JPS60243954A - Ion source - Google Patents

Ion source

Info

Publication number
JPS60243954A
JPS60243954A JP9872784A JP9872784A JPS60243954A JP S60243954 A JPS60243954 A JP S60243954A JP 9872784 A JP9872784 A JP 9872784A JP 9872784 A JP9872784 A JP 9872784A JP S60243954 A JPS60243954 A JP S60243954A
Authority
JP
Japan
Prior art keywords
ion source
lead
extraction electrode
oxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9872784A
Other languages
Japanese (ja)
Inventor
Katsumi Tokikuchi
克己 登木口
Osami Okada
岡田 修身
Kuniyuki Sakumichi
訓之 作道
Hidemi Koike
英巳 小池
Ichiro Shikamata
鹿又 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9872784A priority Critical patent/JPS60243954A/en
Publication of JPS60243954A publication Critical patent/JPS60243954A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To enable oxygen ion implantation of at least 100mA to be stably performed by maintaining the distribution of an electric field near the lead-out electrode constant for a long time by preparing the lead-out electrode from a material containing an electrically conductive oxide. CONSTITUTION:A lead-out electrode 2 is formed by a tin material containing conductive tin oxide. The inner surface of a plasma chamber 8 is coated with a cylindrical quartz tube 7 so that metallic impurities are not produced by plasma striking the surface. Owing to the above structure, it is possible to stably lead out an oxygen beam.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は酸素ビーム取得用のマイクロ波イオン源に係り
、特に安定に酸素ビームを引出すに好適な材質および植
成の引出し電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a microwave ion source for obtaining an oxygen beam, and particularly to an extraction electrode made of a material and implanted that is suitable for extracting an oxygen beam stably.

〔発明の背景〕[Background of the invention]

従来のマイクロ波イオン源を用いた酸素イオン打込み装
置を第1図で説明する。マイクロ波イオン源(J、Va
c、Sci、Technol、±7 (1980)12
47)ではコイル1を用いて軸方向磁場を発生させ、同
時にマイクロ波をプラズマ室8に導入する。プラズマ室
8には試料ガスがガスリークバルブ6を通し導入される
。この様な構成で高密度プラズマを発生し、正電圧、負
電圧、および接地電位にある三枚−組の多孔形引出し電
極系2を使い、大電流ビーム4を引出す。このビームを
試料基板3に直接、照射してイオン打込みする。引出し
電極2材としては、銅、アルミニウム、鉄などが使われ
ている。
An oxygen ion implantation device using a conventional microwave ion source will be explained with reference to FIG. Microwave ion source (J, Va
c, Sci, Technol, ±7 (1980) 12
In step 47), an axial magnetic field is generated using the coil 1, and at the same time, microwaves are introduced into the plasma chamber 8. A sample gas is introduced into the plasma chamber 8 through the gas leak valve 6 . With such a configuration, a high-density plasma is generated, and a large current beam 4 is extracted using a three-hole porous extraction electrode system 2 at positive voltage, negative voltage, and ground potential. This beam is directly irradiated onto the sample substrate 3 to implant ions. Copper, aluminum, iron, etc. are used as the material for the extraction electrode 2.

しかし、第1図に示した従来例で酸素ガスを導入し、酸
素プラズマから大電流イオンビームを引出で酸化され、
電極2表面が酸化物層に変質し、これが電気的絶縁物で
あるため、引出し電極2近傍での電界分布が乱された。
However, in the conventional example shown in Fig. 1, oxygen gas is introduced and a large current ion beam is extracted from the oxygen plasma to cause oxidation.
The surface of the electrode 2 was transformed into an oxide layer, and since this is an electrical insulator, the electric field distribution near the extraction electrode 2 was disturbed.

したがって、効率よくイオンビームを、長時間引出すこ
とは困難であった。
Therefore, it has been difficult to efficiently extract the ion beam for a long time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、酸素イオンビームを引出す時、引出し
電極表面が酸化物層になっても、引出し電極部の電界形
状が変化しないマイクロ波イオン源を提供することにあ
る。
An object of the present invention is to provide a microwave ion source in which the shape of the electric field at the extraction electrode portion does not change even if the surface of the extraction electrode becomes an oxide layer when extracting an oxygen ion beam.

