JPS60244283A - Preparation of methane-fermentation microorganism - Google Patents

Preparation of methane-fermentation microorganism

Info

Publication number
JPS60244283A
JPS60244283A JP59100916A JP10091684A JPS60244283A JP S60244283 A JPS60244283 A JP S60244283A JP 59100916 A JP59100916 A JP 59100916A JP 10091684 A JP10091684 A JP 10091684A JP S60244283 A JPS60244283 A JP S60244283A
Authority
JP
Japan
Prior art keywords
microorganisms
methane
microorganism
fermentation
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59100916A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nukina
康之 貫名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59100916A priority Critical patent/JPS60244283A/en
Publication of JPS60244283A publication Critical patent/JPS60244283A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To facilitate the handling of microorganism in the methane fermentation process using microorganisms separated in a nearly pure state, by carrying out the collection of cultured microorganisms in the presence of a clay mineral capable of promoting the agglutination of the microorganism and protecting the microorganism. CONSTITUTION:Microorganisms are separated in pure or nearly pure state from the methane fermentation microorganisms by the conventional technique for the separation of microorganisms. The separated microorganisms are cultured by conventional technique, and the cultured microorganisms are collected. The collection of the microorganisms is carried out in the passage of a clay mineral capable of promoting the agglutination of the microorganisms, protecting the microorganisms, and accelerating the fermentation. The clay mineral is montmorillonite, kaolinite, halloysite, etc. or their mixture. The microorganisms are agglutinated around the particles of the clay mineral, and can be precipitated and separated by small centrifugal force. The collected microorganisms are mixed, and reconstituted as the methane-fermentation microorganism.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はメタン発酵法に関するものである。さらに述べ
れば、メタン発酵微生物の製造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a methane fermentation process. More specifically, it relates to the production of methane-fermenting microorganisms.

従来例の構成とその問題点 メタン発酵は嫌気的条件のもと、複数種の微生物が行な
う生化学反応によ゛シ有機物からメタンを生成する反応
である。この反応を行なう複数種の微生物を一括してメ
タン発酵微生物と呼ぶ。
Structure of conventional examples and their problems Methane fermentation is a reaction in which methane is produced from organic matter through a biochemical reaction carried out by multiple types of microorganisms under anaerobic conditions. The multiple types of microorganisms that carry out this reaction are collectively called methane-fermenting microorganisms.

自然界でメタン発酵の見られる環境は、川・池・海等の
水底の汚泥中である。現行のメタン発酵は、これら汚泥
中の微生物を汚泥ごと発酵槽中に移し、これを種々の発
酵原料に馴らして用いている。また、発酵槽を新たに建
造した場合、発酵槽の修理を行なう場合などは、発酵槽
より引き抜きた汚泥を運搬する等の取り扱いを必要とす
るものであるが、これは体積的に大きなものを取り扱う
こと、不潔である等の問題点が多い。
In nature, methane fermentation is observed in sludge at the bottom of rivers, ponds, and the sea. In current methane fermentation, these microorganisms in the sludge are transferred together with the sludge into a fermenter, and used after being adapted to various fermentation raw materials. Additionally, when constructing a new fermenter or repairing a fermenter, it is necessary to transport and handle the sludge extracted from the fermenter, but this requires handling of sludge that is large in volume. There are many problems such as handling and uncleanliness.

これに対し、汚泥中のメタン発酵微生物を純粋又は純粋
に近いかたちに分離し、これらを工業的に培養し、集菌
し、混合してメタン発酵微生物を再構成して用いようと
する試みがある。これは体積的に有利であり、かつ不潔
になりにくいものであり、また、微生物の内容を生化学
反応の速度の速いものに置き代えることができる等の多
くの利点をもつ。しかしメタン発酵微生物は嫌気性菌で
あるために酸素(空気)との接触に弱く、また安定した
環境に棲息してきた微生物であるために環境の激変化に
弱いものである。従って、集菌、保存、運搬等の取り扱
いには困難さがつきまとう。
In response, attempts have been made to separate the methane-fermenting microorganisms in sludge into pure or near-pure forms, industrially culture them, collect them, and mix them to reconstitute the methane-fermenting microorganisms for use. be. This has many advantages, such as being advantageous in terms of volume, being less likely to become unclean, and being able to replace the microbial content with something that has a faster biochemical reaction rate. However, since methane-fermenting microorganisms are anaerobic bacteria, they are susceptible to contact with oxygen (air), and because they have lived in stable environments, they are vulnerable to drastic changes in the environment. Therefore, handling such as bacterial collection, storage, and transportation is fraught with difficulties.

