JPS6024407A - Radiation thickness gage - Google Patents

Radiation thickness gage

Info

Publication number
JPS6024407A
JPS6024407A JP13261183A JP13261183A JPS6024407A JP S6024407 A JPS6024407 A JP S6024407A JP 13261183 A JP13261183 A JP 13261183A JP 13261183 A JP13261183 A JP 13261183A JP S6024407 A JPS6024407 A JP S6024407A
Authority
JP
Japan
Prior art keywords
channel
measured
radiation
signal
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13261183A
Other languages
Japanese (ja)
Other versions
JPH0444926B2 (en
Inventor
Kazunori Masanobu
正信 和則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13261183A priority Critical patent/JPS6024407A/en
Publication of JPS6024407A publication Critical patent/JPS6024407A/en
Publication of JPH0444926B2 publication Critical patent/JPH0444926B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • G01B15/025Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness by measuring absorption

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)

Abstract

PURPOSE:To make it possible to continue the measurement of a shape even through any channel system fails, by dividing a detecting part of radiation, which is transmitted through a material to be measured, into a plurality of channel systems, removing the channel system, which outputs an abnormal signal, and performing an interpolation processing. CONSTITUTION:Radiation is projected from a rediation source in a radial shape so as to cover a material to be measured in the direction of lateral width. The radiation is transmitted through the material to be measured and converted into electric signals, which are attenuated in proportion to the thicknesses of the material to be measured by detecting elements 21-1-21-N for individual channel. The outputs of preamplifiers 22-1, 22-2... for the odd-number channels and the even-number channels are inputted to multiplexers 23A and 23B respectively, and supplied to plate-thickness converters 25A and 25B through A-D converters 24A and 24B. A data processing part 26 receivers the signals of the converters 25A and 25B, and computes the signals based on the selecting signal from an input selecting circuit 28. Thus the shape is measured. The output of the channel system, which sends out the abnormal detected signal, is removed and interpolation processing is performed by using the detected signals from the other channel systems. Thus the measurement can be continued.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ストリップなどの断面形状を測定する放射線
厚み針の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in radiation thickness needles for measuring cross-sectional shapes of strips and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

この種の放射線厚み計は、第1図に示すように比較的悪
環境下の場所Aに移動可能に設置されたCフレームIの
両端に、放射線源2と多数の検出素子を一列に配列した
多チャンネル検出器3とが対向配置され、とれら放射線
源2および多チヤンネル検出器3間に被測定物4が設置
されるようになりている。そして、放射線源2から被測
定物4全体を覆うように照射された放射線5が被測定物
4を透過して多チャンネル検出器3によって検出され、
この検出器3出カは検出素子ごとに接続されているノリ
アング6゜・・・によって増幅された後、マルチプレク
サ7で順次チャンネル切換えを行なってアンプ出力を選
択出力し、さらにA−D変換回路8でディジタル信号に
変換されて安全な場所8に設置されている板厚変換器9
へ送られる。この板厚変換器9では各チャンネルごとの
板厚信号をめた後、データ処理部1oへ送る。ここで、
各チャンネルへとの板厚信号は被測定物4のプロフィー
ルノRターンに変換され、後続のCRT表示部11によ
って表示される。
This type of radiation thickness meter has a radiation source 2 and a number of detection elements arranged in a line at both ends of a C frame I that is movably installed at a location A in a relatively bad environment, as shown in Figure 1. A multi-channel detector 3 is placed facing each other, and an object to be measured 4 is placed between the radiation source 2 and the multi-channel detector 3. Then, the radiation 5 irradiated from the radiation source 2 so as to cover the entire object to be measured 4 is transmitted through the object to be measured 4 and detected by the multi-channel detector 3,
After the output of this detector 3 is amplified by a noring ring 6° connected to each detection element, the multiplexer 7 sequentially switches channels to selectively output the amplifier output, and then the A-D converter circuit 8. A plate thickness converter 9 is converted into a digital signal and installed in a safe place 8.
sent to. This plate thickness converter 9 collects the plate thickness signal for each channel and then sends it to the data processing section 1o. here,
The plate thickness signal to each channel is converted into a profile R-turn of the object to be measured 4 and displayed on the subsequent CRT display section 11.

