JPS60243609A - Optical multiplexer/demultiplexer - Google Patents

Optical multiplexer/demultiplexer

Info

Publication number
JPS60243609A
JPS60243609A JP9873584A JP9873584A JPS60243609A JP S60243609 A JPS60243609 A JP S60243609A JP 9873584 A JP9873584 A JP 9873584A JP 9873584 A JP9873584 A JP 9873584A JP S60243609 A JPS60243609 A JP S60243609A
Authority
JP
Japan
Prior art keywords
optical
refractive index
demultiplexer
optical axis
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9873584A
Other languages
Japanese (ja)
Inventor
Hidemi Sato
秀己 佐藤
Yasuo Hiyoshi
日良 康夫
Shigeharu Tsunoda
重晴 角田
Aizo Kaneda
金田 愛三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9873584A priority Critical patent/JPS60243609A/en
Publication of JPS60243609A publication Critical patent/JPS60243609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To permit easy optical axis adjustment and reduction of man-hour for assembly and adjustment by covering the part between the optical paths formed of cylindrical rod lenses including filters and optical fibers with a transparent plastic resin having the refractive index equal to the refractive index of optical fibers. CONSTITUTION:Grooves 39, 42-46 similar to preliminarily designed optical axes are formed to a substrate 38 and respective transmission ports are set in prescribed positions. The fine adjustment to maximize the light intensity on the exit side is executed by moving V-groove holders 32 in the optical axis direction with the grooves 39, 42-46 as a guide. The adjustments for the transmission ports lambda1-lambda6 corresponding to respective wavelengths are executed. The assembly subjected to the optical axis adjustment in the above-mentioned manner is put together with the substrate 38 into a case and the transparent plastic having the refractive index substantially equal to the refractive index of the optical fibers 28 is packed therein and is cured to form the optical path.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は複数の波長の異なる光信号を同時に一本の光フ
ァイバに伝送するために、必要不可欠な光合分波器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical multiplexer/demultiplexer that is essential for simultaneously transmitting a plurality of optical signals of different wavelengths to a single optical fiber.

〔発明の背景〕[Background of the invention]

最近、光フアイバ通信システムは、電力Φ鉄銅、化学プ
ラント分野などの制御システムとして本格的な実用段階
を迎えつつある。上記、光通信システム構成上、必要不
可欠な光部品の一つとして光合分波器がある。光合分波
器はこれ迄、プリズム型、回折格子型など種々の方式が
提案されている。しかし、最近の主流として第1図に示
すものが開発されている。(%開昭55−25045 
) 第1図において、42はガラスバルク、22〜27は誘
電体干渉膜を用いた帯域通過フィルタで波長がそれぞれ
異なるものである。15〜21はガラススペーサ、8〜
14は光ファイバ1の光をコリメートするためのロッド
状レンズ、9〜14ハ集光用のロッド状レンズである。
Recently, optical fiber communication systems are entering the stage of full-scale practical use as control systems in the fields of electric power, Φiron-copper, and chemical plants. An optical multiplexer/demultiplexer is one of the essential optical components in the configuration of the optical communication system mentioned above. Various types of optical multiplexer/demultiplexers have been proposed so far, such as a prism type and a diffraction grating type. However, the one shown in FIG. 1 has recently been developed as the mainstream. (%Kasho 55-25045
) In FIG. 1, 42 is a glass bulk, and 22 to 27 are bandpass filters using dielectric interference films, each having a different wavelength. 15-21 are glass spacers, 8-
14 is a rod-shaped lens for collimating the light of the optical fiber 1, and 9 to 14 are rod-shaped lenses for condensing light.

