JPS6024420B2 - gas analyzer - Google Patents

gas analyzer

Info

Publication number
JPS6024420B2
JPS6024420B2 JP11534879A JP11534879A JPS6024420B2 JP S6024420 B2 JPS6024420 B2 JP S6024420B2 JP 11534879 A JP11534879 A JP 11534879A JP 11534879 A JP11534879 A JP 11534879A JP S6024420 B2 JPS6024420 B2 JP S6024420B2
Authority
JP
Japan
Prior art keywords
gas
cell
analyzer
light source
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11534879A
Other languages
Japanese (ja)
Other versions
JPS5639445A (en
Inventor
公夫 宮武
耕三 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP11534879A priority Critical patent/JPS6024420B2/en
Publication of JPS5639445A publication Critical patent/JPS5639445A/en
Publication of JPS6024420B2 publication Critical patent/JPS6024420B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection

Description

【発明の詳細な説明】 本発明は、光源、セル、検出器を直列に配置し、加圧し
たガスを前記セル内に導入する分析計に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analyzer in which a light source, a cell, and a detector are arranged in series, and a pressurized gas is introduced into the cell.

この種分析計として一般的に用いられているダブルビー
ム型非分散赤外線分析計の一例を第1図に示す。
FIG. 1 shows an example of a double beam non-dispersive infrared analyzer that is commonly used as this type of analyzer.

この分析計は2つの光源11,12によってつくられる
2つの光路の一方に比較セル13を、他方に試料セル1
4を設け、各セル13,14を通過した光をチョッパ1
5にて断続して検出器16の左右隔室16a,16bに
入射するという構成であり、各セル13,14を通過し
た光量の差にて生じる左右隔室16a,16b内の圧力
差をコンデンサマィク。ホン17にて検出することによ
って試料セル14内の被測定成分ガスの濃度を測定する
ものである。ところで、この分析計においては各光源1
1,12とセル13,14との間a,b、各セル13,
14と検出器16との間c,dにデッドスペースが生じ
ており、この空間に被測定成分ガス又はそれと類似の赤
外線吸収をもったガスが侵入すると、測定に誤差を生じ
ることとなる。
This analyzer has two optical paths created by two light sources 11 and 12, with a comparison cell 13 on one side and a sample cell 1 on the other side.
4 is provided, and the light passing through each cell 13, 14 is sent to the chopper 1.
5, the light enters the left and right compartments 16a, 16b of the detector 16 intermittently. Mike. The concentration of the component gas to be measured in the sample cell 14 is measured by detecting it with the phone 17. By the way, in this analyzer, each light source 1
1, 12 and cells 13, 14 a, b, each cell 13,
14 and the detector 16, and if a component gas to be measured or a gas having similar infrared absorption enters into this space, an error will occur in the measurement.

特にショートセルを用いて低濃度ガスを測定する場合と
か、大気中に多量に含まれる炭酸ガス等を測定する場合
においてはこの誤差は測定に大きな支障をきたす。この
問題は、ダブルビーム型の分析計に限らず、第2図に示
すシングルビーム型分析計においても光源21とセル2
2との間e、セル22と検出器23との間fにデッドス
ペースをもつが故に同様に生じている。
In particular, when measuring low concentration gas using a short cell or when measuring carbon dioxide, etc. contained in large amounts in the atmosphere, this error poses a major hindrance to measurement. This problem is not limited to double-beam analyzers, but also exists in the single-beam analyzer shown in FIG.
The same problem occurs because there is a dead space e between the cell 22 and the detector 23, and a dead space f between the cell 22 and the detector 23.