ところで、以上のような放射線厚み計では、例えばマル
チプレクサ7、A−D変換回路8および板厚変換器9な
どの倒れか1つに事故が発生すると、厚み測定ができな
くナシ、被測定物4の形状測定が不可能になってしまう
。この場合直ちに修栓作業を行なうことも考えられるが
、この間厚み測定が一時中止させなければならない問題
があり、また被測定物4がオンラインで搬送されている
ときにプラントを一時中止させると多大の損害をこうむ
るために事実上中止できない場合が多い。
By the way, in the radiation thickness meter as described above, if an accident occurs in one of the multiplexer 7, A-D converter circuit 8, plate thickness converter 9, etc., the thickness cannot be measured and the object to be measured 4 is damaged. It becomes impossible to measure the shape of In this case, it is conceivable to perform repair work immediately, but there is a problem that the thickness measurement has to be temporarily stopped during this time, and if the plant is temporarily stopped while the object to be measured 4 is being transported online, it will cause a large amount of trouble. In many cases, it is practically impossible to cancel because of the damage that would be incurred.

また、放射線厚み計は検出部と測定部とに分けられるが
、データ伝送のやり易さなどから悪環境の場所Aに設置
されている検出部に、プリアンf6、マルチプレクサ7
、A−D変換回路いることおよび悪環境の影響を除く必
要がおることなどから修復作業に長時間を要する欠点が
おる。
In addition, the radiation thickness meter is divided into a detection part and a measurement part, but for ease of data transmission etc., the detection part installed in location A, which is in a bad environment, is equipped with a preamplifier f6 and a multiplexer 7.
However, there are disadvantages in that repair work requires a long time due to the presence of an A-D conversion circuit and the need to remove the effects of adverse environments.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情にかんがみてなされたもので、何れか
のチャンネル系に異常が生じた場合でも測定を継続し得
、その測定結果による被測定物の形状の再現性がすぐれ
ている放射線厚み計を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and is a radiation thickness meter that can continue measurement even if an abnormality occurs in any channel system, and that has excellent reproducibility of the shape of the object to be measured based on the measurement results. Our goal is to provide the following.

〔発明の概要〕[Summary of the invention]

本発明は、複数のチャンネル検出器の出力側に接続され
る各要素のうち、少なくとも比較的悪環境下または遠隔
地に設置されている検出部について例えば奇数チャンネ
ル系と偶数チャンネル系とに分割し、例えば奇数チャン
ネルの1つに故障が生じた場合でも偶数チャンネル系を
用いて被測定物を透過する放射線を検出し、かつ演算に
よって形状測定を行なう放射線厚み計である。
According to the present invention, among the elements connected to the output side of a plurality of channel detectors, at least the detection section installed in a relatively bad environment or in a remote location is divided into, for example, an odd channel system and an even channel system. , for example, is a radiation thickness meter that uses an even channel system to detect radiation passing through the object even if a failure occurs in one of the odd channels, and performs shape measurement by calculation.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例について第2図を参照して説明
する。同図において21は多チャンネル検出器であって
、これは図示していないが例えば第1図に示すようにC
フレームの一端側に放射線源と対向するように設けられ
ている。
Next, an embodiment of the present invention will be described with reference to FIG. In the same figure, 21 is a multi-channel detector, which is not shown, but for example, as shown in FIG.
It is provided at one end of the frame to face the radiation source.

