JPS60244400A - Digestion state dummy apparatus of anaerobic digestion process - Google Patents

Digestion state dummy apparatus of anaerobic digestion process

Info

Publication number
JPS60244400A
JPS60244400A JP59102363A JP10236384A JPS60244400A JP S60244400 A JPS60244400 A JP S60244400A JP 59102363 A JP59102363 A JP 59102363A JP 10236384 A JP10236384 A JP 10236384A JP S60244400 A JPS60244400 A JP S60244400A
Authority
JP
Japan
Prior art keywords
digestion
concentration
organic matter
methane
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59102363A
Other languages
Japanese (ja)
Other versions
JPH0763717B2 (en
Inventor
Junji Hirotsuji
淳二 廣辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10236384A priority Critical patent/JPH0763717B2/en
Publication of JPS60244400A publication Critical patent/JPS60244400A/en
Publication of JPH0763717B2 publication Critical patent/JPH0763717B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To estimate a digestion state with good accuracy without requiring labor, by successively renewing the coefficient in an operation equation and an org. acid forming ratio by using the amounts of methane gas and carbon dioxide generated in a digestion gas and the concns. of the org. substance and org. acid in said digestion tank. CONSTITUTION:A stock material is subjected to anaerobic fermentation in a digestion tank 1, and the flow amount of the generated digestion gas and the concn. of methane gas are measured by a flow meter 9 and an analyzer 10 while the measured values are sent to an input circuit 4. The concns. of organic acid and org. substance in the digestion tank 1 are respectively measured by densitometers 18, 20 to be sent to the input circuit 4. Various data sent to the input circuit 4 by this method are respectively selected to be inputted to operators 11, 12 and operation circuits 13, 14, 15 and the coefficient in a predetermined operation equation is successively renewed. This renewed coefficient is inputted to an operation and estimation circuit 5 and the data of the input circuit 4 are also inputted thereto and successively renewed data are displayed on a display apparatus through an output circuit 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、下水汚泥等の有機物を含む原料を投入し、
嫌気発酵させ、メタンガスを生成する嫌気性消化プロセ
スの将来の消化状態を演算予測する消化状態模擬装置に
関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention involves inputting a raw material containing organic matter such as sewage sludge,
The present invention relates to a digestion state simulator that calculates and predicts the future state of digestion in an anaerobic digestion process that produces methane gas through anaerobic fermentation.

〔従来の技術〕[Conventional technology]

従来、この種の装置として、第1図に示すものがあった
。間圧おいて、1は、嫌気性の消化槽であり、有機物を
含む原料は配管aより、消化槽1内に導かれる。消化槽
1内では、原料中の有機物は、消化槽1内に存在する酸
生成微生物によって分解され、有機酸となる。有機酸は
さらにメタン生成微生物によって分解され、メタンガス
、炭酸ガスとなる。消化処理後の原料は配管すよシ、消
化槽1外へ排出される。消化処理によって発生するガス
は、配管Cより引き抜かれる。2は配管すに備えつけら
れた入力情報の計測装置である。3は模擬入力情報の入
力装置である。4は入力回路であシ、計測装置2、模擬
入力情報の入力装置3の出力が、それぞれ信号線28 
.38によって接続されている。5は演算予測回路であ
り、入力回路4の出力が信号線4s Kよって接続され
ている。
Conventionally, there has been a device of this type as shown in FIG. In terms of internal pressure, 1 is an anaerobic digestion tank, and raw materials containing organic matter are guided into the digestion tank 1 through pipe a. In the digestion tank 1, organic substances in the raw materials are decomposed by acid-producing microorganisms present in the digestion tank 1 and become organic acids. The organic acid is further decomposed by methanogenic microorganisms and becomes methane gas and carbon dioxide gas. The raw material after the digestion treatment is discharged to the outside of the digestion tank 1 through the piping. Gas generated by the digestion process is extracted from pipe C. 2 is an input information measuring device installed in the piping. 3 is an input device for simulated input information. 4 is an input circuit, and the outputs of the measuring device 2 and the input device 3 for simulated input information are connected to the signal line 28, respectively.
.. 38. Reference numeral 5 denotes an arithmetic prediction circuit, to which the output of the input circuit 4 is connected via a signal line 4sK.

6は出力回路であり、演算予測回路5の出力が、接続さ
れている。また、7は比率設定装置であり、その出力を
信号線7sによって入力回路4に接続さすている。
6 is an output circuit, to which the output of the arithmetic prediction circuit 5 is connected. Further, 7 is a ratio setting device, the output of which is connected to the input circuit 4 through a signal line 7s.

次に動作について説明する。Next, the operation will be explained.

まず、演算予測回路における演算内容について説明する
。次にこの演算式の一例を示す。
First, the content of calculations in the calculation prediction circuit will be explained. Next, an example of this arithmetic expression is shown.

5a va−=KaIISa(Lvo−Lvn)’V−QII
Sa −−”−−(2)1 dNH。
5a va-=KaIISa(Lvo-Lvn)'V-QII
Sa −−”−(2)1 dNH.

v1117=QIINt(l命NHO+Y?@/Lvl
IKa・5a−(Lvo−tvn) −v−(3)GC
O2a=YCO2/LvlIKaaS”・(jvo−t
vn)・V ・・・・・・・・・・・・・・・・・・・
・・(4)dLa。
v1117=QIINt(l life NHO+Y?@/Lvl
IKa・5a-(Lvo-tvn)-v-(3)GC
O2a=YCO2/LvlIKaaS”・(jvo-t
vn)・V・・・・・・・・・・・・・・・・・・
...(4) dLa.

■−−=QeLai脅LaO+frWL7・Ka・Sa
・(LvO−Lvn)・vat −Knl”Sm”(LaO−Lan)””””””””
” (s)am V’ =YcH4Aa・KmlISm(Lao−Lan
)・V−QIISm−−(61t GeH4=YcH4/L、aIIKmlISm−(La
o−Lan)拳v ・・・・・・・・・・・・・・・ 
(7)Gco2m=Yco2A3・Km@Sm・(La
o−Lan)・v −−−−−−−・−=(8JdAl
 k。
■--=QeLai threat LaO+frWL7・Ka・Sa
・(LvO-Lvn)・vat -Knl”Sm”(LaO-Lan)””””””””
”(s)am V' = YcH4Aa・KmlISm(Lao-Lan
)・V-QIISm--(61t GeH4=YcH4/L, aIIKmlISm-(La
o-Lan) Fist v ・・・・・・・・・・・・・・・
(7) Gco2m=Yco2A3・Km@Sm・(La
o-Lan)・v −−−−−−−・−=(8JdAl
k.