すなわち、光源、セル、検出器を直列に配置した分析計
であれば型、方式を問わず、光源、セル、検出器の3著
聞に必ずデッドスペースが生じるので、前述の問題はこ
のような分析計に共通した問題である。従来においてこ
の問題を解消するために、デッドスペースを○リングで
シールしたり、或いは分析計周囲を被測定成分ガスに干
渉しないガスでパージしたりすることが試みられている
が、いずれもコストが高くつくし、後者の手段にあって
は装置全体が大がかりとなり、かつパージ用のガスを供
給するポンプ等が別途に必要となる等の欠点ももってい
る。
In other words, regardless of the type or type of analyzer that has a light source, cell, and detector arranged in series, there will always be a dead space between the light source, cell, and detector, so the problem described above is caused by this problem. This is a common problem with analyzers. Conventionally, attempts have been made to solve this problem by sealing the dead space with a ring, or by purging the area around the analyzer with a gas that does not interfere with the component gas being measured, but both methods are expensive. It is expensive, and the latter method requires a large-scale device as a whole, and also requires a separate pump or the like to supply purge gas.

この点にあって本発明は0リングを用いたり、被測定成
分と干渉しないガスでパージしたりしなくとも、デッド
スペースの雰囲気ガスの侵入を確実に阻止でき、高精度
の測定が行なえる新規且つ有用なガス分析計を提供しよ
うとするものである。
In this respect, the present invention is a novel method that can reliably prevent atmospheric gas from entering the dead space and perform highly accurate measurements without using an O-ring or purging with a gas that does not interfere with the components being measured. Moreover, the present invention aims to provide a useful gas analyzer.

次に本発明の実施例を第3図乃至第5図に基づいて説明
する。
Next, an embodiment of the present invention will be described based on FIGS. 3 to 5.

第3図、第4図はともに、光源31,41、試料セル3
2,42、検出器33,43を直列に配置したシングル
ビーム型赤外線ガス分析計を示し、第3図に示す分析計
はセル32と検出器33との間にチョッパ34を設け、
一方第4図に示す分析計は光源41とセル42との間に
チョツパ4.4を設けている。これらの分析計において
、試料セル32,42は、光路を遮ぎらない適当位置、
例えば側周部にガス導入口32a,42aが設けてある
と共に、光路方向両端のうち一方(第3図参照)若しく
は双方(第4図参照)を開放し、開放様32b,42b
,42cが形成されている。
3 and 4 both show the light sources 31, 41 and the sample cell 3.
2, 42, shows a single beam type infrared gas analyzer in which detectors 33, 43 are arranged in series, and the analyzer shown in FIG. 3 has a chopper 34 between the cell 32 and the detector 33,
On the other hand, the analyzer shown in FIG. 4 has a chopper 4.4 between the light source 41 and the cell 42. In these analyzers, the sample cells 32 and 42 are placed at appropriate positions that do not block the optical path.
For example, gas inlet ports 32a, 42a are provided on the side periphery, and one (see FIG. 3) or both ends (see FIG. 4) of both ends in the optical path direction are opened, and the openings 32b, 42b are opened.
, 42c are formed.

