記第2の流路切換器31が飽和
空気を選択し、A/V変換回路60がこの飽和空気の圧
力Psに応じた電圧■(ただしV−β・Ps)の電圧信
号Sll’(i=比出力た時、前記割算回路64に値■
(ただし■−y)の電流信号S12が供給され、この割
算回路64から で示される値の電圧信号S13が出力される。し=ま たがって、前記定数に′!1l−K o×100に設定
しておけば、前記(3)式は t Vout = −X 100 − (41s となり、表示装置62に前記試験槽26内に生成された
試験空気の湿度を/e−セント表示することができる。
The circuit for processing the output of the pressure gauge 59 will be described in detail below with reference to the block diagram shown in FIG. First, when the 20th flow path switching device 31 supplies the test air in the test tank 26 or the saturated air in the saturation tank 25 to the pressure gauge 59, the pressure gauge 59 detects the test air (or saturated air). Converts the pressure into the corresponding current signal S10 to obtain the absolute pressure/
The voltage is supplied to the voltage conversion circuit 60. Absolute pressure/voltage conversion circuit 6
0 (hereinafter referred to as zA/V conversion circuit 60) converts the current signal SIO into a voltage signal Sll, and this voltage signal Sll is supplied to the display device 62 via the first switch 61. The pressure value is displayed, and a current signal S having a value corresponding to the magnitude of the variable resistor 63 is displayed.
It is supplied to the input terminal 64a of the divider 64 as i2. The divider 64 divides a constant by the value of the current signal S12 supplied to its input terminal 64a;
This division result is output as a voltage signal 813 and is also supplied to the display device 62 via the second switch 65. In this way, the divider 64 in this circuit performs the calculation Vout = T - (21) and outputs the voltage Vout, so the second flow path switch 31 selects the test air. Voltage signal 8 obtained when supplied to pressure gauge 59
The value of the variable resistor 63 is set according to the value of R=α・Pt (
α is a constant), the second flow path switch 31 selects saturated air, and the A/V conversion circuit 60 generates a voltage corresponding to the pressure Ps of this saturated air (V-β・Ps). When the voltage signal Sll' (i = ratio output), the value ■
A current signal S12 of (■-y) is supplied, and a voltage signal S13 having a value indicated by is outputted from the dividing circuit 64.し=straddle the above constant ′! If it is set to 1l - K o x 100, the above formula (3) becomes t Vout = -X 100 - (41s), and the humidity of the test air generated in the test tank 26 is displayed on the display device 62. - Can be displayed in cents.

なおこの場合、試験槽26内の圧力は圧力変動がゆるや
かな大気圧と同一であるから試験槽26の圧力を可変抵
抗63に一度セットしておけば、飽和槽25の圧力を連
続して検出することができる。
In this case, the pressure in the test tank 26 is the same as atmospheric pressure, which has a gradual pressure fluctuation, so once the pressure in the test tank 26 is set to the variable resistor 63, the pressure in the saturation tank 25 can be continuously detected. can do.

またこの場合、試験槽26の圧力と飽和槽25° の圧
力とを1つの圧力計59によって測定しているから、こ
れらの各圧力を2つの圧力計で個々に測定する場合に生
じる誤差の加算を防止すること力ヌできるとともに、そ
の構成を簡素化させて装置全体のコスト’6下げること
ができる。
Also, in this case, since the pressure in the test tank 26 and the pressure in the saturation tank 25° are measured by one pressure gauge 59, the errors that occur when each pressure is measured individually with two pressure gauges are added. In addition, the structure can be simplified and the cost of the entire device can be reduced.