V−−=Q・Alki−Q”Alko−YA、に/NH
@yNH/Lv−b−sa4vo−tyn)・Vt −YAIk/ALa+La/Lv働・5a−(罰−Lv
n)・v−馳・Sm−Km@Sm・(Lao−Lan)
・V) ・・・・・・・・・・・・・・・・・・・・・
(9)p H−10g(Alko−0,8560,83
・Lao)1ag((X)2)1+IOg(0−88/
Kc)・・・・・・・・・(10) ただし、 Q :原料流量(m5/日) V :タンク容積(m ) Lv:有機物濃度(P/7) Ka:酸発酵過程における反応速度定数(t/F/da
Y ) LVn :非生物分解性の有機物濃度(fP/fP)N
H:アンモニア性窒素濃度(■/J)YN、/LV:単
位有機物分解量に対するアンモニア性窒素の生成比率(
■/ ton ) GCO2a ”酸発酵過程における炭酸ガス発生速度(
Nm3/日) La;有機酸濃度(m9/看) Km:メタン発酵過程における反応速度定数(m37N
m5/日) Sa:有機物分解量換算の酸生成微生物濃度(デ/?) Sm:発生メタンガス量換算のメタン生成微生物濃度(
Nm 7m ) YL、¥’LV :有機物分解量に対する有機酸生成比
率(In9/1) Lan :非生物分解性の有機酸濃度(mp/−IYC
H4/La ”有機酸分解量に対するメタン発生比率(
Nm /即) GeH4”メタンガス発生速度(Nm7日)0002m
 ”メタン発酵過程における炭酸ガス生成速度(Nm3
/日) Alk :アルカリ度(■/−13) YAlに/NH:アンモニア性窒素生成量に対するアル
カリ度の生成比(ダ/rn9) YAll、/La:有機酸濃度分解量に対するアルカリ
度の生成比(ヤ/〜) pH:pH (CO2)1 :液相の炭酸ガス濃度(■/4)Kc:
炭酸解離定数 添字i :投入原料を示す 添字0 :消化槽内原料を示す YCO2/LV ”有機物分解量に対する炭酸ガス生成
比率(Nm ’ / t) 7i1 CO2/La ”有機酸分解量に対する炭酸ガ
ス生成比率(Nm/■) 以上の演算式では、嫌気性消化プロセスの反応過程を第
5図に示すように簡略化している。すなわち、投入原料
中の有機物は、まず、酸発酵過程において酸生成微生物
によって分解され、有機酸、炭酸カス・アンモニア性窒
素を生成する。つぎに、メタン発酵過程では、メタン生
成微生物によって、有機酸が分解され、メタンガス、炭
酸ガスを生成する。消化槽内のアルカリ度は、アンモニ
ア性窒素と有機酸濃度から定まシ、消化槽内のpHは、
消化槽内アルカリ度と消孔槽内液相における炭酸の解離
平衡から定まる。
V--=Q・Alki-Q”Alko-YA, ni/NH
@yNH/Lv-b-sa4vo-tyn)・Vt-YAIk/ALa+La/LvWork・5a-(Punishment-Lv
n)・v-chi・Sm-Km@Sm・(Lao-Lan)
・V) ・・・・・・・・・・・・・・・・・・・・・
(9) pH-10g (Alko-0,8560,83
・Lao)1ag((X)2)1+IOg(0-88/
Kc)・・・・・・・・・(10) However, Q: Raw material flow rate (m5/day) V: Tank volume (m) Lv: Organic matter concentration (P/7) Ka: Reaction rate constant in the acid fermentation process (t/F/da
Y) LVn: Concentration of non-biodegradable organic matter (fP/fP) N
H: Ammonia nitrogen concentration (■/J) YN, /LV: Production ratio of ammonia nitrogen to unit organic matter decomposition amount (
■/ton) GCO2a ``Rate of carbon dioxide generation during acid fermentation process (
Nm3/day) La: Organic acid concentration (m9/day) Km: Reaction rate constant in the methane fermentation process (m37N
m5/day) Sa: Concentration of acid-producing microorganisms in terms of the amount of decomposed organic matter (De/?) Sm: Concentration of methane-producing microorganisms in terms of the amount of methane gas generated (
Nm 7m) YL, ¥'LV: Organic acid generation ratio to organic matter decomposition amount (In9/1) Lan: Non-biodegradable organic acid concentration (mp/-IYC
H4/La ``Methane generation ratio to organic acid decomposition amount (
Nm / Immediately) GeH4” Methane gas generation rate (Nm 7 days) 0002m
``The rate of carbon dioxide production in the methane fermentation process (Nm3
/day) Alk: Alkalinity (■/-13) YAl/NH: Production ratio of alkalinity to the amount of ammonia nitrogen produced (da/rn9) YAll, /La: Production ratio of alkalinity to the amount of decomposed organic acid concentration (Y/~) pH: pH (CO2)1: Carbon dioxide concentration in liquid phase (■/4) Kc:
Carbonic acid dissociation constant subscript i: Subscript 0 indicating the input raw material: YCO2/LV indicating the raw material in the digestion tank ``Ratio of carbon dioxide gas production to the amount of decomposed organic matter (Nm' / t) 7i1 CO2/La ``The production of carbon dioxide gas to the amount of organic acid decomposition Ratio (Nm/■) In the above calculation formula, the reaction process of the anaerobic digestion process is simplified as shown in FIG. That is, the organic matter in the input raw materials is first decomposed by acid-producing microorganisms in the acid fermentation process, producing organic acids, carbonic acid residue, and ammonia nitrogen. Next, in the methane fermentation process, organic acids are decomposed by methanogenic microorganisms to produce methane gas and carbon dioxide gas. The alkalinity in the digestion tank is determined from the ammonia nitrogen and organic acid concentration, and the pH in the digestion tank is
It is determined from the alkalinity in the digester and the dissociation equilibrium of carbonic acid in the liquid phase in the septic tank.

(1)式は、嫌気性消化ブレセスにおける有機物量に関
する物質収支式である。(1)式の左辺は、消化槽内有
機物質←の変化速度であり、(1)式の右辺の第1〜3
項はそれぞれ消化槽へ投入される有機物量、消化槽から
引き抜かれる有機物量、消化槽において分解される有機
物量を示している。
Equation (1) is a mass balance equation regarding the amount of organic matter in anaerobic digestion. The left side of equation (1) is the rate of change of the organic matter in the digester, and the first to third on the right side of equation (1) are
The terms indicate the amount of organic matter input into the digester, the amount of organic matter withdrawn from the digester, and the amount of organic matter decomposed in the digester, respectively.

同様K、(2) 、 (3) 、 (5) 、 (6)
 、 (91式は、それぞれ酸生成微生物量に関する物
質収支式、アンモニア性窒素量に関する物質収支式、有
機酸量に関する物質収支式、メタン生成微生物量に関す
る物質収支式、アルカリ度に関する物質収支式である。
Similarly K, (2), (3), (5), (6)
, (Equation 91 is a material balance equation for the amount of acid-producing microorganisms, a material balance equation for the amount of ammonia nitrogen, a material balance equation for the amount of organic acids, a material balance equation for the amount of methane-producing microorganisms, and a material balance equation for alkalinity. .

(4)。(4).

(7) 、 (8) 、 (to)式はそれぞれ、酸発
酵過程における炭酸ガス生成速度、メタンガス生成速度
、メタン発酵過程における炭酸ガス生成速度、そして消
化槽内pHを演算する演算式である。また、(1)式右
辺第3項、(5)式右辺第4項は、それぞれ、酸発酵過
程における反応速度、メタン発酵過程における反応速度
を示す反応速度環である。
Equations (7), (8), and (to) are arithmetic expressions for calculating the carbon dioxide gas production rate, methane gas production rate, carbon dioxide production rate in the methane fermentation process, and pH in the digestion tank, respectively. Furthermore, the third term on the right side of equation (1) and the fourth term on the right side of equation (5) are reaction rate rings that indicate the reaction rate in the acid fermentation process and the reaction rate in the methane fermentation process, respectively.