この多チャンネル検出器21は、チャンネルの数に等し
い数の検出素子21−1〜21−Nが一列に配列されて
構成されておシ、説明の便宜上、図示上側から下側へ順
次第1チヤンネル用検出素子21−1、第2チャンネル
用検出素子21−2−・・、第Nチャンネル用検出素子
21−Nと特定して説明する。これらの各チャンネル用
検出素子21−1〜21−Nの出力側にはそれぞれプリ
アンプ22−1〜22−Nが接続されている。そして、
これらのプリアンプ22−1〜22−Nのうち、奇数チ
ャンネル用プリアンプ22−1.22−3.・・・の出
力端は第1のマルチプレクサ23Aの各固定端子に所定
の順序で接続され、一方、偶数チャンネル用プリアンプ
22−2.22−4.・・・の出力端は第2のマルチプ
クサ23Bの各固定端子に同じ〈所定の順序で接続され
ている。つまり、本実施例では、複数のチャンネルを、
奇数チャンネルと偶数チャンネルの2系統に分割したも
のである。前記第1のマルチプレクサ23Aの選択端子
23mはA−D変換回路24Aおよび板厚変換器25A
を介してデータ処理部26の第1の入力端27aに接続
され、また第2のマルチプレクサ23Bの選択端子23
bは同じ<A−D変換回路24Bおよび板厚変換器、9
5Bを介してデータ処理部26の第2の入力端27bに
接続されている。
This multi-channel detector 21 has a configuration in which the number of detection elements 21-1 to 21-N equal to the number of channels are arranged in a line. The following description will be made by specifying the detecting element 21-1 for the second channel, the detecting element 21-2- for the second channel, and the detecting element 21-N for the N-th channel. Preamplifiers 22-1 to 22-N are connected to the output sides of the detection elements 21-1 to 21-N for each channel, respectively. and,
Among these preamplifiers 22-1 to 22-N, odd channel preamplifiers 22-1, 22-3. ... are connected to each fixed terminal of the first multiplexer 23A in a predetermined order, while the even channel preamplifiers 22-2, 22-4, . ... are connected to each fixed terminal of the second multiplexer 23B in the same (predetermined order). In other words, in this embodiment, multiple channels are
It is divided into two systems: odd number channels and even number channels. The selection terminal 23m of the first multiplexer 23A is connected to an A-D conversion circuit 24A and a plate thickness converter 25A.
is connected to the first input terminal 27a of the data processing unit 26 via the selection terminal 23 of the second multiplexer 23B.
b is the same <A-D conversion circuit 24B and plate thickness converter, 9
5B to the second input terminal 27b of the data processing section 26.

なお、検出部は、多チャンネル検出器:) Z 、、 
fリアンf2z−x〜22−N、マルチプレクサ23A
、23BおよびA−D変換回路24A。
The detection unit is a multi-channel detector:) Z,,
fian f2z-x~22-N, multiplexer 23A
, 23B and the A-D conversion circuit 24A.

24F3などで構成されるが、板厚変換器25A。24F3, etc., but the plate thickness converter 25A.

25Bを含んで比較的悪環境下または遠隔地Aに設置さ
せる場合、には第2図のように板厚変換器251.25
Bまで2系統に分割する。
25B and installed in a relatively bad environment or in a remote location A, a thickness converter 251.25 is installed as shown in Figure 2.
Divide into two systems up to B.

前記データ処理部26は、良好な環境下または中央監視
室Bなどに設置されるものであって、入力端選択回路2
8の選択信号ajb、a、bに基づいて入力端27m、
27bの両方または入力端27mのみ、または入力端、
?7bのみを選択して板厚信号を取り込み、第3図に示
すフローチャートに従ってデータ処理を行ない、板厚分
布つまりプロフィール・臂ターンを作成するものである
。このデータ処理部26で処理されたデータは例えばC
RTなどの表示部29に表示される。なお、入力端選択
回路28は、表示部29の表示結果に基づいて人為的に
切換えられ、またはデータ処理部26内に公知のチェッ
ク手段を内蔵しこのチェック手段を用いて自動的に切換
えられるものであり、その切換選択端子28mは例えば
接地されているものとする。
The data processing section 26 is installed in a good environment or in a central monitoring room B, and is connected to the input terminal selection circuit 2.
Based on the selection signals ajb, a, b of 8, the input end 27m,
27b or only the input end 27m, or the input end,
? 7b is selected and the plate thickness signal is taken in, data processing is performed according to the flowchart shown in FIG. 3, and the plate thickness distribution, that is, the profile/arm turn is created. The data processed by this data processing unit 26 is, for example, C
It is displayed on a display unit 29 such as RT. The input terminal selection circuit 28 may be switched manually based on the display result of the display section 29, or may be automatically switched using a known checking means built in the data processing section 26. It is assumed that the switching selection terminal 28m is grounded, for example.