第5図はこの発明による湿度発生装置の他の回路構成例
を示すブロック図である。この図に示す回路が第4図に
示す回路と異なる点は、湿度設定器70の出力に応じて
湿度制御回路7Iが圧力調整弁33、第1の流路切換器
37、第20流路切換器31、可変抵抗63、第1のス
イッチ61、第2のスイッチ65および表示装置62を
制御するようにしたことである。したがってこの場合に
は、湿度設定回路70に、例えば湿度50%と設定すれ
ば、湿度制御回路71が第10流路切換器37に飽和空
気を選択させるとともに、第2の流路切換器31に試験
槽26内の試験空気を選択させ、かつこの時第1のスイ
ッチ61を閉じてこの時の値を表示装置62に試験槽2
6の圧力として表示させる。次いで、湿度制御回路71
は第2のスイッチ65を閉じて割算器64の出力を表示
装置62に供給されるとともに、この時のパーセント表
示(実際にはブランクされて表示されない)が100%
となるように可変抵抗63の値を制御した後、第2の流
路切換器31を切換えて圧力計59に飽和空気を供給さ
せ、A/V変換回路60からこの飽和空気の圧力に対応
した値の電圧信号S11を出力させる。そして割算器6
4から出力される電圧信号S13の値が湿度設定器70
によって設定された値に々るまで湿度制御回路71は圧
力調整弁33を制御する。
FIG. 5 is a block diagram showing another example of the circuit configuration of the humidity generator according to the present invention. The circuit shown in this figure is different from the circuit shown in FIG. 31, variable resistor 63, first switch 61, second switch 65, and display device 62. Therefore, in this case, if the humidity setting circuit 70 is set to, for example, 50% humidity, the humidity control circuit 71 causes the tenth channel switch 37 to select saturated air, and the second channel switch 31 selects saturated air. The test air in the test tank 26 is selected, and the first switch 61 is closed at this time, and the value at this time is displayed on the display device 62 in the test tank 2.
Display the pressure as 6. Next, the humidity control circuit 71
When the second switch 65 is closed, the output of the divider 64 is supplied to the display device 62, and the percentage display at this time (actually blank and not displayed) becomes 100%.
After controlling the value of the variable resistor 63 so that A voltage signal S11 of the value is output. and divider 6
The value of the voltage signal S13 output from the humidity setting device 70
The humidity control circuit 71 controls the pressure regulating valve 33 until the humidity reaches the value set by .

また、湿度設定器70゛によって、例えば湿度0係が設
定されれば、湿度制御回路71は第10流路切換器37
に乾燥空気を選択させるとともに、第2のスイッチ65
を開いて割算器64と表示装置62との間を遮断し、か
つこの時に表示装置62に湿度0%e示す信号を供給し
てこれを表示させる。
Further, if the humidity setting unit 70' sets the humidity to 0, for example, the humidity control circuit 71
to select dry air, and the second switch 65
is opened to cut off the connection between the divider 64 and the display device 62, and at this time a signal indicating humidity 0%e is supplied to the display device 62 to display it.

このように湿度制御回路71によって装置各部を制御す
るようにしても上述した場合と同様な効果を得ることが
できる。
Even if each part of the apparatus is controlled by the humidity control circuit 71 in this manner, the same effects as those described above can be obtained.

また上述した各実施例においては、可変抵抗63によっ
て試験槽26内の圧力を記憶させるようにしているが、
これをサンプル・ホールドうにアナログで記憶させても
、またA/D変換(アナログ/デジタル変換)シてデソ
タル信号として記憶させるようにしても良い。
Furthermore, in each of the embodiments described above, the pressure inside the test chamber 26 is memorized by the variable resistor 63;
This may be stored in analog form using sample and hold, or may be stored as a digital signal through A/D conversion (analog/digital conversion).

また上述した説明においては、第10流路切換器37に
よって飽和空気と乾燥空気のいずれか一方を選択するよ
うにしているが、この部分に流量制御弁を設けて試験空
気の湿度を0チから100%まで連続的に可変し得るよ
うにしても良い。
Furthermore, in the above explanation, either saturated air or dry air is selected by the tenth flow path switch 37, but a flow control valve is provided in this part to adjust the humidity of the test air from zero to zero. It may be made to be continuously variable up to 100%.