これらの演算式は、消化槽1への投入原料流量、濃度等
の消化槽への実際あるいは模擬の入力情報と、反応速度
定数Ka、Km等の演算式中の係数が既知であれば、R
unge−Kutta法等を用いて簡単に解くことがで
きる。すなわち、消化槽への実際の入力情報は、計測装
置2によって計測され、信号線2Sを介して、入力回路
4に送られ、さらK、信号I!!4sを介して、演算予
測回路に入力される。
These calculation formulas can be calculated using
This can be easily solved using the Unge-Kutta method or the like. That is, the actual input information to the digester is measured by the measuring device 2, and sent to the input circuit 4 via the signal line 2S, and further K, signal I! ! The signal is input to the arithmetic prediction circuit via 4s.

また、模擬入力情報にて演算予測する場合は模擬の入力
情報を、施設運転員が、模擬入力情報の入力装置3から
入力することで、信号線3Sを介して入力回路4K、さ
らK、信号線4sを介して、演算予測回路5に入力され
る。
In addition, when calculating and predicting using simulated input information, the facility operator inputs the simulated input information from the input device 3 of the simulated input information to the input circuit 4K, further K, and the signal via the signal line 3S. It is input to the arithmetic prediction circuit 5 via the line 4s.

一方、反応速度定数等の演算式中の係数は、比率設定装
置7よシ入力され、信号線7Sを介して入力回路4に入
力され、さらに信号線4sによって演算予測回路5に入
力される。演算予測回路5では、)tunge−Kut
ta法等によシ、示した各演算式を解く。演算結果であ
る消化プロセスの将来の生成物量、濃度は、信号線5S
を介して出力回路6へ送られ、さらに表示装置(図示せ
ず)K送られて時系列図等の形で表示される。施設運転
員はこの演算結果をもと九投入原料量等の運転条件を決
定し、施設運用を行なう。
On the other hand, the coefficients in the calculation formula, such as the reaction rate constant, are inputted from the ratio setting device 7, inputted to the input circuit 4 via the signal line 7S, and further inputted to the calculation prediction circuit 5 via the signal line 4s. In the arithmetic prediction circuit 5, ) tunge-Kut
Solve each of the arithmetic expressions shown using the ta method or the like. The future product amount and concentration of the digestion process, which is the calculation result, is shown on the signal line 5S.
The data is sent to the output circuit 6 via the 1000K, and further sent to the display device (not shown) K where it is displayed in the form of a time series chart or the like. Based on the calculation results, the facility operator determines operating conditions such as the amount of raw materials to be input, and operates the facility.

従来の消化状態模擬装置は、以上のように構成されてい
たので、投入原料性状の変化に基づいて演算式中の係数
が変化するためK、長期に亘ってこれら係数を一定値に
固定すると、模擬予測精度が低下する。
Since the conventional digestion state simulator was configured as described above, the coefficients in the calculation equation change based on changes in the properties of the input raw materials, so if these coefficients are fixed at constant values over a long period of time, Simulation prediction accuracy decreases.

このため、施設運転員が誤まった予測結果に基づいて投
入原料等の運転条件を変更させるために。
For this reason, in order to have facility operators change operating conditions such as input raw materials based on incorrect prediction results.

消化状態に異常を来たすことがしばしばあり、安定した
消化槽運用を行なうことは困難であった。
This often caused abnormalities in the digestion conditions, making it difficult to operate the digester stably.

また従来装置は、一定期間ごとに実験室規模の実験を行
ない、これら係数を定め、更新するには、多大の時間、
労力を要するといった欠点があった。
In addition, with conventional equipment, it takes a lot of time and effort to conduct laboratory-scale experiments at regular intervals to determine and update these coefficients.
The drawback was that it required a lot of effort.

〔発明の概要〕[Summary of the invention]

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、消化槽から発生するメタンガス
量、炭酸ガス量ならびK、消化槽内有機物濃度、同有機
酸濃度を用いてメタン発酵過程の反応速度を示す反応速
度項内の係数、酸発酵過程の反応速度を示す反応速度項
内の係数ならびに単位有機物分解量に対する有機酸生成
比率を逐次更新すること忙よシ、演算予測精度が良く、
かつ実験に基づく係数更新を省くことかできる嫌気性消
化プロセスの消化状態−模擬装置を提供することを目的
とする。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and uses the amount of methane gas generated from the digestion tank, the amount of carbon dioxide gas, K, the concentration of organic matter in the digestion tank, and the concentration of organic acids in the digestion tank. The coefficients in the reaction rate term that indicate the reaction rate of the fermentation process, the coefficients in the reaction rate term that indicate the reaction rate of the acid fermentation process, and the ratio of organic acid production to unit organic matter decomposition amount are updated sequentially, and calculation prediction accuracy is good,
Another object of the present invention is to provide a device for simulating the state of digestion in an anaerobic digestion process, which can eliminate the need to update coefficients based on experiments.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図において、21,8はそれぞれ消化槽1内に備えつけ
られた有機物濃度計、有機酸濃度計であり、これらの出
力はそれぞれ信号線21s。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, 21 and 8 are an organic matter concentration meter and an organic acid concentration meter, respectively, installed in the digestion tank 1, and their outputs are connected to a signal line 21s.

8Sによって入力回路4に接続されている。9゜10は
それぞれ発生した消化ガスを引抜くための配管cVc備
え付けられたガス流量計、ガス分析計であシ、これらの
出力はそれぞれ信号線9s、IQsによって入力回路4
に接続されている。11.12は、それぞれ除去有機物
換算の酸生成微生物濃度、および発生メタンガス量換算
のメタン生成微生物濃度を演算する演算器であシ、入力
回路4の出力がそれぞれ信号線11s 、 12sによ
って接続されている。13,14.15はそれぞれ現在
から過去に至る一定期間のプシセス値から除去有機物量
当りの有機酸生成比率YLa/Lv、各式によシ酸発酵
過程における反応速度を示す反応速度項内の係数、メタ
ン発酵過程における反応速度を示す反応速度項内の係数
を演算するための演算回路である。
It is connected to the input circuit 4 by 8S. 9 and 10 are a gas flow meter and a gas analyzer equipped with piping cVc for drawing out the generated digestion gas, respectively, and their outputs are connected to the input circuit 4 by signal lines 9s and IQs, respectively.
It is connected to the. 11 and 12 are arithmetic units for calculating the concentration of acid-producing microorganisms in terms of removed organic matter and the concentration of methane-producing microorganisms in terms of amount of generated methane gas, and the outputs of the input circuit 4 are connected by signal lines 11s and 12s, respectively. There is. 13, 14.15 are the organic acid production ratio YLa/Lv per amount of organic matter removed from the psicess value for a certain period from the present to the past, and the coefficient in the reaction rate term indicating the reaction rate in the formic acid fermentation process according to each equation , a calculation circuit for calculating a coefficient in a reaction rate term indicating a reaction rate in a methane fermentation process.