尚、第3図に示すように開放端32bを光路方向の一端
にのみ形成した場合は、ガスがセル内全体に拡散するよ
うにガス導入口32aを他端に近い側周部に設けるのが
望ましい。一方、第4図に示すように開放端42b,4
2cを光路方向両端に設けた場合は、セル長手方向中央
にガス導入口42aを設ける方が望ましい。また図示は
しないがガス導入口32a,42aから導入された試料
ガスはセル内を拡散しつつ開放端32b,42b,42
cから排出されるので、セル32と検出器33との間の
デッドスペースg、光源41とセル42との間のデッド
スペースh、セル42と検出器43との間のデッドスペ
ースiはそれぞれ試料ガスで満たされることとなる。し
かも試料ガスはポンプによって当然に大気圧以上に加圧
されているので(加圧しなければ送給できない)、前記
デッドスペースg〜iには試料ガスのみが充満すること
となって大気ガス等の雰囲気ガスの侵入は自ずと阻止さ
れる。ところで前記デッドスペースのうちgとhにはチ
ョッパ34,44が設けてあるので、チョッパ34と検
出器33との間の空間g及びチョッパ44と光源41と
の間の空間h′にはチョッパ34,44に遮ぎられて開
放端32b,42bからのガスが到着し得ないように思
えるが、チョッパ34,44には光透過用の孔34a,
44aが1個若しくは複数個形成してあり、かつチョッ
ピング周波数が例えば1皿Zというように高いので、前
記空間g,h′にもチョッパの光透過用孔34a,44
aを通じて絶えず試料がガスが送られ、該ガスで満たさ
れるものである。従ってデッドスペースg〜iの全てが
試料ガスで満たされる結果、光源31,41から発した
光は、試料ガスのみによって吸収を受け、検出器33,
43に到達するので、雰囲気ガスの影響を受けない高精
度の測定が可能となるのである。
In addition, when the open end 32b is formed only at one end in the optical path direction as shown in FIG. 3, it is recommended to provide the gas inlet 32a on the side periphery near the other end so that the gas is diffused throughout the cell. desirable. On the other hand, as shown in FIG.
2c are provided at both ends in the optical path direction, it is preferable to provide the gas inlet 42a at the center in the longitudinal direction of the cell. Although not shown, the sample gas introduced from the gas inlet ports 32a, 42a diffuses inside the cell, and the open ends 32b, 42b, 42.
Since the sample is discharged from c, the dead space g between the cell 32 and the detector 33, the dead space h between the light source 41 and the cell 42, and the dead space i between the cell 42 and the detector 43 are It will be filled with gas. Moreover, since the sample gas is naturally pressurized to above atmospheric pressure by the pump (it cannot be delivered unless it is pressurized), the dead spaces g to i are filled only with the sample gas, and atmospheric gas, etc. Infiltration of atmospheric gas is naturally prevented. By the way, since the choppers 34 and 44 are provided in g and h of the dead space, the chopper 34 is provided in the space g between the chopper 34 and the detector 33 and the space h' between the chopper 44 and the light source 41. , 44, it seems that the gas from the open ends 32b, 42b cannot reach the choppers 34, 44, but the choppers 34, 44 have holes 34a, 44 for light transmission.
Since one or more holes 44a are formed and the chopping frequency is high, such as one plate Z, the spaces g and h' are also provided with light transmission holes 34a and 44 of the chopper.
Gas is constantly sent to the sample through a, and the sample is filled with the gas. Therefore, all of the dead spaces g to i are filled with the sample gas, so that the light emitted from the light sources 31 and 41 is absorbed only by the sample gas, and the detectors 33 and
43, making it possible to perform highly accurate measurements unaffected by atmospheric gas.

次に時5図は本発明の他の一実施例としてダブルビーム
型赤外線ガス分析計を示したもので、この実施例におい
ては試料セル51だけでなく比較セル52も、その両端
を開放して開放端52b,52cを形成し、図外ポンプ
よりガス導入口52aを通じて加圧した比較ガスを常に
セル内に送給するようにしている。この結果、開放端5
2b,52cと光源53、検出器54との間のデッドス
ペースj,kは比較ガスで充満されることとなるので、
雰囲気ガスは試料セル51の両端のデッドスペース1,
mのみならず前記デッドスペースi,kに対しても侵入
を阻止される。従って、この構成のダブルビーム型赤外
線ガス分析計によれば、両光路とも雰囲気ガスの影響を
受けない高精度の測定が行なえるのである。尚、以上の
実施例に示した分析計は全てチョッパによって光を断続
する方式を採用しているが、チョツパを用いない方式、
例えば2つのセルに比較ガスと試料ガスを切換弁を切換
えることにより交互に導入する方式の分析計についても
、本発明を実施することができることは勿論である。
Next, Figure 5 shows a double beam type infrared gas analyzer as another embodiment of the present invention. In this embodiment, not only the sample cell 51 but also the comparison cell 52 have both ends open. Open ends 52b and 52c are formed, and a pressurized comparison gas is always fed into the cell from a pump (not shown) through a gas inlet 52a. As a result, the open end 5
Since the dead spaces j and k between 2b and 52c and the light source 53 and detector 54 will be filled with the comparison gas,
The atmospheric gas is in the dead space 1 at both ends of the sample cell 51,
Intrusion is prevented not only into m but also into the dead spaces i and k. Therefore, according to the double beam type infrared gas analyzer having this configuration, highly accurate measurement can be performed with both optical paths being unaffected by atmospheric gas. The analyzers shown in the above examples all employ a method of intermittent light using a chopper, but there are also methods that do not use a chopper,
For example, it goes without saying that the present invention can be practiced in an analyzer that alternately introduces a comparison gas and a sample gas into two cells by switching a switching valve.