〔発明の概要〕[Summary of the invention]

従来、イオン源で安定に長時間、酸素ビームを引出すこ
とは困難であった理由は、引出し電極材が銅、アルミ、
鉄等であり、その酸化物が電気的絶縁物であるためであ
る。そこで、本発明では、その酸化物が電気的に導電性
を有する材質を用いて従来イオン源の問題点を解消した
ものである。
Conventionally, it was difficult to extract an oxygen beam stably for a long time using an ion source because the extraction electrode material was made of copper, aluminum,
This is because the oxide of iron is an electrical insulator. Therefore, in the present invention, the problems of the conventional ion source are solved by using a material whose oxide is electrically conductive.

また、電極構造材をはじめから導電性酸化物で作ってお
いても良い。
Alternatively, the electrode structure material may be made of a conductive oxide from the beginning.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施域を第2図により説明する。第2
図の実施例の構成は第1図と同じであるが、引出し電極
2に錫(スズ)製のものを使った。
Hereinafter, one implementation area of the present invention will be explained with reference to FIG. Second
The configuration of the illustrated embodiment is the same as that in FIG. 1, but the extraction electrode 2 is made of tin.

これは酸化錫が導電性を持つからである。またプラズマ
室8は、プラズマが壁材料をたたいて金属不純物を出さ
ないように、石英管円筒7で壁の内表面を蔽った。錫製
電極2で酸素ビームを引出したところ、口径100+o
mφ、ビームエネルギ数10kev〜数100keVの
数100mAの電流が得られた。従来法では、絶縁性の
酸化物ができるため、引出し条件がかわり、ピームロ径
やビーム電流の変動が1〜2時間後に発生した。本発明
では、数10時間にわたって安定に酸素ビームが引出せ
ている。なお、引出し電極2を酸化錫で作製したところ
、同様に長時間、安定にビームが引き出せた。
This is because tin oxide has electrical conductivity. Furthermore, the inner surface of the wall of the plasma chamber 8 was covered with a quartz tube cylinder 7 so that the plasma would not hit the wall material and release metal impurities. When the oxygen beam was drawn out using the tin electrode 2, the diameter was 100+o.
mφ, a beam energy of several 10 keV to several 100 keV, and a current of several 100 mA was obtained. In the conventional method, since an insulating oxide is formed, the extraction conditions change, and fluctuations in the beam diameter and beam current occur after 1 to 2 hours. In the present invention, an oxygen beam can be stably extracted for several tens of hours. Note that when the extraction electrode 2 was made of tin oxide, the beam could be extracted stably for a long period of time as well.

次に、第3図は、本発明に基づく別の引出し電極構造で
ある。第3図は銅製多孔形引出し電極2′に酸化錫被膜
2′ (半透明の導電性被膜)を塗布した構成を示す。
Next, FIG. 3 shows another extraction electrode structure based on the present invention. FIG. 3 shows a structure in which a tin oxide coating 2' (semi-transparent conductive coating) is applied to a copper porous extraction electrode 2'.

銅製電極2″′は厚みIIIIIl、酸化錫製被覆層2
′は1μm以上である。本実施例でも、第2図と同様に
、100mA以上の大電流酸素ビームが数10時間にわ
たって安定に得ら九た。
The copper electrode 2'' has a thickness of III and a tin oxide coating layer 2.
' is 1 μm or more. In this example as well, as in FIG. 2, a large current oxygen beam of 100 mA or more was stably obtained over several tens of hours.

なお、本実施例では、銅をベースにつかつているため、
この鋼材を引き出し電極周辺部で水冷することにより、
酸化錫M2’の温度が上がらないようにできる。
Note that in this example, since copper is used as the base,
By water-cooling this steel material around the extraction electrode,
It is possible to prevent the temperature of tin oxide M2' from rising.