演算回路131Cは、入力回路4の出力が信号線13s
 Kよって接続されている。演算回路141Cは演算器
11および入力回路4の出力が信号線16S。
In the arithmetic circuit 131C, the output of the input circuit 4 is connected to the signal line 13s.
It is connected by K. In the arithmetic circuit 141C, the outputs of the arithmetic unit 11 and the input circuit 4 are connected to the signal line 16S.

14s Kよって接続されている。演算回路15には演
算器12および入力回路4の出力が信号1117s。
14s K. The arithmetic circuit 15 receives the output of the arithmetic unit 12 and the input circuit 4 as a signal 1117s.

15Bによって接続されている。演算回路13.14゜
15の出力は、それぞれ信号線18g 、 19s 、
 20sによって演算子!llu回路5に接続されてい
る。
15B. The outputs of the arithmetic circuits 13, 14, 15 are connected to signal lines 18g, 19s, and 19s, respectively.
Operator by 20s! It is connected to the llu circuit 5.

次K、動作について説明する。本発明によると、■ガス
相で用いる消化ガス流量計、ガス分析計等の計器は、消
化液に浸漬させて用いる濃度計等よりも保守性、信頼性
°の面で優れている。■演算式に示したよ5K、ガス生
成速度は、メタン発酵過程、酸発酵過程における反応速
度と比例しておシかつ直接計測可能であることからメタ
ン生成速度、炭酸ガス生成速度は、反応速度定数を更新
する際の主要な情報となる。θ演算式中の諸係数のうち
、酸発酵過程、メタン発酵過程における反応速度を示す
項内の係数ならびに除去有機物換算シの有機酸生成比率
(YLa/Lv)を更新するだけで、実用上問題ない精
度で消化状態の模擬が可能である。
Next, the operation will be explained. According to the present invention, (1) Instruments used in the gas phase, such as digester gas flowmeters and gas analyzers, are superior in terms of maintainability and reliability than densitometers, etc., which are used by being immersed in digestive fluid. ■ As shown in the calculation formula, the gas production rate is proportional to the reaction rate in the methane fermentation process and acid fermentation process, and can be directly measured. Therefore, the methane production rate and carbon dioxide production rate are the reaction rate constants. This is the main information when updating. Of the various coefficients in the θ calculation formula, simply updating the coefficients in the term indicating the reaction rate in the acid fermentation process and methane fermentation process and the organic acid production ratio (YLa/Lv) in terms of removed organic matter can solve practical problems. It is possible to simulate the state of digestion with unprecedented accuracy.

以下、係数更新方法の一例を示す。メタン生成過程にお
ける反応速度を示す演算式中の反応速度項内の係数更新
は、(7)式を解くことによって達成される。すなわち
、(7)式を次式のように変形すれば、過去一定期間の
メタンガス生成速度(’CH4)、メタン生成微生物濃
度(Sm) 、消化槽内有機酸濃度(Lad)を用いて
、反応速度項内の係数Km 、 LaOを定めることが
できる。
An example of a coefficient updating method will be shown below. Updating the coefficient in the reaction rate term in the arithmetic expression indicating the reaction rate in the methane production process is achieved by solving equation (7). In other words, by transforming equation (7) into the following equation, the reaction can be calculated using the methane gas production rate ('CH4), the methane-producing microorganism concentration (Sm), and the organic acid concentration in the digester (Lad) for a certain period in the past. The coefficients Km, LaO in the velocity term can be defined.

メタンガス生成速度(GeH4)は、消化ガス流量と消
化ガス中のメタンガス濃度の積としてめる。
The methane gas production rate (GeH4) is calculated as the product of the digestion gas flow rate and the methane gas concentration in the digestion gas.

消化ガス流量、メタンガス濃度は、それぞれ消化ガス流
量計9、消化ガス分析計101Cて計測される。消化槽
内有機酸濃度(Lao)は、有機酸濃度計8で計測され
る。消化ガス流量、メタンガス濃度、有機酸濃度の計測
値は、それぞれ信号線9s、10a。
The digestion gas flow rate and methane gas concentration are measured by the digestion gas flow meter 9 and the digestion gas analyzer 101C, respectively. The organic acid concentration (Lao) in the digestion tank is measured by an organic acid concentration meter 8. The measured values of the digestion gas flow rate, methane gas concentration, and organic acid concentration are measured through signal lines 9s and 10a, respectively.

8SKよつ℃、入力回路4に送られ、信号線15sによ
って、演算回路15に入力される。分解有機酸量に対す
るメタンガス発生比率YcH4/I、aハ、比率設定装
置7において設定され、信号線7Sを介して、入力回路
4に送られ、さらに、信号線15Sによって、演算回路
15に入力される。メタン生成微生物濃度(sm)は、
メタンガス生成速度、原÷−s−++) K示したよう
に、発生メタンガス量換算のメタン生成微生物濃度を演
算できる。
8SK is sent to the input circuit 4 and input to the arithmetic circuit 15 via the signal line 15s. The methane gas generation ratio YcH4/I, ac to the amount of decomposed organic acid is set in the ratio setting device 7, sent to the input circuit 4 via the signal line 7S, and further inputted to the arithmetic circuit 15 via the signal line 15S. Ru. The methane-producing microorganism concentration (sm) is
Methane gas production rate, source ÷ - s - ++) K As shown, the concentration of methane-producing microorganisms in terms of the amount of generated methane gas can be calculated.

ここで、 k、に+1 :時刻 G :時刻kからに+1の間に発生した消化ガス量 □ a :時刻kからに+10間K、発生したメタンガス濃
度 その他の記号は既に示した通りである。
Here, k, +1: Time G: Amount of digestive gas generated between time k and +1 □ a: +10 between time k and K, the concentration of methane gas generated and other symbols are as already shown.

原料流量Qの計測値は、入力情報の計測装置2において
計測され、信号線2Sによって、入力回路4に送られる
。消化ガス流量G、メタンガス濃度aは、消化ガス流量
計9、ガス分析計10において計測され、信号線9s 
、 103によって入力回路4に、送られる。これらの
信号は、さらに、信号線128によって演算器12に入
力される。演算器12では(12)式の演算が行なわれ
、その演算結果は信号線17sを介して演算回路15に
入力される。
The measured value of the raw material flow rate Q is measured by the input information measuring device 2 and sent to the input circuit 4 via the signal line 2S. The digestion gas flow rate G and the methane gas concentration a are measured by the digestion gas flowmeter 9 and the gas analyzer 10, and the signal line 9s
, 103 to the input circuit 4. These signals are further input to the arithmetic unit 12 via a signal line 128. The arithmetic unit 12 performs the calculation of equation (12), and the result of the calculation is input to the calculation circuit 15 via the signal line 17s.

演算回路15では、信号線15s 、 17sからの情
報を(11)式に代入して、係数K m + L a 
nを算出する。演算結果である係数Km、Lanは信号
線20Sによって、演算予測回路5に送られる。
The arithmetic circuit 15 substitutes the information from the signal lines 15s and 17s into equation (11) to obtain the coefficient K m + L a
Calculate n. The coefficients Km and Lan, which are the calculation results, are sent to the calculation prediction circuit 5 through the signal line 20S.