即ち、本発明は、セルの構造に特徴があり、セル以外の
構成(検出器、光源等の種類等)は、本発明の限定事項
ではない。以上詳述したように、本発明は、光源と、該
光源より発した光が通過するセルと、該セルを通過した
光を受光する検出器とを直列に配置したガス分析計にお
いて、前記のセルの光路を遮ざらない位置にガス導入口
を形成すると共に、当該セルの光路方向両端のうち少な
くとも一方を開放端とし、前記ガス導入口から加圧した
ガスを前記セル内に導入し、前記開放端からガスを流出
させるようにしているので、セル内に庄入された試料ガ
ス又は比較ガスが該セル内を拡散しながら開放端から流
出し、これによって、光源又は/及び検出器との間のデ
ッドスペースはこれらガスによって満たされるため、雰
囲気ガスの侵入を効果的に阻止できる。
That is, the present invention is characterized by the structure of the cell, and configurations other than the cell (types of detectors, light sources, etc.) are not limitations of the present invention. As detailed above, the present invention provides a gas analyzer in which a light source, a cell through which the light emitted from the light source passes, and a detector that receives the light passing through the cell are arranged in series. A gas inlet is formed at a position that does not block the optical path of the cell, and at least one of both ends of the cell in the optical path direction is an open end, and pressurized gas is introduced into the cell from the gas inlet, Since the gas is made to flow out from the open end, the sample gas or reference gas introduced into the cell flows out from the open end while diffusing inside the cell, thereby preventing contact with the light source and/or detector. Since the dead space between them is filled with these gases, the intrusion of atmospheric gases can be effectively prevented.

従って、雰囲気ガスが被測定成分ガス或いはそれと類似
した吸収帯をもつガスであっても、その影響を受けない
で高精度の測定を行なうことができる。この測定精度上
の利益は、ショートセルを用いての低濃度ガスの測定に
際して極めて顕著であり、また炭酸ガス等大気中に多量
に含まれるガスの測定に際しても同様に顕著である。加
えてデッドスペースを、セル内を流れた試料ガス又は比
較ガスによって満たすので、0リングでシールしたり、
別途パージガスを用いてパージしたりしなくてもよいた
め、分析計自身を部品数少なく安価にかつ全体を簡素に
してコンパクトな構成とすることができる等の構造上の
利点をもて)。
Therefore, even if the atmospheric gas is the component gas to be measured or a gas having an absorption band similar to it, highly accurate measurement can be performed without being affected by it. This advantage in measurement accuracy is extremely noticeable when measuring low concentration gases using a short cell, and is equally noticeable when measuring gases that are contained in large amounts in the atmosphere, such as carbon dioxide. In addition, since the dead space is filled with the sample gas or comparison gas flowing inside the cell, it can be sealed with an O-ring,
Since there is no need to purge using a separate purge gas, the analyzer itself has structural advantages such as fewer parts, lower cost, and a simpler and more compact configuration.