また必要に応じて外筒21内の下部にヒータを設ければ
、水28の温度を制御することができ、所望の湿度およ
び温度を有する試験空気を得ることができる。
Furthermore, if a heater is provided in the lower part of the outer cylinder 21 as necessary, the temperature of the water 28 can be controlled, and test air having desired humidity and temperature can be obtained.

以上説明したようにこの発明による湿度発生装置におい
ては、高湿度気体発生器の気体と試験槽の気体とのいず
れか一方を選択して圧力計に導入する流路切換器を設け
、この流路切換器が前記試験槽の気体を前記圧力計に導
入した時に得られた圧力値を演算回路に記憶させるとと
もに、この演算回路で前記圧力値と前記流路切換器が前
゛記高湿度気体発生器の気体を前記圧力計に導入した時
に得られた圧力値とから前記試験槽で得られる気体の湿
度を演算させるようにしたので、1つの圧力計で湿度を
測定することができ、これによりそのコストを下げるこ
とができるとともに、その構造を簡単にすることができ
る。また複数の圧力計を使用した時に生じるような各圧
力計の誤差の加算を防止することができ、その測定精度
を向上させることができる。
As explained above, the humidity generator according to the present invention is provided with a flow path switching device that selects either the gas from the high humidity gas generator or the gas from the test tank and introduces the selected gas into the pressure gauge. The pressure value obtained when the switching device introduces the gas from the test tank into the pressure gauge is stored in an arithmetic circuit, and the arithmetic circuit converts the pressure value and the flow path switching device into the high-humidity gas generation. Since the humidity of the gas obtained in the test tank is calculated from the pressure value obtained when the gas in the container is introduced into the pressure gauge, the humidity can be measured with one pressure gauge. The cost can be reduced and the structure can be simplified. Further, it is possible to prevent the errors of each pressure gauge from being added, which occurs when a plurality of pressure gauges are used, and the measurement accuracy can be improved.

【図面の簡単な説明】 第1図は従来の湿度発生装置の一例を示す概要図、第2
図はこのような湿度発生装置における測定誤差を説明す
るための特性図、第3図はこの発明による湿度発生装置
の湿度発生機構部分の一実施例を示す断面図、第4図は
同実施例の回路構成例を示すブロック図、第5図は同実
施例の他の回路構成例を示すブロック図である。 10・・・加湿槽、14・・・乾燥気体生成器(乾燥気
体発生器)、25・・・飽和槽、26・・・試験槽、3
0゜36.40.43・・りやイブ(流路)、31・・
・第2の流路切換器(流路切換器)、33・・・圧力調
整弁、37・・・第1の流路切換器(流路切換器)、5
9・・・圧力計、60・・・絶対圧/電圧変換回路、6
3・・・可変抵抗(演算回路)、64・・・割算器(演
算回路)、71・・・湿度制御回#(制御回路)。
[Brief explanation of the drawings] Figure 1 is a schematic diagram showing an example of a conventional humidity generator, Figure 2 is a schematic diagram showing an example of a conventional humidity generator.
The figure is a characteristic diagram for explaining measurement errors in such a humidity generator, FIG. 3 is a sectional view showing an embodiment of the humidity generation mechanism of the humidity generator according to the present invention, and FIG. 4 is a diagram showing the same embodiment. FIG. 5 is a block diagram showing another example of the circuit structure of the same embodiment. 10... Humidification tank, 14... Dry gas generator (dry gas generator), 25... Saturation tank, 26... Test tank, 3
0゜36.40.43... Riya Eve (channel), 31...
・Second flow path switching device (flow path switching device), 33... Pressure adjustment valve, 37... First flow path switching device (flow path switching device), 5
9...Pressure gauge, 60...Absolute pressure/voltage conversion circuit, 6
3... Variable resistance (arithmetic circuit), 64... Divider (arithmetic circuit), 71... Humidity control circuit # (control circuit).