酸生成過程における反応速度を示す演算式中の反応速度
項内の係数更新は、<7) 、 +81および(4)式
を解くことによって達成される。すなわち、(7) 、
 (81(4)式を以下に示すように変形、整理すれば
過去一定期間のメタンガス生成速度(GeH4)、炭酸
ガス生成速度(GCO2m+GCO2a)、酸生成微生
物濃度(Sa )、消化槽内有機物濃度(LVO)を用
いて、反応速度項内の係数Ka 、 LVnを定めるこ
とができる。
Updating the coefficient in the reaction rate term in the arithmetic expression indicating the reaction rate in the acid production process is achieved by solving <7), +81 and equation (4). That is, (7),
(81 (4) can be modified and rearranged as shown below: methane gas production rate (GeH4), carbon dioxide production rate (GCO2m+GCO2a), acid-producing microorganism concentration (Sa ), and organic matter concentration in the digester ( LVO) can be used to determine the coefficients Ka and LVn in the reaction rate term.

(4)式、(8)式よシ、 Gco2a+Gco2n8Yco2/La″KmIIS
m拳(IJao−Ian) −V+YcQt2/Lv@
KamSa@CLVO−LVn)@V−・・−(13)
(13)式、(7)式より、 −KaIISa@(jvo−Lvn)eV = (14
)(14)式より 全炭酸ガス生成速度(Gco2a十Gco2m)は、消
化ガス流量と消化ガス中の炭酸ガス濃度の積としてまる
。消化ガス流量、炭酸ガス濃度は、それぞれ、消化ガス
流量計9、消化ガス分析計10において計測される。メ
タンガス生成速度G。H4については、前述した通シで
ある。消化槽内有機物濃度(I、vo)は、有機物濃度
計21で計測される。消化ガス流量、メタンガス濃度、
炭酸ガス濃度、有機物濃度の計測値は、信号線9 s 
、 10s 、 21sによって入力回路4に送られ、
さらに、信号線14sによって演算回路14に入力され
る。分解有機酸量に対するメタンガス発生比率YcHt
/l、a 、分解有機酸量に対する炭酸ガス発生比率Y
。o2/La、分解有機物量に対する炭酸ガス発生比率
Y。02/LVは、比率設定装置7ICおいて設定され
、信号ね7sを介して入力回路4に送られ、さ、らに信
号線14s Kよって演算回路14に入力さ・れる。
(4) formula, (8) formula, Gco2a+Gco2n8Yco2/La″KmIIS
m fist (IJao-Ian) -V+YcQt2/Lv@
KamSa@CLVO-LVn)@V-...-(13)
From equations (13) and (7), -KaIISa@(jvo-Lvn)eV = (14
) (14), the total carbon dioxide production rate (Gco2a + Gco2m) is calculated as the product of the digestion gas flow rate and the carbon dioxide concentration in the digestion gas. The digestion gas flow rate and carbon dioxide concentration are measured by a digestion gas flow meter 9 and a digestion gas analyzer 10, respectively. Methane gas production rate G. Regarding H4, it is the same as described above. The organic matter concentration (I, vo) in the digestion tank is measured by an organic matter concentration meter 21. Digestion gas flow rate, methane gas concentration,
The measured values of carbon dioxide concentration and organic matter concentration are on the signal line 9s.
, 10s, 21s to the input circuit 4,
Further, the signal is input to the arithmetic circuit 14 through the signal line 14s. Methane gas generation ratio YcHt to amount of decomposed organic acid
/l, a, carbon dioxide generation ratio Y to amount of decomposed organic acid
. o2/La, ratio Y of carbon dioxide gas generation to the amount of decomposed organic matter. 02/LV is set in the ratio setting device 7IC, sent to the input circuit 4 via the signal line 7s, and further inputted to the arithmetic circuit 14 via the signal line 14sK.

酸生成微生物濃度(Sa)は、原料流量、投入原料中の
有機物濃度、消化槽内有機物濃度が計測で示したように
、除去有機物量換算の酸生成微生物濃度を演算できる。
The concentration of acid-producing microorganisms (Sa) can be calculated by calculating the concentration of acid-producing microorganisms in terms of the amount of removed organic matter, as shown by measurements of the raw material flow rate, the organic matter concentration in the input raw materials, and the organic matter concentration in the digester.

5a(k+1)=Sa(k)+3(Lvi−4,vo)
−q嗜5a(k) ”・−−” (16)■ 原料流量Qの計測値ならびに投入原料中の有機物濃度L
viは、入力情報の計測装置2において計測され、信号
線2Sによって、入力回路4に送られる。消化槽内有機
物濃度Lvoは、有機物濃度計21で計測され、信号線
218によって入力回路4に送られる。これらの信号は
、さらに信号線11s Kよつて演算器11に入力され
る。演算器11では(16)式の演算が行なわれ、その
演算結果は信号線’16sによって演算回路14に入力
される。演算回路14では、信号線168 、143か
らの情報を(15)式に代入して係数Ka 、 LVO
を算出する。演算結果である係数KiLVOは信号線1
98 Kよって演算予測回路5に送られる。
5a(k+1)=Sa(k)+3(Lvi-4,vo)
-q 5a(k) "・--" (16)■ Measured value of raw material flow rate Q and organic matter concentration L in input raw material
vi is measured by the input information measuring device 2 and sent to the input circuit 4 via the signal line 2S. The organic matter concentration Lvo in the digestion tank is measured by the organic matter concentration meter 21 and sent to the input circuit 4 via the signal line 218. These signals are further input to the arithmetic unit 11 through the signal line 11sK. The arithmetic unit 11 performs the arithmetic operation of equation (16), and the result of the arithmetic operation is input to the arithmetic circuit 14 via the signal line '16s. In the arithmetic circuit 14, the information from the signal lines 168 and 143 is substituted into equation (15) to obtain the coefficients Ka and LVO.
Calculate. The coefficient KiLVO, which is the calculation result, is on the signal line 1.
98K is sent to the arithmetic prediction circuit 5.

分解除去有機物景当シの有機酸生成比率YLa/r、v
の更新は、 (41、(5) 、 (7) 、 (s)
式を解くことによって達成される。すなわち、(4) 
、 (5) 、 +71 、 (sJ式を以下に示すよ
5に変形、整理すれば、過去一定期間のメタンガス生成
速度(GeF4)、炭酸ガス生成速度(Goo2a+G
o82m)、投入原料中の有機酸濃度(Lai)、消化
槽内有機酸濃度(Lao)を用いて、除去有機酸量当シ
の有機酸生成比率YLa//Lv を定めることができ
る。
Organic acid production ratio YLa/r, v of decomposed and removed organic matter
The update of (41, (5), (7), (s)
This is accomplished by solving the equation. That is, (4)
, (5) , +71 , (If we transform and rearrange the sJ formula into 5 as shown below, we can obtain the methane gas production rate (GeF4) and the carbon dioxide production rate (Goo2a+G
o82m), the organic acid concentration in the input raw material (Lai), and the organic acid concentration in the digestion tank (Lao), it is possible to determine the organic acid production ratio YLa//Lv based on the amount of organic acid removed.