次に、以上のような放射線厚み計の動作について説明す
る。例えば第1図に示すようにCフレームを設置した後
、放射線源よシ被測定物の横幅方向を覆うように放射線
を放射状に照射すると、この放射線は被測定物を透過し
て各チャンネル用検出素子21−1〜21−Nに入射さ
れ、これpよシ被測定物の厚みに比例した減衰度合を伴
なった放射線が各チャンネル用検出素子21−1〜21
−Nによって電気信号に変換される。これらのチャンネ
ル用検出素子21−1〜21−Nによって変換された電
気信号はそれぞれ対応するノリアンプ22−1〜22−
Nによシ所要の増幅度で増幅され、奇数チャンネル用シ
リアン76;tz−1,;t;t−s、・・・の増幅出
力は第1のマルチプレクサ23A側へ送られ、偶数チャ
ンネル用プリアンプ22−2.22−4゜・・・の増幅
出力は第2のマルチプレクサ23B側へ送られる。この
第1および第2のマルチプレクサ231.23Bはそれ
ぞれ各チャンネルごとに選択して増幅出力を取シ込んで
A−D変換回路24A、24Bに送シ、ことでディジタ
ル信号に変換して板厚変換器25k 、 25Bへ供給
する。板厚変換器25A、25Bは所定の信号変換によ
り板厚信号をめ、これをそれぞれ第1および第2の入力
端27m、27bを介してデータ処理部26へ送る。デ
ータ処理部26では、第諷図のように板厚変換器25に
、25Bからの奇数および偶数チャンネル系の板厚信号
a 1 + a 2 *・・・およびbl、b2.・・
・を順次取込んでメモリに格納するとともに、入力端選
択回路28の選択信号を取り込んでどの入力端27m、
21bを選択しているか判断し、i+b選択信号による
入力端27m 、21bの選択であれば、奇数チャンネ
ル系板厚信号a 1 、 *2゜・・・と偶数チャンネ
ル系板厚信号b1.b2・・・とを読出してa1+b1
十12+b2・・・の演算を行ない、被測定物のプロフ
ィールパターンに変換し、被測定物の断面形状を表示部
29に表示するものである。
Next, the operation of the radiation thickness meter as described above will be explained. For example, after installing the C-frame as shown in Figure 1, if radiation is radiated radially from the radiation source to cover the object to be measured in the width direction, this radiation will pass through the object and be detected by each channel. Radiation incident on the elements 21-1 to 21-N and with an attenuation degree proportional to the thickness of the object to be measured is transmitted to the detection elements 21-1 to 21 for each channel.
-N is converted into an electrical signal. The electrical signals converted by these channel detection elements 21-1 to 21-N are sent to corresponding Noriamps 22-1 to 22-N, respectively.
The amplified output of the odd channel serial 76; tz-1, ;t; t-s, . . . is sent to the first multiplexer 23A side, and the even channel preamp The amplified outputs of 22-2, 22-4°, . . . are sent to the second multiplexer 23B. The first and second multiplexers 231 and 23B receive the amplified output selected for each channel and send it to the A-D conversion circuits 24A and 24B, thereby converting it into a digital signal and converting the board thickness. 25k and 25B. The plate thickness converters 25A and 25B obtain plate thickness signals through predetermined signal conversion and send them to the data processing section 26 via first and second input ends 27m and 27b, respectively. In the data processing section 26, the odd and even channel thickness signals a 1 + a 2 *... and bl, b2 .・・・
・ are sequentially fetched and stored in the memory, and the selection signal of the input terminal selection circuit 28 is fetched to select which input terminal 27m,
21b is selected, and if the input terminals 27m and 21b are selected by the i+b selection signal, the odd channel thickness signals a 1 , *2° . . . and the even channel thickness signals b1 . b2... and a1+b1
112+b2 . . . are calculated, the profile pattern of the object to be measured is converted, and the cross-sectional shape of the object to be measured is displayed on the display unit 29.