このような光合分波器の動作は、多重化された光フアイ
バ1内のλ1〜λ6の波長帯をロッド状レンズ8でコリ
メートして、ガラススペーサ15、カラスバルク42を
通過させ、フィルタ22に入射させ、λ、だけを通過さ
せてそれ以外の波長を反射させる。次に反射された残り
の光はガラスバルク42を通過してフィルタ23に入射
する。このような動作を繰り返しながら、順次残りの波
長λ、〜λ、を取シ出すものである。
The operation of such an optical multiplexer/demultiplexer is to collimate the wavelength band λ1 to λ6 in the multiplexed optical fiber 1 with the rod-shaped lens 8, pass it through the glass spacer 15 and the glass bulk 42, and pass it through the filter 22. incident, only wavelengths λ are allowed to pass through, and other wavelengths are reflected. The remaining reflected light then passes through the glass bulk 42 and enters the filter 23. By repeating this operation, the remaining wavelengths λ, ˜λ, are sequentially extracted.

第2図はこのようにして取り出された各波長の分光特性
を示す。各波長に対する半値幅はそれぞれのフィルタの
分光特性に大きく依存する。
FIG. 2 shows the spectral characteristics of each wavelength extracted in this way. The half-value width for each wavelength largely depends on the spectral characteristics of each filter.

次に、光多重・分波合波回路においては、光ファイバ1
からの出射光が光2アイパ2に入射するまでに、光損失
をできるだけ小さくする必要がある。光フアイバ伝送系
にコア径50μ簿のGl型光ファイバを用いた場合の軸
ずれと光損失の関係を第6図に示す。同様に角度すれと
光損失の関係を第4図に示す。ロッド状のレンズを用い
て光ビームを大きくして低損失化を図っているものの、
許容軸すれとしては8μm、角度ずれは1度と高精度が
要求される。したがって、この要求を満たすため光合分
波器構成部品は高精度が必要とな如、%にガラスバルク
については冥角度4μm / Q Mが要求され、超精
度加工が必要と々る。また、各部品の組立工程において
は。
Next, in the optical multiplexing/demultiplexing/multiplexing circuit, the optical fiber 1
It is necessary to reduce the optical loss as much as possible before the emitted light enters the optical 2-eyeper 2. FIG. 6 shows the relationship between axis misalignment and optical loss when a Gl type optical fiber with a core diameter of 50 μm is used in the optical fiber transmission system. Similarly, the relationship between angular deviation and optical loss is shown in FIG. Although a rod-shaped lens is used to enlarge the light beam and reduce loss,
High precision is required, with an allowable axial misalignment of 8 μm and an angular deviation of 1 degree. Therefore, in order to meet this requirement, the component parts of the optical multiplexer/demultiplexer need to be highly accurate, and the glass bulk is required to have an angle of 4 μm/QM, necessitating ultra-precision processing. Also, in the assembly process of each part.

各ボート毎に光軸調整を行ない、一般に接着剤等を用す
て保持、固定を行なうため多大な組立工程を必要とする
。そこで、従来の光合分波器は非常に高コストである欠
点があった。
The optical axis must be adjusted for each boat, and an adhesive or the like is generally used to hold and fix the boat, which requires a lengthy assembly process. Therefore, the conventional optical multiplexer/demultiplexer has the drawback of being extremely expensive.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなく−シ、
高性能でしかも低コストを実現する光合分波器を提供す
ることにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art;
The object of the present invention is to provide an optical multiplexer/demultiplexer that achieves high performance and low cost.

〔発明の概要〕[Summary of the invention]