【図面の簡単な説明】 第1図、第2図はそれぞれ従来の分析計を示す全体構成
図、第3図乃至第5図は本発明に係るガス分析計の各実
施例を示す全体構成図である。 31,41,53……光源、32,42,51,52…
…セル、33,43,54……検出器、32a,42a
,52a・・・・・・ガス導入口、32b,42b,4
2c,52b、52c・・・・・・開放端。 第1図 第2図 第3図 第ム図 第5図
[Brief Description of the Drawings] Figures 1 and 2 are overall configuration diagrams showing conventional analyzers, respectively, and Figures 3 to 5 are overall configuration diagrams showing each embodiment of the gas analyzer according to the present invention. It is. 31, 41, 53... light source, 32, 42, 51, 52...
...Cell, 33, 43, 54...Detector, 32a, 42a
, 52a... Gas inlet, 32b, 42b, 4
2c, 52b, 52c...Open end. Figure 1 Figure 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】 1 光源と、該光源より発した光が通過するセルと、該
セルを通過した光を受光する検出器とを直列に配置した
ガス分析計において、前記セルの光路を遮ぎらない位置
にガス導入口を形成すると共に、当該セルの光路方向両
端のうち少なくとも一方を開放端とし、前記ガス導入口
から加圧したガスを前記セル内に導入し、前記開放端か
らガスを流出させるようにしたことを特徴とするガス分
析計。 2 前記光源及びセルが各1個のシングルビーム型であ
る特許請求の範囲第1項に記載のガス分析計。
[Scope of Claims] 1. In a gas analyzer in which a light source, a cell through which light emitted from the light source passes, and a detector that receives the light passed through the cell are arranged in series, the optical path of the cell is blocked. A gas inlet is formed at a position that is not too far away, at least one of both ends in the optical path direction of the cell is an open end, pressurized gas is introduced into the cell from the gas inlet, and gas is introduced from the open end. A gas analyzer characterized in that the gas is allowed to flow out. 2. The gas analyzer according to claim 1, wherein each of the light source and the cell are of a single beam type.
JP11534879A 1979-09-08 1979-09-08 gas analyzer Expired JPS6024420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11534879A JPS6024420B2 (en) 1979-09-08 1979-09-08 gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11534879A JPS6024420B2 (en) 1979-09-08 1979-09-08 gas analyzer

Publications (2)

Publication Number Publication Date
JPS5639445A JPS5639445A (en) 1981-04-15
JPS6024420B2 true JPS6024420B2 (en) 1985-06-12

Family

ID=14660293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11534879A Expired JPS6024420B2 (en) 1979-09-08 1979-09-08 gas analyzer

Country Status (1)

Country Link
JP (1) JPS6024420B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041850U (en) * 1983-08-30 1985-03-25 株式会社 堀場製作所 gas analyzer

Also Published As

Publication number Publication date
JPS5639445A (en) 1981-04-15

Similar Documents

Publication Publication Date Title
US5747809A (en) NDIR apparatus and method for measuring isotopic ratios in gaseous samples
US4822564A (en) Chemiluminescent gas analyzer for measuring the oxides of nitrogen
US6455852B2 (en) Stable isotope measurement method and apparatus by spectroscopy
ES2050683T3 (en) OPTICAL GAS ANALYZER.
FR2395502A1 (en) IMPROVEMENT OF THE CALIBRATION DEVICES FOR RADIATION-ABSORBING GAS ANALYZERS
JPH0239735B2 (en)
US6762410B1 (en) Analysis apparatus
US5559333A (en) Apparatus of non-dispersive infrared analyzer
US6633036B2 (en) Isotope gas measuring apparatus
JP2559851B2 (en) Calibration device for non-dispersive infrared photometer
US4794255A (en) Absorption analyzer
Van Wagenen et al. Dedicated monitoring of anesthetic and respiratory gases by Raman scattering
US4225243A (en) Gas measuring apparatus with standardization means, and method therefor
US5894128A (en) Infrared type gas analyzer
JPH0217327Y2 (en)
US3970387A (en) Nondispersion, two beam, infrared gas analyzer
JPS6217183B2 (en)
JPS6024420B2 (en) gas analyzer
US6452182B1 (en) Photometer with non-dispersive infraded absorption spectroscopy (NDIR) for measuring several constituents
CA1188128A (en) Carbon monoxide detector
JPH07190930A (en) Gas analyzer
JP6168172B2 (en) Infrared gas analyzer
JPH0933429A (en) Ozone densitometer
JPS6356489B2 (en)
JPS6010256B2 (en) gas analyzer