仮に、偶数チャンネル系のある1つのチャンネルに故障
が発生しており、表示部29の表示またはデータ処理部
26によって故障布シと判断された場合、入力端選択回
路28の選択端子28aが人為的または自動的に入力端
27mを選択すべきa選択信号を出力しているので、こ
のときデータ処理部26は第3図に示すように入力端選
択回路28の選択信号からa+bでない場合には自選択
信号か否かを判断し、a選択である場合には奇数チャン
ネル系の板厚信号a1.m2.・・・を用いて補間処理
を行ない、プロフィールパターンに変換する。ここでの
補間処理は、a I + a 2/ 2の演算を行ない
、この演算値を偶数チャンネル系の第2チヤンネルの信
号biとする。第3と第5チヤンネル信号m2゜a3に
ついてもとれらを加え合せて数値2で除算し、この演算
値を第4チヤンネルの信号b2とする。以下、同様に内
挿計算によって補間処理を行なって、第6.第8.・・
・のチャンネル信号をめていく。従って、正常時、奇数
チャンネル系の信号×と偶数チャンネル系の信号Oが第
4図のようにプロットされるが、補間処理を行った後プ
ロットすれば、第5図のように偶数チャンネル系の信号
eが補間されることになる。
If a failure occurs in one channel of the even-numbered channel system, and the display on the display unit 29 or the data processing unit 26 determines that the failure has occurred, the selection terminal 28a of the input terminal selection circuit 28 is Alternatively, since the a selection signal to automatically select the input terminal 27m is output, at this time, the data processing section 26 automatically selects the selection signal of the input terminal selection circuit 28 if it is not a+b as shown in FIG. It is determined whether the selection signal is a selection signal or not, and if it is a selection signal, the odd channel system plate thickness signal a1. m2. Performs interpolation processing using ... and converts it into a profile pattern. In the interpolation process here, a calculation of a I + a 2/2 is performed, and this calculated value is used as the signal bi of the second channel of the even channel system. The third and fifth channel signals m2°a3 are also added together and divided by a numerical value of 2, and this calculated value is used as the fourth channel signal b2. Hereinafter, interpolation processing is performed by interpolation calculation in the same manner as in the sixth step. 8th.・・・
・Check the channel signal. Therefore, under normal conditions, the odd channel system signal Signal e will be interpolated.

第5図から明らかなように、補間処理によって正常時に
ほぼ近い信号が得られることになる。
As is clear from FIG. 5, the interpolation process yields a signal that is substantially close to the normal state.

次に、奇数チャンネル系の1つのチャンネルげ故障が生
じた場合、同様にデータ処理部26は入力端選択回路2
8からのb選択信号に基づいて偶数チャンネル系の信号
bl、b2.・・・を読出して補間処理を行なう。そし
て、補間処理を行なった後、プロフィールパターンに変
換し、表示部29に表示するものである。
Next, when a failure occurs in one channel of the odd channel system, the data processing section 26 similarly controls the input terminal selection circuit 2.
Based on the b selection signal from 8, the even channel system signals bl, b2 . ... and performs interpolation processing. After performing interpolation processing, it is converted into a profile pattern and displayed on the display section 29.