ここでは、同軸形マイクロ波イオン源を対象に発明を説
明したが、酸素プラズマからイオンビームを引き出せる
他のイオン源、例えばRFイオン源、リッジ形マイクロ
波イオン源にも適用できることは明らかである。
Although the invention has been described herein with reference to a coaxial microwave ion source, it is clear that it is applicable to other ion sources capable of extracting an ion beam from oxygen plasma, such as an RF ion source and a ridge-type microwave ion source.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、マイクロ波放電形イオン源で酸素イオ
ンビームを引出す場合、引出し電極近傍の電界分布形状
が長時間、一定に保てるため、安定に100mA以上の
酸素イオン打込みが可能となる。すなわちイオン源動作
やビーム出し条件に対し、安全性に著しく効果がある。
According to the present invention, when extracting an oxygen ion beam with a microwave discharge type ion source, the electric field distribution shape near the extraction electrode can be kept constant for a long time, making it possible to stably implant oxygen ions at 100 mA or more. In other words, this has a significant effect on safety regarding ion source operation and beam extraction conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術によるマイクロ波イオン源を説明す
る図、第2図は本発明に基づ〈実施例を説明する図、第
3図は、本発明に基づく別の実施例を説明する図である
FIG. 1 is a diagram explaining a microwave ion source according to the prior art, FIG. 2 is a diagram explaining an embodiment based on the present invention, and FIG. 3 is a diagram explaining another embodiment based on the present invention. It is a diagram.

Claims (1)

【特許請求の範囲】 1、高密度プラズマ源から、引出し電極を用いてイオン
ビームを引出すイオン源において、引出し電極の材質と
してその金属酸化物が導電性を持つ金属、あるいはその
酸化物で栢成したイオン源。 2、特許請求の範囲第1項記載のイオン源において、電
極材が錫(Sn)あるいは錫酸化物材であることを特徴
としてイオン源。 3、特許請求の範囲第1項記載のイオン源において、引
出し電極が金属材であり、その表面に錫あるいは錫酸化
物が被覆されたイオン源。 4、特許請求の範囲第1項記載のイオン源において、磁
場中のマイクロ波放電で高密度プラズマを発生し、引出
し電極を用いてイオンビームを引出すマイクロ波イオン
源であることを特徴としたイオン源。
[Claims] 1. In an ion source that extracts an ion beam from a high-density plasma source using an extraction electrode, the metal oxide of the extraction electrode is made of a conductive metal or an oxide thereof. ion source. 2. The ion source according to claim 1, wherein the electrode material is tin (Sn) or a tin oxide material. 3. The ion source according to claim 1, wherein the extraction electrode is made of a metal material and the surface thereof is coated with tin or tin oxide. 4. The ion source according to claim 1, characterized in that it is a microwave ion source that generates high-density plasma by microwave discharge in a magnetic field and extracts an ion beam using an extraction electrode. source.
JP9872784A 1984-05-18 1984-05-18 Ion source Pending JPS60243954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9872784A JPS60243954A (en) 1984-05-18 1984-05-18 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9872784A JPS60243954A (en) 1984-05-18 1984-05-18 Ion source

Publications (1)

Publication Number Publication Date
JPS60243954A true JPS60243954A (en) 1985-12-03

Family

ID=14227553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9872784A Pending JPS60243954A (en) 1984-05-18 1984-05-18 Ion source

Country Status (1)

Country Link
JP (1) JPS60243954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418568U (en) * 1987-07-23 1989-01-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418568U (en) * 1987-07-23 1989-01-30

Similar Documents

Publication Publication Date Title
US20040104683A1 (en) Negative ion source with external RF antenna
JPH0265033A (en) Ion beam source for radio frequency
JPS6020440A (en) Ion beam machining device
US6337540B1 (en) High brightness point ion sources using liquid ionic compounds
US4123686A (en) Ion generating source
JPS60243954A (en) Ion source
Demokan Ion implantation and deposition on the inner surfaces of cylinders by exploding metallic foils
JPH0211974B2 (en)
JPS6293834A (en) Ion source
GB935164A (en) Improvements relating to methods of manufacturing electric discharge tubes
Lossy et al. Characterization of a reactive broad beam radio‐frequency ion source
JP3529445B2 (en) Microwave ion source
JPH0696680A (en) Metal ion source
JPS5887272A (en) Planar magnetron sputtering device
JPS5871546A (en) Ion implantation device
KR100303632B1 (en) Cold cathode element
JP2791034B2 (en) Carbon ion beam generation method
JP3793354B2 (en) Cold cathode device
JPH024979B2 (en)
Golubev et al. The source of negative ions
US3452237A (en) Sputtering protection for tantalum cathodes in plasma devices
JPS60167249A (en) Field ionization ion source for solid sample
JPH06101307B2 (en) Metal ion source
JPH0145699B2 (en)
JPS6240369A (en) Ion implantation device