(5)式、(7)式より v−△Lao=QeLai−QIILao+YLa/L
veKaIISa−(Lvo−Lvn)lIv(17)
式K (4) 、 +7) 、 (8)式より導ひかれ
た(15)式を代入整理すると、 (18)式において、メタンガス生成速度(GeH4)
、全炭酸ガス生成速度(GCO2a十GC02m)は、
前述した通シ、消化ガス流量計9ならびに消化ガス分析
計10によって計測され、信号線9s 、 I Qsに
よって入力回路4に送られる。有人原料中の有機酸濃度
Q、ai)ならびに投入原料量(Q)は、入力情報の計
測装置2において計測され、信号m2SKよって入力回
路4に送られる。消化槽内有機酸濃度(Lao)は、有
機酸濃度計8で計測され、信号線8Sによって入力回路
4に送られる。除去有機物量当りの炭酸ガス生成比率Y
CO2/Ll/、除去有機酸量当りの炭酸ガス生成比率
YCO2/La、除去有機酸量力シのメタンガス生成比
率YcH4/Laは比率設定装置7によって設定され、
信号線7sによって入力回路4に送られる。これらの信
号は、さらに信号線13Sによって演算回路13に送ら
れる。演算回路13はこれらの信号を(18)式に代入
して除去有機物量当りの有機酸生成比率YLa/Lvを
定める。その演算結果であるYLa/Lvは、信号線1
85によって演算予測回路5に送られる。
From equations (5) and (7), v-△Lao=QeLai-QIILao+YLa/L
veKaIISa-(Lvo-Lvn)lIv(17)
By substituting and rearranging the equation (15) derived from the equation K (4), +7) and the equation (8), in the equation (18), the methane gas production rate (GeH4)
, the total carbon dioxide production rate (GCO2a + GC02m) is
It is measured by the aforementioned digester gas flow meter 9 and digester gas analyzer 10, and is sent to the input circuit 4 via signal lines 9s and IQs. The organic acid concentration Q, ai) in the manned raw material and the input raw material amount (Q) are measured by the input information measuring device 2 and sent to the input circuit 4 by the signal m2SK. The organic acid concentration (Lao) in the digestion tank is measured by an organic acid concentration meter 8 and sent to the input circuit 4 via a signal line 8S. Carbon dioxide generation ratio Y per amount of organic matter removed
CO2/Ll/, the carbon dioxide gas production ratio per removed organic acid amount YCO2/La, and the methane gas production ratio YcH4/La per removed organic acid amount are set by the ratio setting device 7,
The signal is sent to the input circuit 4 via the signal line 7s. These signals are further sent to the arithmetic circuit 13 via a signal line 13S. The arithmetic circuit 13 substitutes these signals into equation (18) to determine the organic acid production ratio YLa/Lv per amount of removed organic matter. The calculation result YLa/Lv is the signal line 1
85 to the arithmetic prediction circuit 5.

以上示したように係数更新を行ないながら、第1図に示
したものと同様な手順で消化状態の模擬を行なう。これ
らの係数更新法について、実施例データを用い、計算機
シミュレーションによって検討した結果を第3図及び第
4図にそれぞれ示す。
While updating the coefficients as shown above, the state of digestion is simulated using the same procedure as shown in FIG. The results of examining these coefficient updating methods through computer simulation using example data are shown in FIGS. 3 and 4, respectively.

ここで、係数更新は過去3日間のデータを用いて逐次更
新した。第3図及び第4図に示すように、実測値と計算
値は、数値傾向共、実用上あまり問題ない精度でよく一
致している。
Here, the coefficients were updated sequentially using data from the past three days. As shown in FIGS. 3 and 4, the actual measured values and calculated values, both in terms of numerical trends, agree well with an accuracy that does not pose much of a problem in practice.

なお、上記実施例゛では、メタン生成微生物濃度、酸生
成微生物濃度を、それぞれメタンガス量、除去有機物量
産換算し、演算算出するものの例を示したが、たとえば
F420等圧よって消化槽内のこれら微生物濃度を直接
計測する手段を設けてもよ(1゜ また、有機物濃度、有機酸濃度については、1回/日程
度以上の測定頻度であればよく、実験室で手分析を行な
い入力回路へ直接入力する様にしてもよい。
In the above example, the concentration of methane-producing microorganisms and the concentration of acid-producing microorganisms are calculated by converting them into the amount of methane gas and mass production of removed organic matter, respectively. It is also possible to provide a means to directly measure the concentration (1゜Also, for organic substance concentration and organic acid concentration, it is sufficient if the measurement frequency is at least once a day, and it is possible to manually analyze the concentration in the laboratory and directly input it to the input circuit. You may also input it.

さらに、上記実施例では、酸発酵過程の反応速度を示す
反応速度項内の係数に3 r Lvn+メタン発酵過程
の反応速度項内の係数Krr1.L、Inのすべてを更
新する場合の例を示したが、I’vn l L’anの
値を固定し、Ka+Kmのみを更新する様にしてもよい
Furthermore, in the above embodiment, the coefficient in the reaction rate term indicating the reaction rate in the acid fermentation process is 3 r Lvn + the coefficient Krr1 in the reaction rate term in the methane fermentation process. Although an example has been shown in which all of L and In are updated, it is also possible to fix the value of I'vn l L'an and update only Ka+Km.

また、新たに定めた係数値を平滑化処理しながら、更新
して行く方法も推奨される。
It is also recommended that the newly determined coefficient values be updated while being smoothed.

また、上記実施例では、酸発酵過程ならびにメタン発酵
過程における反応速度を、基質濃度に比例する1次反応
式とした場合の例を示したが、酵素反応の基礎速度式で
あるMichael is−Menten 式ならびK
これらの修正式とした場合においても同様の効果を奏す
る。
Further, in the above example, an example was shown in which the reaction rate in the acid fermentation process and the methane fermentation process was a first-order reaction equation proportional to the substrate concentration. Formula and K
Similar effects can be achieved even when using these modified formulas.