発明の目的 本発明は前述の純粋又は純粋に近い形に分離した微生物
を培養し、集菌して混合し、メタン発酵微生物として用
いる場合の、微生物の取り扱いを容易にし安定性を増す
方法を提供するものである。
Purpose of the Invention The present invention provides a method for culturing the aforementioned pure or nearly pure microorganisms, collecting and mixing them, and facilitating handling of the microorganisms and increasing their stability when used as methane-fermenting microorganisms. It is something to do.

発明の構成 本発明ではメタン発酵微生物中より純粋又は純粋に近い
かたちに分離した微生物を用いる。これは公知の微生物
の分離技術により行なわれる。その培養法も公知技術の
応用である。
Structure of the Invention In the present invention, a microorganism isolated in a pure or nearly pure form from among methane-fermenting microorganisms is used. This is done using known microbial isolation techniques. The culture method is also an application of known technology.

さて本発明では培養した微生物の集菌に際し、微生物の
凝集を助け、微生物の保護効果を有し、かつ発酵保進の
効果を有する粘土鉱物を加える。
Now, in the present invention, when collecting the cultured microorganisms, clay minerals are added which help the flocculation of the microorganisms, have the effect of protecting the microorganisms, and have the effect of promoting fermentation.

さらに集菌した微生物を混合して、メタン発酵微生物を
再構成する。
Furthermore, the collected microorganisms are mixed to reconstitute the methane-fermenting microorganisms.

このようにして得たメタン発酵微生物を発酵槽に用いて
発酵を行なわせる。
The methane-fermenting microorganism thus obtained is used in a fermenter to perform fermentation.

実施例の説明 本発明に用いるメタン発酵微生物をさらに細別すると、
3群の微生物となる。第1の微生物は、有機物を分解し
、酢酸を主体とする低分子の分解産物を生成するもので
(分解菌)、はとんどの他栄養性(従属栄養性)の嫌気
性微生物がこの反応を行いえる。従って、この微生物と
しては、細菌株の保存機関の保存株が利用できるし、ま
た平板培養法を用い容易に純粋分離を行なうことができ
る。また集積培養法を用い容易に純粋に近いかたちの混
合微生物を得ることができる。用いる微生物としてはい
ずれであってもよい。
Description of Examples The methane-fermenting microorganisms used in the present invention are further subdivided into:
There are three groups of microorganisms. The first type of microorganisms are those that decompose organic matter and produce low-molecular decomposition products, mainly acetic acid (decomposers). can be done. Therefore, as this microorganism, preserved strains of bacterial strain preservation institutions can be used, and pure isolation can be easily carried out using the plate culture method. In addition, a nearly pure mixed microorganism can be easily obtained using the enrichment culture method. Any microorganism may be used.

第2の微生物はメタン生産菌であり、メタン発酵の最終
段階であるメタン生成反応を行なう微生物である。この
微生物の純粋分離は容易ではないが、すでに純粋分離の
技術は公知となっており、分解菌と同様、保存機関の菌
株や、自ら分離した菌株を利用し得る。
The second microorganism is a methane-producing microorganism, and is a microorganism that performs a methane production reaction, which is the final stage of methane fermentation. Although it is not easy to isolate pure microorganisms, the technology for pure isolation is already known, and as with degrading bacteria, strains from preservation institutions or strains isolated by oneself can be used.

第3の微生物は酢酸からメタンを生成する反応にメタン
生産菌と協同して関与しており、その分類学的位置や菌
学的性質は明かになっていない。
The third microorganism is involved in the reaction of producing methane from acetic acid in cooperation with methane-producing bacteria, and its taxonomic position and mycological properties are unknown.

この微生物は酢酸を炭素源とした培地を用い、集積培養
を行なうことにより、純粋に近いかたちに濃縮すること
ができる。さらに集積培養中にメタン生産菌を共存させ
ることにより培養を促進することができる。−またこの
集積培養は再現性があり、この集積培養物は一般的に利
用可能である。
This microorganism can be concentrated to a near-pure form by performing enrichment culture using a medium containing acetic acid as a carbon source. Furthermore, culture can be promoted by allowing methane-producing bacteria to coexist during enrichment culture. - This enrichment culture is also reproducible and the enrichment culture is generally available.