本発明は上記した目的を達成するために、r溝等のホル
ダ上に、光ファイバ、ロッド状レンズ、干渉膜フィルタ
を固足し、所定の溝形状を有する基板上で、前記溝をガ
イドとしてV溝ホルダをスライドさせ光軸調整を行な一
1調整終了後光路中に透明プラスチック樹脂を充填させ
、所定の条件で樹脂を硬化させることにより、光合分波
器を形成し、従来のガラスバルク、ガラススペーサを必
要とせず、光軸調整が簡便々点を発明の要点とする。
In order to achieve the above-mentioned object, the present invention fixes an optical fiber, a rod-shaped lens, and an interference film filter on a holder such as an r-groove, and places a V on a substrate having a predetermined groove shape using the groove as a guide. Adjust the optical axis by sliding the groove holder. After completing the adjustment, fill the optical path with transparent plastic resin and harden the resin under predetermined conditions to form an optical multiplexer/demultiplexer. The key point of the invention is that the optical axis can be easily adjusted without requiring a glass spacer.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第5〜10図にょし説明する
。第5図は一つの伝送路ボートを示し、光ファイバ28
は、中空円筒体であるファイバホルダ29の中心軸上に
保持固着されている。干渉膜フィルタ5111t、所定
の角度で切断された円筒状のガラス体端面に蒸着装置(
図示せず)により形成されている。また、光ファイバ2
8からの出射光(入射光)を平行光(集光)Kするため
のロッドレンズ60は、ファイバホルダ29、干渉膜フ
ィルタ51とともにV#Iホルダ32に接着剤もしくは
板バネ等を用いて固着されている。ここでは、接着剤5
2を用いて、上記伝送路ボート構成例を第6図に示す。
An embodiment of the present invention will be described below with reference to FIGS. 5 to 10. Figure 5 shows one transmission line boat, with optical fibers 28
is held and fixed on the central axis of the fiber holder 29, which is a hollow cylindrical body. The interference film filter 5111t is attached to the end surface of a cylindrical glass body cut at a predetermined angle with a vapor deposition device (
(not shown). In addition, optical fiber 2
A rod lens 60 for collimating (focusing) the emitted light (incident light) from 8 is fixed to the V#I holder 32 together with the fiber holder 29 and the interference film filter 51 using an adhesive or a plate spring. has been done. Here, adhesive 5
FIG. 6 shows an example of the above-mentioned transmission line boat configuration using 2.

同様にして、選択波長の異なる干渉膜フィルタを必要量
だけ用意し、上述した手順により所定数量の伝送路ボー
トを作成する。
Similarly, a necessary number of interference film filters with different selection wavelengths are prepared, and a predetermined number of transmission line boats are created by the above-described procedure.

次に、各伝送路ボート間の光軸の調整方法について述べ
る。先ず、基板38にあらかじめ設計された光軸と同様
の無39.42〜46を第7図に示すように形成する。
Next, a method for adjusting the optical axis between each transmission line boat will be described. First, holes 39, 42 to 46, which are similar to the optical axis designed in advance, are formed on the substrate 38, as shown in FIG.

溝39.42〜46の形成手段としては、従来から実施
されている機械的もしくb−+&1m稲、lし繰飴士社
吃じIf ) Th X/;士誹ムマ −の基板38上
において、上述した各伝送路ボートを所定の位置に設定
し、前記溝59.42〜46をガイドとして、第9図に
示すようにV溝ホルダ39を光軸方向に移動させ、出射
側の光強度が最大になるまで微調整を行なう。同様に、
各波長に対応した伝送路ボート(λ、〜λ、)の調整を
行なう。この動作を第8図により、さらに詳細に説明す
る。所定の溝形状が形成された基板38を用すて、前記
溝39.42〜46にλ、〜λ、の伝送路ボートを所定
の位置に仮固定する。ここで、光ファイバを伝搬するλ
、〜λ6の光多重信号は、ロッドレンズでコリメーショ
ンされる。次、λ、伝送路ボートf@59をガイドとし
て、光軸方向にV#lホルダ移動させ、干渉膜フィルタ
36に入射された光の中で波長λ、の光強度が最大とな
る位置に微調整した後、基板68にV溝ホルダ37を仮
固定する。次に、干渉膜フィルタ36で反射されたλ。
The grooves 39, 42 to 46 can be formed by a conventional mechanical method or by forming the grooves 39, 42 to 46 on the substrate 38 of , set each of the above-mentioned transmission line boats at predetermined positions, move the V-groove holder 39 in the optical axis direction as shown in FIG. 9 using the grooves 59, 42 to 46 as guides, and adjust the light intensity on the output side. Make fine adjustments until it reaches its maximum. Similarly,
Transmission line boats (λ, to λ,) corresponding to each wavelength are adjusted. This operation will be explained in more detail with reference to FIG. Transmission line boats of λ, to λ are temporarily fixed at predetermined positions in the grooves 39, 42 to 46 using a substrate 38 having a predetermined groove shape. Here, λ propagating through the optical fiber
, ~λ6 are collimated by a rod lens. Next, using the transmission line boat f@59 as a guide, move the V#l holder in the optical axis direction, and finely move it to the position where the light intensity of wavelength λ is maximum among the light incident on the interference film filter 36. After the adjustment, the V-groove holder 37 is temporarily fixed to the substrate 68. Next, λ reflected by the interference film filter 36.