また、この嫌気性消化プロセスの消化状態模擬装置を用
いて消化槽の熱効率ならびに消化処理原料の処分費用を
考慮しながら、最適な投入量、消化温度等の運転条件を
自動的に決定するようにし、この決定された運転条件に
基づいて消化槽の運用性なえば、よシ効率の良い運用が
可能となる。
In addition, using this device that simulates the digestion conditions of the anaerobic digestion process, the optimal operating conditions such as input amount and digestion temperature will be automatically determined while taking into consideration the thermal efficiency of the digester and the disposal cost of the digested raw materials. If the operability of the digester is determined based on the determined operating conditions, highly efficient operation becomes possible.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、消化槽から発生する
メタンガス量、炭酸ガス生成量ならびに消化槽内有機物
濃度、同有機酸濃度を用いて、演算式中の反応速度項内
の係数ならびに、有機物分解量に対する有機酸生成比率
を逐次更新するようKしたので、人手を要する係数更新
のための実験が不要で、かつ予測精度も良いという極め
て優れた効果がある。
As described above, according to the present invention, by using the amount of methane gas generated from the digestion tank, the amount of carbon dioxide gas produced, the concentration of organic matter in the digestion tank, and the concentration of the same organic acid, Since the ratio of organic acid production to the amount of decomposed organic matter is updated sequentially, there is no need for experiments for updating coefficients that require manual labor, and the prediction accuracy is also excellent, which is an extremely excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の嫌気性消化プロセスの消化状態模擬装置
を示すブロック線図、第2図は本発明の一実施例による
嫌気性消化プロセスの消化状態模擬装置のブロック線図
、第3図及び第4図は本発明の模擬装置で、消化状態を
演算予測した結果を示す図、第5図は嫌気性消化プロセ
スの反応過程を示す模式図。 1・・・嫌気性消化槽、2・・・入力情報の計測装置、
3・・・模擬入力情報の入力回路、4・・・入力回路、
5・・・演算予測回路、6・・・出力回路、7・・・比
率設定装置、8・・・有機酸濃度計、9・・・消化ガス
流量計、10・・・ガス分析計、11.12・・・演算
器、13゜14.15・・・演算回路、21・・・有機
物濃度計。 なお、図中、同一符号は同一または相当部分を示す。 特許出願人 三菱電機株式会社 (外2名):′ 第1図 第2図 さど ビ 手続補正書(自発) 特許庁長官殿 1、事件の表示 特願昭59−102363号2、発明
の名称 嫌気性消化プロセスの消化状態模擬装置3、補正をする
者 名 称 (601)三菱電機株式会社 代表者片山仁八部 5、補正の対象 (1)明細書の特許請求の範囲の欄 (2)明細書の発明の詳細な説明の欄 6、補正の内容 (1)別紙の通り特許請求の範囲を補正する。 (2)明細書第3頁第20行目の「配管b」を「配管a
」と補正する。 (3)明細書第5頁第9行目の 「−Km@Sm・(LaO−Lan) ・V)・・=(
9)jをr・(Lao−Lan)*v)・・−・・・(
9)、Jと補正する。 (4)明細書第6頁第2行目のr(m 3/日)」を[
(m 3/day)Jと補正する。 (5)FIA細書第6頁第12行目、第7頁第5行目、
同頁第7行目の「(8m5/日)」をr(Nm’/da
y)Jとそれぞれ補正する。 (6)明細書第6頁第15行目の「cm/Nm1日)」
をr (m 3/ Nm 5/ day月と補正する。 (7)明細書第8頁第15行目の「質←」を「濃度」と
補正する。 (8)明細書第10頁第8行目の「示した各演算式」(
9)明細書第12頁第15〜16行目の「各式により酸
発酵過程」を「酸発酵過程」と補正する。 (10)明細書第17頁第3行目の [−Ka @sa ・(LvO−Lvn) ・V −”
 (14) jをr ・Ka*Sa ・(LvO−Lv
n) ・V ・・・・・(14) Jと補正する。 (11)明細書第20頁第3行目の 「 する。 7、 添付書類の目録 補正後の特許請求の範囲を記載した書面 1通以上 補正後の特許請求の範囲
FIG. 1 is a block diagram showing a conventional device for simulating the state of digestion in an anaerobic digestion process, FIG. 2 is a block diagram of a device for simulating the state of digestion in an anaerobic digestion process according to an embodiment of the present invention, FIG. 4 is a diagram showing the results of calculating and predicting the state of digestion using the simulator of the present invention, and FIG. 5 is a schematic diagram showing the reaction process of the anaerobic digestion process. 1... Anaerobic digestion tank, 2... Input information measuring device,
3... Input circuit for simulated input information, 4... Input circuit,
5... Arithmetic prediction circuit, 6... Output circuit, 7... Ratio setting device, 8... Organic acid concentration meter, 9... Digestion gas flow meter, 10... Gas analyzer, 11 .12...Arithmetic unit, 13°14.15...Arithmetic circuit, 21...Organic substance concentration meter. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Patent applicant Mitsubishi Electric Corporation (2 others): Figure 1 Figure 2 Sado Bi procedural amendment (voluntary) Commissioner of the Japan Patent Office 1. Indication of the case Japanese Patent Application No. 102363/1982 2. Title of the invention Digestion state simulating device for anaerobic digestion process 3, Name of person making the amendment (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 5, Subject of amendment (1) Scope of claims in the specification (2) Column 6 of Detailed Description of the Invention in the Specification, Contents of Amendment (1) The scope of claims will be amended as shown in the attached sheet. (2) Change "piping b" on page 3, line 20 of the specification to "piping a"
” he corrected. (3) "-Km@Sm・(LaO-Lan)・V)...=(
9) j is r・(Lao-Lan)*v)...---(
9), correct as J. (4) "r (m3/day)" on page 6, line 2 of the specification.
(m3/day)J. (5) FIA specifications, page 6, line 12, page 7, line 5,
"(8m5/day)" in the 7th line of the same page is r(Nm'/da
y) Correct each with J. (6) “cm/Nm 1 day)” on page 6, line 15 of the specification
is corrected to r (m 3 / Nm 5 / day month). (7) "Quality ←" on page 8, line 15 of the specification is corrected to "density". (8) Specification, page 10, line 8 "Each expression shown" on the line (
9) "Acid fermentation process according to each formula" on page 12, lines 15-16 of the specification is corrected to "acid fermentation process." (10) [-Ka @sa ・(LvO-Lvn) ・V −” on page 17, line 3 of the specification
(14) j to r ・Ka*Sa ・(LvO-Lv
n) ・V...(14) Correct as J. (11) "Yes" on page 20, line 3 of the specification.

Claims (1)