分解菌とメタン生産菌については、その培養法公知であ
り、公知の培養法に準じて培養を行なう0酢酸からメタ
ンを生成する反応に関与する微生物については、まずメ
タン生産菌の培養を行ない、これに酢酸塩と酢酸からメ
タンを生成する反応に関与する微生物の集積培養物を加
えてさらに培養を続ける。
Cultivation methods for decomposing bacteria and methane-producing bacteria are known, and cultivation is performed according to known culture methods.For microorganisms involved in the reaction of producing methane from acetic acid, first culture the methane-producing bacteria. An enriched culture of microorganisms involved in the reaction of producing methane from acetate and acetic acid is added to this and further cultivation is continued.

さて培養物中より微生物菌体を集収(集菌)するにあた
り培養物中に粘土を加える。これはモンモリロナイト、
カオリナイト、ハロイサイト等の粘土鉱物であっても、
それらの混合物であっても、また粘土鉱物を主体とした
地層中より採掘した粘土であってもよい。
Now, when collecting microbial cells from the culture (collecting bacteria), clay is added to the culture. This is montmorillonite
Even clay minerals such as kaolinite and halloysite,
It may be a mixture thereof, or it may be clay mined from a geological layer mainly composed of clay minerals.

粘土鉱物の粒子を核として微生物は凝集し、粒子径の増
大により沈降速度が増加する。次に遠心分離法により集
菌を行なうが、このとき凝集し沈降速度の増加した微生
物は小さな遠心力で沈降分離される。すなわち、マイル
ドな条件で集菌が行にえるため、微生物の損傷を最小限
におさえ得る。
Microorganisms aggregate using clay mineral particles as cores, and as the particle size increases, the sedimentation rate increases. Next, microorganisms are collected by centrifugation, and microorganisms that aggregate and have an increased sedimentation rate are sedimented and separated by a small centrifugal force. That is, since bacteria can be collected under mild conditions, damage to microorganisms can be kept to a minimum.

このとき必要な粘土鉱物の量は、微生物菌体の乾物重量
と同等以上である。また遠心分離に必要な遠心力は20
00G程度である。
The amount of clay mineral required at this time is equal to or greater than the dry weight of the microbial cells. Also, the centrifugal force required for centrifugation is 20
It is about 00G.

また凝集により、表面積の低下した微生物は空気の影響
をうけにくくなる。
Furthermore, due to aggregation, microorganisms with a reduced surface area become less susceptible to the influence of air.

次にこのようにして集菌した微生物は混合し、保存、運
搬し、その後発酵槽にうつして利用されるが、この間粘
土鉱物は保護剤として働く。すなわち、微生物の死滅速
度は微生物濃度と負の相関がある(公知の一般則)ので
あるが、凝集により微生物が密となっているために保護
効果が大である。また表面積の低下により外界の影響を
うけにくいために保護効果が発揮される。
Next, the microorganisms collected in this way are mixed, stored, transported, and then transferred to a fermentation tank for use, during which time the clay minerals act as a protective agent. That is, although the killing rate of microorganisms has a negative correlation with the concentration of microorganisms (a well-known general rule), the protective effect is great because the microorganisms are densely packed due to aggregation. In addition, because the surface area is reduced, it is less susceptible to the effects of the outside world, so a protective effect is exerted.

最後に発酵槽にうつして利用されるが、このと促進の効
果が観察されるのである。また鉄、カルシウムの塩又は
水酸化物にも発酵促進の効果があるが、粘土鉱物にはこ
れらを含むものが多い。
Finally, it is transferred to a fermentation tank and used, and the accelerating effect is observed. Salts or hydroxides of iron and calcium also have the effect of promoting fermentation, and many clay minerals contain these.

さらに複数の価数をもつ金属元素も微量で、発酵促進の
効果をもつが、粘土鉱物は通常にこれらの元素を含むも
のである。
Furthermore, small amounts of metal elements with multiple valences have the effect of promoting fermentation, and clay minerals usually contain these elements.

発明の効果 以上の様に本発明の効果は、収菌を容易にし、さらに取
り扱いを安、定にし、発酵に促進的に働くものである。
As described above, the effects of the present invention are that it facilitates bacterial collection, stabilizes handling, and promotes fermentation.