〜λ6の波長の中で、λ、を選択するための伝送路ボー
トについては、溝44をガイドとし、て、上記の各伝送
路ボートについて光軸調整を行な一1基板38に仮固足
を行なう。このように、基板58の溝39.42〜46
をガイドとして、V#Iホルダ3751をスライドする
だけで、光軸駒整が容易に可能となる。
Regarding the transmission line boat for selecting λ from among the wavelengths of ~λ6, optical axis adjustment is performed for each of the above transmission line boats using the groove 44 as a guide. Do the following. In this way, the grooves 39, 42 to 46 of the substrate 58
By simply sliding the V#I holder 3751 using as a guide, it becomes possible to easily adjust the optical axis frame.

次に、光軸調整が完了したものを、基板58ごとケース
40の中に入れ、第10図に示すように、基板38上の
光ファイバ28.33、ロッドレンズ6065、干渉膜
フィルタ31.56で形成されるλ、〜λ6の各伝送路
ボートをビー力53に入れyca明なプラスチック54
で光損させる。しかるのち、透明プラスチック54を所
定の条件にて硬化させることによ如光路が形成される。
Next, the substrate 58 for which the optical axis adjustment has been completed is placed in the case 40, and as shown in FIG. Put each transmission line boat of λ, ~λ6 formed by the beam force 53 into a transparent plastic 54
to cause optical damage. Thereafter, a light path is formed by curing the transparent plastic 54 under predetermined conditions.

ここで、前記、透明プラスチック54は、光ファイバ2
8の屈折率と実質的に等しくする必要がある。この理由
として、光ファイバ28の端面をはじめとし、ロッドレ
ンズ30、干渉膜フィルタ61、端面における光の反射
を防止するためである。また、光線透過率は98%以上
であることが望ましい。なお、上記、透明プラスチック
は室温硬化型あるいは、光硬化型が作業性向上の点で優
れている。前記、室温硬化型プラスチックとしては、R
TV型シリコーンゴム、エポキシキャストゲル、エポキ
シゲルなどが適しており、エボテック301(エボテ、
ツク社製)が特に良好な結果が得られた。
Here, the transparent plastic 54 is attached to the optical fiber 2.
It should be substantially equal to the refractive index of 8. The reason for this is to prevent reflection of light at the end face of the optical fiber 28, the rod lens 30, the interference film filter 61, and the end face. Further, it is desirable that the light transmittance is 98% or more. In addition, as for the above-mentioned transparent plastic, a room temperature curing type or a photo curing type is superior in terms of improving workability. As the room temperature curing plastic mentioned above, R
TV-type silicone rubber, epoxy cast gel, epoxy gel, etc. are suitable.
(manufactured by Tsuku Corporation) gave particularly good results.

また、光硬化型プラスチックとしては、紫外線硬化型の
アクリル系、エポキシ系が良好であり、N0A65(ノ
ーランド社製)が特に優れfC%性が得られた。
Further, as photo-curing plastics, UV-curable acrylic and epoxy-based plastics were good, and N0A65 (manufactured by Norland) was particularly good in terms of fC%.