【特許請求の範囲】[Claims] 有機物を含む原料物質を連続的あるいは間欠的に投入し
これを嫌気的に酸発酵ならびにメタン発酵さ遣、有機物
を分解してメタンガス、炭酸ガスを発生する嫌気性消化
プロセスへの入力情報あるいは模擬入力情報を入力信号
とし、将来の該プロセスの消化状態、該プロセスからの
生成物量あるいは生成物濃度を、予め定められた反応速
度項を含む演算式を用いて演算子測する演算予測回路を
有し、この演算子測した結果を出力する嫌気性消化プロ
セス消化状態模擬装置において、現在よシ過去に至る予
め定められた一定期間における該プロセスのメタンガス
生成速度、消化槽内メタン生成微生物濃度、消化槽内有
機酸濃度またはこれらの代替指標となるものを計測する
第1手段によシ計測した値を用いてメタン発酵過程の反
応速度を示す反応速度項内の係数を演算し、この演算結
果を出力とする第1の演算回路と、現在より過去に至る
予め定められた一定期間における該プロセスのメタンガ
ス生成速度、炭酸ガス生成速度、酸生成微生物濃度、消
化槽内有機物濃度またはこれらの代替指標となるものを
計測する第2手段によシ計測した値を用いて酸発酵過程
の反応速度を示す反応速度項内の係数を演算し、この演
算結果−゛を出力とする第2の演算回路と、現在よシ過
去に至る予め定められた一定期間における該プロセスの
メタンガス発生量、炭酸ガス発生量、投入物質中の有機
物および有機酸濃度、消化槽内の有機物および有機酸濃
度またはこれらの代替指標となるものを計測する第3手
段によシ計測した値を用いて単位有機物分解量に対する
有機酸の生成比率を演算しこの演算結果を出力とする少
なくとも1つ以上の第3の演算回路とを備え、上記第1
乃至第3の演算回路の出力を用いて、演算予測回路内の
予め定められた演算式中のメタン発酵過程の反応速度を
示す反応速度項内の係数、酸発酵過程を示す反応速度を
示す反応速度項内の係数、単位有機物分解量に対する有
機酸の生成比率のうち少なくと毛1つ以上を逐次更新す
ることを特徴とする嫌気性消化プロセスの消化状態模擬
装置。
Input information or simulated input to the anaerobic digestion process, in which raw materials containing organic matter are continuously or intermittently input and subjected to anaerobic acid fermentation and methane fermentation, and the organic matter is decomposed to generate methane gas and carbon dioxide gas. It has an arithmetic prediction circuit that takes information as an input signal and measures the future state of digestion of the process, the amount or concentration of products from the process using an arithmetic expression including a predetermined reaction rate term. In the anaerobic digestion process digestion state simulator that outputs the measured results of this operator, the methane gas production rate of the process, the concentration of methane-producing microorganisms in the digester tank, the methane-producing microorganism concentration in the digester tank, and the methane gas production rate of the process during a predetermined period from the present to the past. Using the values measured by the first means of measuring the internal organic acid concentration or an alternative indicator thereof, calculate the coefficient in the reaction rate term indicating the reaction rate of the methane fermentation process, and output the result of this calculation. a first arithmetic circuit that calculates the rate of methane gas production, the rate of carbon dioxide production, the concentration of acid-producing microorganisms, the concentration of organic matter in the digester, or alternative indicators thereof for a predetermined period from the present to the past; a second calculation circuit that calculates a coefficient in a reaction rate term indicating the reaction rate of the acid fermentation process using the value measured by the second means for measuring the substance, and outputs the calculation result -゛; Methane gas generation amount, carbon dioxide gas generation amount, organic matter and organic acid concentration in the input materials, organic matter and organic acid concentration in the digester, or alternative indicators of these, during a predetermined period from the present to the past. at least one or more third calculation circuit which calculates the generation ratio of organic acid with respect to the unit amount of decomposed organic matter using the value measured by the third means for measuring the amount of organic matter and outputs the calculation result. , the first
- Using the output of the third arithmetic circuit, the coefficient in the reaction rate term indicating the reaction rate of the methane fermentation process in the predetermined arithmetic expression in the arithmetic prediction circuit, and the reaction indicating the reaction rate indicating the acid fermentation process. A digestion state simulating device for an anaerobic digestion process, characterized in that at least one or more of a coefficient in a rate term and a production ratio of organic acid to a unit amount of decomposed organic matter are updated sequentially.
JP10236384A 1984-05-21 1984-05-21 Digestive state simulator for anaerobic digestion process Expired - Lifetime JPH0763717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10236384A JPH0763717B2 (en) 1984-05-21 1984-05-21 Digestive state simulator for anaerobic digestion process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10236384A JPH0763717B2 (en) 1984-05-21 1984-05-21 Digestive state simulator for anaerobic digestion process

Publications (2)

Publication Number Publication Date
JPS60244400A true JPS60244400A (en) 1985-12-04
JPH0763717B2 JPH0763717B2 (en) 1995-07-12

Family

ID=14325372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10236384A Expired - Lifetime JPH0763717B2 (en) 1984-05-21 1984-05-21 Digestive state simulator for anaerobic digestion process

Country Status (1)

Country Link
JP (1) JPH0763717B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289914A (en) * 2006-03-31 2007-11-08 Ebara Corp Treatment method and apparatus of organic waste by anaerobic microorganism
JP2011200792A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Apparatus and method for anaerobic treatment
CN104034912A (en) * 2014-06-26 2014-09-10 湖南中本智能科技发展有限公司 Fully automatic monogastric-animal bionic digestion apparatus
CN114262136A (en) * 2021-12-22 2022-04-01 北京城市排水集团有限责任公司 Anaerobic sequencing batch reactor for pyrohydrolysis of sludge and control method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289914A (en) * 2006-03-31 2007-11-08 Ebara Corp Treatment method and apparatus of organic waste by anaerobic microorganism
JP2011200792A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Apparatus and method for anaerobic treatment
CN104034912A (en) * 2014-06-26 2014-09-10 湖南中本智能科技发展有限公司 Fully automatic monogastric-animal bionic digestion apparatus
CN114262136A (en) * 2021-12-22 2022-04-01 北京城市排水集团有限责任公司 Anaerobic sequencing batch reactor for pyrohydrolysis of sludge and control method thereof
CN114262136B (en) * 2021-12-22 2023-05-02 北京城市排水集团有限责任公司 Anaerobic sequencing batch reactor for thermal hydrolysis of sludge and control method thereof

Also Published As

Publication number Publication date
JPH0763717B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
Hassam et al. A generic and systematic procedure to derive a simplified model from the anaerobic digestion model No. 1 (ADM1)
Amaral et al. Modelling gas–liquid mass transfer in wastewater treatment: when current knowledge needs to encounter engineering practice and vice versa
JPS60244400A (en) Digestion state dummy apparatus of anaerobic digestion process
Lamb et al. A technique for evaluating the biological treatability of industrial wastes
CN103399134B (en) Sewage COD soft measurement method based on output observer
Thomas Analysis of the biochemical oxygen demand curve
US3336215A (en) Apparatus for the production of a gas by electrolysis including pressure responsive means for monitoring and controlling said electrolysis
Flühler et al. Field-Measured Nitrous Oxide Concentrations, Redox Potentials, Oxygen Diffusion Rates, and Oxygen, Partial Pressures in Relation to DENITRIFICATION1
Yuceer et al. Simulation of river streams: Comparison of a new technique with QUAL2E
He et al. Oxygen-transfer measurement in clean water
Rutherford The practical application of frequency response analysis to automatic process control
CN114880926A (en) Digital twinning system based on Grignard reaction
KR101690241B1 (en) Prediction method of anaerobic digestion gas yield by using linerazation technique
CN111678860B (en) High-temperature high-pressure corrosion electrochemical testing device with controllable corrosion environment and testing method
CN107194129B (en) A method of using the modified ADM1 model analysis kitchen garbage methane phase of lactic acid
CN105238687A (en) Novel BOD (biochemical oxygen demand) determination system for continuous microorganism oxygen supply
Abramovitch et al. Decomposition kinetics of hydrogen peroxide: Novel lab experiments employing computer technology
JPH0411280B2 (en)
Koizumi et al. Evaluation of a Nitrogen Autoanalyzer for Wastewater
Lisa Aplikasi Sistem Pakar Untuk Mendiagnosa Defisiensi Unsur Hara Tanaman Hidroponik Pertanian Berbasis Web
JPH11253148A (en) Load-estimating apparatus in methane fermentation and estimation of load
Wilson et al. Graphical Interface for the Study of Gas-Phase Reaction Kinetics: Cyclopentene Vapor Pyrolysis
Matthewman et al. The application of automation and computer techniques in corrosion research (Technology section)
Symons et al. A procedure for continuous nitrification corrections during Warburg respirometer studies
Kim et al. Validation of on-line respiration meter and its applications by computer simulation