なお、上記実施例では、一方のチャンネル系のあるチャ
ンネルの信号の欠落を補間する手段として、他のチャン
ネル系の相隣接する2つのチャンネル信号を加算してな
る加算値の平均値をもって順次補間するようにしたが、
他の補間手段であってもよい。例えば2次以上の近似式
を用いて補間する場合などがある。また、1個の多チャ
ンネル検出器21を用いた例について述べたが、複数個
の多チャンネル検出器21゜21、・・・を用いた場合
にも同様に適用できる。
In the above embodiment, as a means for interpolating the missing signal of a certain channel in one channel system, interpolation is performed sequentially using the average value of the sum value obtained by adding two adjacent channel signals of the other channel system. I tried, but
Other interpolation means may also be used. For example, interpolation may be performed using a quadratic or higher order approximation formula. Further, although an example using one multi-channel detector 21 has been described, the present invention can be similarly applied to a case where a plurality of multi-channel detectors 21, 21, . . . are used.

また、板厚変換器が比較的安全な場所、または保守の容
易な場所に設置する場合には上記実施例のように2個設
けることなく1個でもよいものである。さらに、複数の
チャンネルは2系統ではなく3系統に分割してもよい。
Further, if the plate thickness converter is installed in a relatively safe place or a place where maintenance is easy, it is sufficient to use one instead of two as in the above embodiment. Furthermore, the plurality of channels may be divided into three systems instead of two.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、比較的悪環境下ま
たは遠隔地で保守が大変な場所に設置される検出部を構
成するシリア/f、マルチプレクサおよびA−D変換回
路などを複数のチャンネル系に分割し、ある1つのチャ
ンネル系の故障に対し、他のチャンネル系の信号を用い
て補間処理を行ない、被測定物のプロフィールパターン
に変換するようにしたので、次のような種々の効果を有
する。
As described in detail above, according to the present invention, a plurality of serial/f, multiplexers, A-D converter circuits, etc., constituting a detection section installed in a relatively bad environment or in a remote location where maintenance is difficult, can be used. The system is divided into channel systems, and when a failure occurs in one channel system, interpolation processing is performed using signals from other channel systems to convert it into a profile pattern of the measured object. have an effect.

■ ある1つのチャンネル系が故障しても他のチャンネ
ル系の信号を用いて被測定物のプロフィールパターンを
作成できる。
■ Even if one channel system fails, the profile pattern of the object to be measured can be created using signals from other channel systems.

■ 検出部が悪環境下などに設置されている場合には定
期的な保守9点検時にその故障の修復作業を行えばよく
、ライン工程の円滑化を図ることができる。
(2) If the detection unit is installed in a bad environment, troubleshooting work can be carried out during periodic maintenance and inspections, and line processes can be made smoother.

■ オンライン中に故障が生じて屯そのラインを中止す
る必要がなく、よってシステムの稼動率が高められ、ま
た故障による損害を最小限に抑えることができる。
■ There is no need to stop the line due to a failure occurring during online operation, thereby increasing system availability and minimizing damage caused by failure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の放射線厚み計の構成図、蕗2図は本発明
に係る放射線厚み針の一実施例を示す構成図、第3図は
データ処理の一例を示すフローチャート、第4図および
第5図は正常時および故障による補間処理を行なった後
のチャンネルと厚みとの関係の図である。 2・・・放射線源、21・・・多チャンネル検出器、2
1−1〜ジJ−N・・・検出素子、22−1〜22−N
・・・ノリアンノ、2!IA、23B・・・マルチプレ
クサ、24A、24B・・・A−ひ変換回路、25A 
、26B・・・板厚変換器、26・・・データ処理部、
28・・・入力端選択回路、29・・・表示部。 出願人代理人 弁理士 鈴 江 武 彦りA
Fig. 1 is a block diagram of a conventional radiation thickness meter, Fig. 2 is a block diagram showing an embodiment of a radiation thickness needle according to the present invention, Fig. 3 is a flowchart showing an example of data processing, and Figs. FIG. 5 is a diagram showing the relationship between the channel and the thickness during normal operation and after performing interpolation processing due to failure. 2...Radiation source, 21...Multi-channel detector, 2
1-1~J-N...detection element, 22-1~22-N
...Norianno, 2! IA, 23B...Multiplexer, 24A, 24B...A-hi conversion circuit, 25A
, 26B... plate thickness converter, 26... data processing section,
28... Input end selection circuit, 29... Display unit. Applicant's agent Patent attorney Takehiko Suzue A