以上述べたように、本発明によれば、光合分波器として
の特性は波長0.7〜13μmの範囲において、挿入損
失<2.0dB、クロストーク≧30dBと良好な結果
が得られた。
As described above, according to the present invention, good results as an optical multiplexer/demultiplexer were obtained with insertion loss <2.0 dB and crosstalk>=30 dB in the wavelength range of 0.7 to 13 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光多重信号の光軸調整がr溝ホルダと
基板上の溝で極めて簡便に行々うことが可能となり、従
来高コスト化の主原因であまた組立調整工数が大幅に削
減(従来5.0時間/ポート→0.5時間/ボート)で
きる。さらに、光信号が通過する光路を透明プラスチ、
ツク材料で形成することによ〕、従来部品コストの大手
を占めていた高精度なガラスバルク、ガラススペーサ等
の部品が不用とな9、光合分波器の大幅な低コスト化(
1/10以下)が可能となる効果がある。
According to the present invention, it is possible to extremely easily adjust the optical axis of an optical multiplexed signal using the r-groove holder and the groove on the substrate, and the number of assembly and adjustment steps, which was the main cause of high costs in the past, can be significantly reduced. (Conventional 5.0 hours/port → 0.5 hours/boat) Yes. Furthermore, the optical path through which the optical signal passes is made of transparent plastic.
By forming the optical multiplexer/demultiplexer with a solid material, parts such as high-precision glass bulk and glass spacers, which conventionally accounted for the major cost of parts, are no longer required.
1/10 or less).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光合分波器を示す平面図、第2図は従来
の光合分波器の分光特性を示す特性図、第3図、第4図
は光合分波器の組M時の精度と光損失の関係を示す特性
図、第5図は本発明の一実施例を示す伝送路ボートの斜
視図、第6図は伝送路ボー トの組立状態を示す斜視図
、$7図は基板を示し、(a)は平面図、(A)は側面
図、第8図は光合分波器の組立状態を示す平面図、第9
図は第8図の要部の拡大図、第10図は透明プラスチッ
ク樹脂の被覆工程を示す正面図である。 1〜7・光ファイバ 8伺4・・・円筒状ロッドレンズ 1ζ〜’)1.、、−Nラススペーサ 22〜27・・・干渉膜フィルタ 42・・・ガラスバルク 28・・・光ファイノ(29
・・・ファイバホルダ 30・・・円筒状レンズ31・
・・干渉膜フィルタ 32・・・r溝ホルダ6B・・・
基板 69・・・溝 54・・・透明プラスチック 代理人弁理士 高 橋 明 夫 聞1図 八 兇2図 入1人2人3人4人5人〇 入 第5図 地4図 角度すれ(戻) 閉5図 2 第6図 りt jZ 第7図 Jど ¥38図
Figure 1 is a plan view showing a conventional optical multiplexer/demultiplexer, Figure 2 is a characteristic diagram showing the spectral characteristics of the conventional optical multiplexer/demultiplexer, and Figures 3 and 4 are for optical multiplexer/demultiplexer set M. A characteristic diagram showing the relationship between accuracy and optical loss, Fig. 5 is a perspective view of a transmission line boat showing an embodiment of the present invention, Fig. 6 is a perspective view showing the assembled state of the transmission line boat, and Figure 7 is a The board is shown, (a) is a plan view, (A) is a side view, Fig. 8 is a plan view showing the assembled state of the optical multiplexer/demultiplexer, and Fig. 9 is a plan view.
The figure is an enlarged view of the main part of FIG. 8, and FIG. 10 is a front view showing the process of coating with transparent plastic resin. 1-7・Optical fiber 8 4...Cylindrical rod lens 1ζ~') 1. ,, -N spacer 22 to 27...Interference film filter 42...Glass bulk 28...Optical fin (29
...Fiber holder 30...Cylindrical lens 31.
...Interference film filter 32...r groove holder 6B...
Substrate 69...Groove 54...Transparent plastic patent attorney Akira Takahashi ) Closed 5 figure 2 6th figure t jZ 7th figure J ¥38 figure