Claims (2)

【特許請求の範囲】[Claims] (1)2点圧力式の湿度発生装置において、飽和槽の気
体と試験槽の気体とのいずれか一方を選択して圧力計に
導入する流路切換器と、との流路切換器が前記試験槽の
気体を前記圧力計に導入した時に得られた圧力値を記憶
するとともに、該圧力値と前記流路切換器が前記飽和槽
の気体を前記圧力計に導入した時に得られた圧力値とか
ら前記試験槽で得られる気体の湿度を演算する演算回路
とを具備したことを特徴とする湿度発生装置。
(1) In a two-point pressure type humidity generator, the flow path switching device selects either the gas in the saturation tank or the gas in the test tank and introduces the selected gas into the pressure gauge. The pressure value obtained when the gas in the test tank is introduced into the pressure gauge is stored, and the pressure value and the pressure value obtained when the flow path switch introduces the gas in the saturation tank into the pressure gauge are stored. and a calculation circuit that calculates the humidity of the gas obtained in the test tank from the above.
(2)前記演算回路の出力は制御回路に供給されるとと
もに、この制御回路で予め設定されている所望湿度と比
較され、この比較結果に基づいて1ffi圧力調整弁が
制御されることを特徴とする特許請求の範囲第1項記載
の湿度発生装置。
(2) The output of the arithmetic circuit is supplied to a control circuit, and is compared with a desired humidity set in advance in this control circuit, and the 1ffi pressure regulating valve is controlled based on the comparison result. A humidity generating device according to claim 1.
JP13193083A 1983-07-21 1983-07-21 Humidity generating apparatus Pending JPS6024487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13193083A JPS6024487A (en) 1983-07-21 1983-07-21 Humidity generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13193083A JPS6024487A (en) 1983-07-21 1983-07-21 Humidity generating apparatus

Publications (1)

Publication Number Publication Date
JPS6024487A true JPS6024487A (en) 1985-02-07

Family

ID=15069528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13193083A Pending JPS6024487A (en) 1983-07-21 1983-07-21 Humidity generating apparatus

Country Status (1)

Country Link
JP (1) JPS6024487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794158A (en) * 2010-03-26 2010-08-04 上海市计量测试技术研究院 Gas pressure and flow control device of humidity generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794158A (en) * 2010-03-26 2010-08-04 上海市计量测试技术研究院 Gas pressure and flow control device of humidity generator

Similar Documents

Publication Publication Date Title
US5329966A (en) Gas flow controller
CA2608439C (en) System for producing primary standard gas mixtures
JPH0862024A (en) Calibration method for flowmeter
SE407276B (en) KIT TO FILL A HIGH PRESSURE STORAGE TANK AND DEVICE FOR PERFORMING THE KIT
US5305231A (en) Multiple K factor, selectable gas detector
EP0029690B1 (en) Method and apparatus for linearization of a gas analyzer and valve manifold assembly for gas dosing
WO1999039181A1 (en) Measurement of relative density of combustible gases
EP1129347A2 (en) Apparatus and methods relating to humidified air and to olfactory monitoring
US4337654A (en) Natural gas calorimeter
US3500675A (en) Apparatus for an automatic gravimetric recording of characteristic curves which represent the sorption of gas by a sample
CA1287981C (en) Gas generating device and related method
WO1999050644A1 (en) Method and device for measuring gas permeability through a porous membrane-like material
JPH0117097B2 (en)
JPS6024487A (en) Humidity generating apparatus
US3685346A (en) Direct reading quantitative gas measuring device
JP3989629B2 (en) Flow inspection device
JPH027657B2 (en)
US6896247B2 (en) X-ray analysis system with humidified sample
Wexler et al. Pressure-humidity apparatus
US11801361B2 (en) Anesthetic dispensing device with a measuring unit
CN111637268B (en) Multi-component dynamic gas distribution device and gas distribution method thereof
JPH07204524A (en) Environment inspecting device and gas concentration controlling method
JPH05289751A (en) Automatic correction method for zero-point/span shift of mass flow controller and mass flow controller containing automatic correction function
CN114432944B (en) Gas distribution method
JPS61296246A (en) Method for correcting change in output of sensor with elapse of time