Claims (1)

【特許請求の範囲】[Claims] 放射線源と多チャンネル検出器とが対向して配置され、
前記放射線源から被測定物を透過して入射される放射線
を多チャンネル検出器、マルチプレクサおよびA−D変
換回路などの検出部で検出し、この検出1部からの検出
信号を板厚信号に変換した後、更にデータ処理部でプロ
フィール/量ターンに変換して前記被測定物の形状を測
定する放射線厚み計において、少なくとも前記検出部を
複数のチャンネル系に分割し、異常な検出信号を出力す
るチャンネル系の出力を除去し、他のチャンネル系の検
出信号を用いて補間処理を行ない前記被測定物の形状を
測定することを特徴とする放射線厚み計。
A radiation source and a multi-channel detector are placed facing each other,
The radiation transmitted from the radiation source and incident on the object to be measured is detected by a detection section such as a multi-channel detector, a multiplexer, and an A-D conversion circuit, and the detection signal from this detection section is converted into a plate thickness signal. After that, in a radiation thickness meter that measures the shape of the object by converting it into a profile/quantity turn in a data processing section, at least the detection section is divided into a plurality of channel systems and an abnormal detection signal is output. A radiation thickness meter characterized in that the shape of the object to be measured is measured by removing an output from a channel system and performing interpolation processing using a detection signal from another channel system.
JP13261183A 1983-07-20 1983-07-20 Radiation thickness gage Granted JPS6024407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13261183A JPS6024407A (en) 1983-07-20 1983-07-20 Radiation thickness gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13261183A JPS6024407A (en) 1983-07-20 1983-07-20 Radiation thickness gage

Publications (2)

Publication Number Publication Date
JPS6024407A true JPS6024407A (en) 1985-02-07
JPH0444926B2 JPH0444926B2 (en) 1992-07-23

Family

ID=15085373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13261183A Granted JPS6024407A (en) 1983-07-20 1983-07-20 Radiation thickness gage

Country Status (1)

Country Link
JP (1) JPS6024407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3388783A4 (en) * 2015-12-10 2019-09-04 Kabushiki Kaisha Toshiba Thickness measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3388783A4 (en) * 2015-12-10 2019-09-04 Kabushiki Kaisha Toshiba Thickness measuring device

Also Published As

Publication number Publication date
JPH0444926B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
CN116915348B (en) Multi-channel signal rapid detection method based on radio frequency direct acquisition
JPH0217488A (en) Measuring apparatus of radiation
JPS6024407A (en) Radiation thickness gage
US4099048A (en) Count logic circuit
JPS6363870B2 (en)
JP3355920B2 (en) Abnormal overheat detector for closed switchboard
JP2000002784A (en) Monitor for atmosphere inside container
CN213025417U (en) Heavy water reactor protection system
US6201620B1 (en) Test method for a network element of an optical communication system and network element therefor with test module
JPS5851312A (en) Monitoring device for plant operation state
Cole Location of partial discharges and diagnostics of power transformers using acoustic methods
JPH09167383A (en) Inspecting system and manufacturing method for optical recording medium
JPS5850434A (en) Vibration monitor
JP2010127798A (en) Noise detector
JPS59200934A (en) Measuring method of temperature measuring resistor
JP2008281525A (en) Monitor system
JP3316453B2 (en) Leak detection device
JPH05176371A (en) Gas pressure monitoring device
JPH0316635B2 (en)
JPH036451B2 (en)
JP2001008297A (en) Interface device
JP2531372B2 (en) Fault detection circuit
JPS6091289A (en) Diagnostic system of abnormality of multiplied signal
JPS6262316B2 (en)
JPS60149990A (en) System for inspecting delay and gain of external input time