Claims (1)

【特許請求の範囲】[Claims] メタン発酵微生物の各々を純粋、又は集積培養法により
純粋に近い状態として分離し、これを培養し、その後粘
土鉱物を加えて集菌し、混合してメタン発酵微生物を再
構成するようにしたメタン発酵微生物の製造法。
Methane-fermenting microorganisms are isolated in a pure or near-pure state using an enrichment culture method, cultured, and then clay minerals are added to collect the bacteria and mixed to reconstitute the methane-fermenting microorganisms. Production method of fermentation microorganisms.
JP59100916A 1984-05-18 1984-05-18 Preparation of methane-fermentation microorganism Pending JPS60244283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100916A JPS60244283A (en) 1984-05-18 1984-05-18 Preparation of methane-fermentation microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100916A JPS60244283A (en) 1984-05-18 1984-05-18 Preparation of methane-fermentation microorganism

Publications (1)

Publication Number Publication Date
JPS60244283A true JPS60244283A (en) 1985-12-04

Family

ID=14286660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100916A Pending JPS60244283A (en) 1984-05-18 1984-05-18 Preparation of methane-fermentation microorganism

Country Status (1)

Country Link
JP (1) JPS60244283A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214399A (en) * 1987-02-27 1988-09-07 Matsushita Electric Ind Co Ltd Fermenting method for methane
JPS63214400A (en) * 1987-02-27 1988-09-07 Matsushita Electric Ind Co Ltd Fermenting method for methane
DE102007029102A1 (en) * 2007-06-21 2008-12-24 Tilco Biochemie Gmbh Preparation for the optimization of methane gas production in biogas plants

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63214399A (en) * 1987-02-27 1988-09-07 Matsushita Electric Ind Co Ltd Fermenting method for methane
JPS63214400A (en) * 1987-02-27 1988-09-07 Matsushita Electric Ind Co Ltd Fermenting method for methane
JPH0515519B2 (en) * 1987-02-27 1993-03-01 Matsushita Electric Ind Co Ltd
DE102007029102A1 (en) * 2007-06-21 2008-12-24 Tilco Biochemie Gmbh Preparation for the optimization of methane gas production in biogas plants

Similar Documents

Publication Publication Date Title
Vary et al. Cell yields of bacteria grown on methane
CN114107092B (en) Endophyte Gordonia L191 for degrading phthalate and application thereof
CN112094780B (en) Seawater spirulina-interstellar bacterium symbiotic system, construction method and application
CN111893074A (en) Bacillus fusiformis strain and application thereof
SU730294A3 (en) Method of sea water purification from oil
Cheng et al. Bioaugmentation of a sequencing batch biofilm reactor with Comamonas testosteroni and Bacillus cereus and their impact on reactor bacterial communities
Kadam et al. Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations
CN114292762B (en) Candida palmi and application thereof
Vasilyeva Stella, a new genus of soil prosthecobacteria, with proposals for Stella humosa sp. nov. and Stella vacuolata sp. nov.
Grant et al. An alkalophilic species of Ectothiorhodospira from a Kenyan soda lake
Archer et al. Isolation of gas vesicles from Methanosarcina barken
JPS60244283A (en) Preparation of methane-fermentation microorganism
US4455373A (en) Microbiological oxidations
Hatano et al. Microbial ecology of constructed wetlands used for treating pulp mill wastewater
JP2016059281A (en) Oil and fats production method and oil and fats production apparatus
JPS58155085A (en) Hypomicrobium microorganism and decomposition of methyl group containing compound in aqueous solution utilizing same
CN114854608B (en) Degradable polyurethane yeast fungus strain, identification method and application
Ridgway et al. Goblet-shaped sub-units from the wall of a marine gliding microbe
Torres-Franco et al. Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems
DAVIS et al. Spontaneous protoplast formation by Methanosarcina barkeri
CN106834165B (en) Paracoccus capable of degrading penicillin, cell fraction and composition thereof
IRIÉ et al. Preparation of a clean sample of bacterial spores
JPS5913276B2 (en) Method for purifying factory waste liquid using yeast
JP4578879B2 (en) Bisphenol A-degrading bacteria and uses thereof
JPS605279B2 (en) Microorganism production method