Claims (1)

【特許請求の範囲】[Claims] t 複数の多層誘電体干渉膜を用い帯域通過フィルタで
構成される光合分波器において、前記フィルタを含む円
筒状ロッドレンズ及び光ファイバで形成される光路間が
、光ファイバと実質的に屈折率が等しい透明プラスチッ
ク樹脂で被覆されていることを特徴とする光合分波器。
t In an optical multiplexer/demultiplexer configured with a bandpass filter using a plurality of multilayer dielectric interference films, the optical path formed by the cylindrical rod lens including the filter and the optical fiber has a refractive index substantially equal to that of the optical fiber. An optical multiplexer/demultiplexer characterized in that the optical multiplexer/demultiplexer is coated with a transparent plastic resin having the same values.
JP9873584A 1984-05-18 1984-05-18 Optical multiplexer/demultiplexer Pending JPS60243609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9873584A JPS60243609A (en) 1984-05-18 1984-05-18 Optical multiplexer/demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9873584A JPS60243609A (en) 1984-05-18 1984-05-18 Optical multiplexer/demultiplexer

Publications (1)

Publication Number Publication Date
JPS60243609A true JPS60243609A (en) 1985-12-03

Family

ID=14227763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9873584A Pending JPS60243609A (en) 1984-05-18 1984-05-18 Optical multiplexer/demultiplexer

Country Status (1)

Country Link
JP (1) JPS60243609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446815A (en) * 1993-03-11 1995-08-29 Ngk Insulators, Ltd. Optical collimator array including a spacer for receving a microlens and method of aligning light axes thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446815A (en) * 1993-03-11 1995-08-29 Ngk Insulators, Ltd. Optical collimator array including a spacer for receving a microlens and method of aligning light axes thereof

Similar Documents

Publication Publication Date Title
US4343532A (en) Dual directional wavelength demultiplexer
US6870976B2 (en) Filter based multiplexer/demultiplexer component
US4296995A (en) Optical fiber beam splitter couplers employing coatings with dichroic properties
US4335933A (en) Fiber optic wavelength demultiplexer
US6301407B1 (en) Dielectric optical filter network
US4550975A (en) Optical coupling devices
US4339170A (en) Optical device for frequency-selective distributing light and the process of producing the device
JPH03601B2 (en)
JP2003504661A (en) Optical wavelength division multiplexer / demultiplexer in which preformed optical components are passively aligned
WO2001086329A2 (en) Cost-effective wavelength division multiplexer and demultiplexer
WO2001075494A2 (en) Optical filtering device and method of making the same
US4739501A (en) Optical multiplexer/demultiplexer
US20030206688A1 (en) Miniature optical multiplexer/de-multiplexer DWDM device
US11474299B2 (en) Wavelength-division multiplexing devices with modified angles of incidence
US10469923B2 (en) Routing band-pass filter for routing optical signals between multiple optical channel sets
JPH08313744A (en) Optical circuit parts
EP0463779A1 (en) Fibre optic waveguide beam splitter
US4726012A (en) Optical multiplexer-demultiplexer and method of manufacturing same
US7397988B2 (en) Grating based multiplexer/demultiplexer component
JPS60243609A (en) Optical multiplexer/demultiplexer
US7006728B1 (en) Add/drop module using two full-ball lenses
US20040086221A1 (en) Low cost, hybrid integrated dense wavelength division multiplexer/demultiplexer for fiber optical networks
Pinzón Castillo et al. Diffraction grating-based demultiplexers for SI-POF networks
US20050163423A1 (en) Optical filter assembly and method
US6891994B2 (en) Micro optical design for DWDM interleavers with narrow channel spacing